iCC 1995

2"% international CAN Conference

in London (United Kingdom)

Sponsored by

Motorola Semiconductor
National Semiconductor
Philips Semiconductors

Organized by

CAN in Automation (CiA)
international users and manufacturers group
Am Weichselgarten 26
D-91058 Erlangen
Phone +49-9131-69086-0
Fax +49-9131-69086-79
Email:headquarters@can-cia.de

1 1DI - lh#tn:/hananar AAnrn AiA AA



James J. Dattolo
Applications Engineer
Dearborn Group Technology

Society of Automotive Engineers (SAE)
Implementation of CAN for Heavy Duty Truck and Bus
Market -- Specification J1939

The Society of Automotive Engineers’ Heavy Duty Truck and Bus Division created a
committee to form a standard for multiplexed control busses in their vehicles. The
architecture of these vehicles are complex in nature, comprised of several
modules (cab, trailerl, trailer2, etc.). Therefore they chose CAN as the basis of
their standard, specifically version 2.0B, for the 29 bit identifiers. Several
documents were created that built upon the Bosch specifications but details all
seven layers of the ISO/OSI (Open System Interconnect) model.

This paper will show how and why certain implementations were used. Using 29
bit identifiers allowed segmentation of the identifier into content, source,
destination address, etc. The physical layer is also specified; it is similar to ISO
11898. The need for very fast transmission rates, typically under 20 milliseconds,
forced the application layer to pack similar data inside one CAN message. The
process of decoding these messages is difficult because in some cases one data
parameter may affect how other parameters are decoded. Due to this, several
tools have been created to help facilitate decoding of messages.

Introduction

The SAE formed a committee to create a standard for a control bus in heavy trucks and busses.
Standard practice J1939 was the result. The standard has started where older, slower UART
(Universal Asynchronous Receiver Transmitter) protocols have left off, namely J1708, J1587, and



J1922. The standard is comprised of a set of documents including one or more for each layer of
the ISO/OSI (Open System Interconnect) model. The committee made provisions for a global
specification as well as sub specifications. Currently there is a sub specification for agricultural
equipment.

Since these systems have the potential for many intelligent sub systems, the designers of J1939
have chosen the 29 bit version of CAN, V2.0B. The CAN identifier is broken down into the following
sections: Priority, Data Page, PDU (Protocol Data Unit) Format, PDU Specific, and Source Address.
J1939 defines two different PDU Format types; one’s specific field represents a destination ID, and
the other allows for a extension of the format field. Depending on the identifier, namely the PDU
fields and Data Page, the data portion of the CAN frame may be decoded.

The Application Layer document, J1939/7, defines how parameters are converted into raw binary
and packed into each CAN frame. In addition to packing data, the value of one parameter may
determine if some parameters are present in the message or if those parameters are to be ignored
by the receiver. The J1939Tool from the Dearborn Group, as well as other tools on the market,
allow engineers to quickly build and decode messages, both offline and in real-time acquisition of
messages on a J1939 bus.

J1939 Document Organization

The actual J1939 Document is the top level of a hierarchy of related documents. These
documents are designated by a systematic nomenclature given by J1939/NX, where X is the
applicable Industry and N the OSI layer number. N=1 is used to designate global Truck and Bus
functions. Another example would be for North American Agricultural Equipment (N=2). The top
level document, for agricultural equipment, would be connoted J1939/02 and would contain a
listing for all related documents. The current complication of documents is listed in Table 1.

Document Description

J1939 Top level document that describes the network in general, the OSI layering
structure, the subordinate document structure and provides control for all
preassigned values and names.

J1939/01 Application Document for Truck and Bus Control and Communications

J1939/02 Application Document for Agricultural Equipment Control and
Communications

J1939/11 Physical Layer, 250K Bits/sec, Shielded Twisted Pair

J1939/21 CAN 29 bit Identifier Data Link Layer

J1939/31 Truck and Bus Network Layer document

J1939/4X Transport Layer Document has not been defined yet

J1939/5X Session Layer Document has not been defined yet

J1939/6X Presentation Layer Document has not been defined yet

J1939/71 Vehicle Application Layer Document

J1939/72 Virtual Terminal Application Layer Document

J1939/81 J1939 Network Management Document

Table 1 List Of All Related J1939 Documents

Why 29 Bit Identifiers?

In a heavy truck or farm implement, there can be many different modules that govern the operation
of the machinery. These modules have data that can be grouped with others of similar
functionality. Control strategies are often performed at central computers in the vehicle, leaving
the data collection and any preprocessing to sub systems, often intelligent sensors. The source of
the data is often important to the control strategies. In some cases, it makes sense for a specific
module to receive a particular piece of information. Source and destination addresses allow for
these situations. A priority field at the beginning of the identifier would give important messages a
better chance of transmission on time. Also, priorities may be changed dynamically during certain



critical situations. The developers of J1939, in an effort to reduce overhead and used bus
bandwidth, proposed to pack messages with similar data and update rates into one message. To do
this, additional bits of information are needed to tell the receiver what type of message it is
receiving.

Another argument for 29 bit identifiers is the ability for a tractor to have may trailers hooked up at
once. Source and destination address possibilities can be quite large. Standard 11 bit CAN just
does not have enough bits available for decoding the message quickly. Another drawback is the
encoding schemes have to change every time another type of message or module is created. 29
bit CAN holds the key to quick decoding and flexibility in adding messages and types of modules
without changing the identifier creation strategies. J1939 has left many spaces to allow future
designers to fill.

Currently there are two CAN 2.0B compliant devices on the market, the Intel 82527, and Seiman’s
80C167. Both have the ability to sort messages into 15 predefined message boxes. They also have
one global mask and a separate mask for message 15. The masks allow the module to sort
messages ignoring certain fields, such as source and priority. The module only needs to be
concerned with the PDU and Data Page fields; These may be looked up in a table to determine
relevant parameters.

Data Link Layer Document J1939/21

The J1939/21 adds to the existing CAN 2.0B specifications for the CAN Data Link Layer. The
document is primarily concerned with the makeup of the 29 bit identifier field and breaks it into
separate fields. Table 2 illustrates the relationship between the fields and the 29 bit identifier.

CAN Identifier Bit J1939 Bit ID 15 PDU Specific 7
ID 29 Priority 3 ID 14 PDU Specific 6
ID 28 Priority 2 ID 13 PDU Specific 5
ID 27 Priority 1 ID 12 PDU Specific 4
ID 26 Reserved ID 11 PDU Specific 3
ID 25 Data Page ID 10 PDU Specific 2
ID 24 PDU Format 8 ID9 PDU Specific 1
ID 23 PDU Format 7 ID 8 Source Address 8
ID 22 PDU Format 6 ID7 Source Address 7
ID 21 PDU Format 5 ID 6 Source Address 6
ID 20 PDU Format 4 ID 5 Source Address 5
ID 19 PDU Format 3 ID 4 Source Address 4
ID 18 PDU Format 2 ID 3 Source Address 3
ID 17 PDU Format 1 ID 2 Source Address 2
ID 16 PDU Specific 8 ID 1 Source Address 1

Table 2 Relationship between CAN 29 Bit Identifier and J1939 Assignments

While according to the CAN data link layer the entire 29 bit field is used to determine priority, in
J1939 the 3 bit Priority field is used to modify the priority inherent in the rest of the message. The
J1939 committee has set aside a single reserved bit for future expansion of identifiers. The Data
Page bit is used to distinguish the messages that are presently being defined and those that will be
defined in the future. The Protocol Data Unit (PDU) Format field is an 8 bit field that identifies what
data is contained within the message. Depending on the value of the PDU Format field, the 8 bit
PDU Specific field takes on either a Destination Address or Group Extension (additional 8 bits of
PDU Format); Destination Address is present when PDU Format is between 0 and 239, while the
Group Extension is present when PDU Format is between 240 and 255. The last 8 bits define the
Source Address of the sending node. For a given network every address must be unique. Therefore,
only 256 different nodes may be present on any on J1939 network.



Currently there are five J1939 message types supported; Commands, Requests,
Broadcasts/Responses, Acknowledgments, and Group Functions. Commands are destination
specific and are used to cause some specific action to happen at the destination. Requests are
used to gather information; they may be global or destination specific. Broadcast/Responses can
either be an unsolicited broadcast of information or a response to a Command or Request.
Acknowledgments are responses to specific commands; they may be either positive or negative.
Group functions are used for special groups of functions, such as network functions, proprietary
messages, and multipacket transport functions.

Some messages have been defined to contain more than 8 bytes of information. In this case the
data must be split between multiple CAN data frames. The rules governing the handshaking and
packetization are currently contained in the J1939/21 Data Link document; these rules make up the
J1939 Transport Protocol. Only one multipacket, global destination, message may be sent from a
given device at a given time. However, receiving nodes must recognize that multiple multipacket
messages can be received interspersed with one another from different sources. Currently the
J1939 Committee is balloting a revised Transport Protocol.

In addition to the messages defined by J1939’s Application Layer document (J1939/7), customer
proprietary messages may be constructed as follows. 29 bit destination specific proprietary
messages are to be constructed with DP = 0 and PDU Format = 239. Other non-destination specific
messages are to use DP = 0, PDU Format = 255, and PDU Specific = 255. The other fields must still
follow J1939 specifications. 11 bit CAN 2.0A messages can also be used as proprietary messages.
The 11 bit identifiers must comply with the format found in Table 3. This allows for proprietary
communications to happen without conflict due to different manufacturers making modules.

CAN ldentifier Bit J1939 Bit
ID 11 Priority 3
ID 10 Priority 2
ID9 Priority 1
ID 8 Source Address 8
ID7 Source Address 7
ID 6 Source Address 6
ID5 Source Address 5
ID 4 Source Address 4
ID 3 Source Address 3
ID 2 Source Address 2
ID 1 Source Address 1

Table 3 11 Bit Identifier Assignments

Application Layer Document J1939/7X

The J1939 Application Layer document specifies how to convert parameters to and from raw binary
and how to pack them into the CAN frame. J1939 uses the Least Significant Byte first or Intel
format to store the raw data. In J1939, there are three basic types of data: normal or floating point,
control/discrete, and ASCII.

Normal data parameters, such as output shaft speed or retarder torque, take on a range of floating
point values. These values can be converted into raw binary by using the J1939 defined resolution
and offset values. These are defined for each parameter but often take the same form for similar
units, i.e., Percent Torque or RPM. In addition to linear scaling, two discrete values that normal
data parameters can take on are an error state (ERROR) and not available (NA). These values do
not use the resolution or offset values and can be encoded in binary depending on the size of the
normal data parameter in bytes. Table 4 shows the valid ranges of normal data parameters and
where ERROR and NA are encoded.



Range Name 1 Byte 2 Bytes 4 Bytes ASCII
Valid Signal 00 to FA 0000 to FAFF 00000000 to 01 to FE
FAFFFFFF
Reserved FB to FD FBOO to FDFF FB0000O0O0 to none
FDFFFFFF
ERROR FE FExx FEXxxxxx 00
NA FF FFxx FFxxxxxx FF

Table 4 Normal Data Valid Ranges (From J1939/71)

Control/Discrete parameters are bit level parameters. They are always found within byte boundaries
and are often grouped together in the first byte of data. Discrete parameters are usually measured
in response to a request, while Control parameters tend to turn on and off functions at the
destination. J1939 defines the states for each parameter within the J1939/7X document but gives
recommendations for the meanings. Tables 5 and 6 give the transmitted ranges of Discrete and
Control Parameters.

Range Name Value
Disabled (Off, Passive, etc.) 00
Enabled (On, Active, etc.) 01

Error Indicator 10

Not Available or not installed. 11

Table 5 Transmitted Values for Discrete Parameters (From J1939/71)

Range Name Value
Command to Disable (Turn off, 00
etc.)
Command to Enable (Turn on, 01
etc.)
Reserved 10
Don’t care /Take no action 11

(Leave function as is)

Table 6 Transmitted Values for Control Commands (From J1939/71)

Discrete parameters can also have an additional purpose. Depending on the value of the
parameter, certain other parameters may be decoded differently. Some parameters may be
temporally disabled for this message or replaced entirely. This is referred to as a PGN (Parameter
Group Number) extender or Modal Dependencies. In this way, multiple messages may be mapped
onto one CAN identifier. At this time only one message has been identified, Torque Speed Control
One(TSC1). Depending on the state of the Override Control Mode parameter the message may take
on a control or limiting functions.

ASCII parameters are often associated with multipacket messages. Examples are Vehicle
Identification Number (VIN) and Make/Model/Serial Number information. ASCII fields are usually
delimited with a ASCII “*” character and allow for variable length fields.

The current organization of the document places the messages and parameters in different sections
and cross-references them with a X.X.X. X type numbering system. This system is cumbersome and
time consuming for the engineer decoding messages. There are now several software tools to help
engineers build messages as well as decode them.

Example Messages

An example conversation between an engine and the transmission can be found in Table 7. The
transmission is attempting to shift to a higher gear. XXXX and YY denote some speed or torque



that can take on any value depending on the current gear and throttle position. The Raw Data
column contains example data, all unknown information has been set to the NA state.

PGN Source Destination Action/Function Raw Data

ETC Trans Engine/AS  Decision to Shift DF FF FF FF FF FF FF FF
1 R (Shift in Progress)

TSC  Trans Engine Override Priority to High DE FF FF 00 FF FF FF FF
1 and Control Torque to 0

TSC Trans Retarder Disable Control Mode DC FF FF 00 FF FF FF FF
1 Torque =0

EEC Engine Trans Torque = 0 F6 FF 7D FF FF FF FF FF
1

TSC Trans  Engine Control Speed to XXXX RPM DD XX XX FF FF FF FF FF
1

EEC Engine Trans Speed = XXXX F6 XX XX YY FF FF FF FF
1

TSC  Trans Engine Speed/Torque Limit CF XX XXYY FF FF FF FF
1 Override Priority to Highest

ETC Trans ASR Allow ASR DF XX XX YY FF FF FF FF

1

Table 7 Example J1939 Messages (From J1939 Document)
Tools

Due to the complex nature of building and decoding messages, a variety of tools are being created
to help engineers. Currently, there are no commercially available products that meet all of J1939
requirements. CANalyzer from Vector allows users to build generic application layers for CAN and
use them to record and transmit messages. CANalyzer does not support the ability for ERROR and
NA conditions on normal data parameters. Also Control and Discrete parameters are shown in bit
form only; the user still has to look up the definition from the J1939/7X documents. The Dearborn
Group is now beta testing its implementation of a J1939 program to allow users to receive, decode,
and transmit messages. It is called the J1939Tool and it runs user Microsoft Windowsa

The J1939Tool is broken up into the following sections: Data Dictionary, Message Monitoring,
Message Generation, Message Manipulation, and User Interface. The J1939Tool allows users to
create data dictionaries of messages. This Data Dictionary then can be used to decode and
encode messages through out the rest of the program. The tool also has the capability to capture
messages from the bus and save them on disk. While capturing messages, the user has the ability to
monitor the bus in real time through scrolling trace displays, fixed position message displays, and
bar graphs. After capturing the messages, the user can search for messages that conform to a
complex set of criteria: by message name, source address, destination address, priority, message
type and time stamp. These criteria may be logically OR’ed together to create a complex search.
The tool can also highlight any messages found by the search, which may be combined with the
next search in a more complex AND-OR search. Messages that were captured and saved to disk
may be later transmitted onto the bus. In addition to these messages, the user may encode
messages and add them to an existing file or a new file. In the message manipulation section, the
Window’s Clipboard is used to allow the user to quickly move messages from file to file.

Conclusion

J1939 allows for multiple vendors to create controllers, sensors, and actuators for the heavy duty
truck and bus market that will communicate with other J1939 compliant devices. This assurance
will allow more and more complex systems to be designed with little or no chance of components



not fitting in. J1939 continues where J1708, J1587 and J1922 left off. CAN offers a much higher
bandwidth than standard UART based communications. Also CAN offers a much higher reliability
and guaranteed latency times.



