
Prof. Dr.-Ing. Gerhard Gruhler, Dipl.-Ing. Martin Rostan
STA Reutlingen, Germany

Interoperable Automation:

Components Using CANopen Profiles

Abstract
Since the number of available automation components with CAN interfaces is
increasing more and more, there is a strong demand on interoperability
between these components in multi vendor systems. However, the CAN in
Automation community is still using a wide range of manufacturer specific
communication solutions. In order to achieve interoperability of control
components, communication and device profiles are to be employed together
with the CAN communication layers that form the basis for specific
implementations.

CANopen, a set of existing and emerging profiles based on CAN Application
Layer (CAL) is presented. These profiles are open to manufacturers and users.
The CAL based Communication Profile For Industrial Applications (CiA
standard DS 301) allows the definition of a wide range of device profiles e. g.
for decentralised I/O, drives, vision systems, encoders, etc. The
communication profile which is presented in detail provides fast event driven
or cyclic messages as well as asynchronous data transfer. Since several
companies have already adopted CANopen, an overview is given on ongoing
implementations.

1 Introduction

Fig. 1 shows an example of a CAN based production cell. CAN is used as the communication system

between automation components of the cell such as the controller, robot drives, operator interface,

vision system, feeders and parts of a workpiece carrier transfer system.

Similar production units linked by material flow systems can be found on nearly every production line,

especially in the electronic, electromechanical and mechanical device production areas. The cell of

Fig. 1 is a typical example for multi-vendor production equipment.

The adaptation of production equipment to customer specific configurations requires enormous and

ever increasing engineering and integration effort. This is due to decreasing product life cycles,

extension of just-in-time delivery, increasing complexity and variety of products. For the example of a

production cell given in Fig. 1, customer specific implementations of interfaces between control

components and interface related software normally cause an engineering effort as high as the costs

of the basic cell components.

Figure 1: CAN based multi-vendor production cell (CANopen Pilot Cell)

Therefore the application of an open communication system should aim at two major problems: (1)

interoperability between the basic functional elements of production cells has to be achieved, (2)

traditional cell components usually directly connected to controllers do not support easy and fast cell

set-up procedures due to missing installation and configuration flexibility.

2 Open communication with CAN

The use of CAN in automation components often implies the development of application specific parts

of protocol software. When a new application is designed, at least a new proprietary "layer 8"

specification (profile) is often invented. This might be a satisfactory solution for a certain period of time

but the disadvantages become obvious. There is an enormous amount of effort to spend making CAN

components completely interoperable. There are lots of protocols and more software versions which

have to be supported and maintained. This creates costs which the customers won't pay for ever.

Fig. 2 shows the technical and commercial benefits which can be expected from open CAN

communication using respective interoperable CAN based automation components. As a result, a feed

forward effect will lead to an increasing number of manufactured components, to lower costs per part

and a bigger market share. Additionally, it seems to be better for customers and manufacturers to

protect the market share of a device by excellent functionality and a good price-performance-ratio

rather than by the use of proprietary protocols.

Fig. 2: Expected benefits achieved by open communication

To achieve the indicated benefits at least partially, it is not sufficient to just make public a set of

specifications. A really open CAN communication system for automation applications should meet

some more requirements. To achieve a high degree of interoperability, open possibilities of a layer 7

protocol like CAL are to be specified by profiles. Fig. 3 shows an extract of a requirement list

containing both technical and strategic aspects.

A communication system is considered to be "open" if the chances to draw commercial benefit out of

both master and slave implementations are similar to all. This is especially important for small and

medium-sized enterprises as they have a big share in the CAN in automation market.

Fig. 3: Open communication is to meet technical and strategic requirements

3 CANopen Communication Profile

3.1 CANopen and CAL

CAN Application Layer (CAL) was the first available open application layer specification for CAN, and

many users expected to get the benefits described above by simply using CAL. However, whilst CAL

specifies a variety of data objects and services, it does not intend to specify the exact use of these

services, but provides all elements for designing CAN communication applications.

One can compare CAL with a well equipped toolbox without a user manual that details which tool one

has to use in order to solve a specific problem (see Fig. 4). If for example, a parameter set has to be

downloaded to a device, the entire set can be transmitted using domain transfer services, or one can

define each parameter to be a variable which is downloaded with a write_variable service.

Alternatively, it is possible to use multiplexed variables with confirmed or unconfirmed services, NMT

configuration control services, combine single parameters to structures with different access type, use

various variable names and priorities, etc..

All possibilities are fully CAL compatible, but obviously not interoperable unless someone specifies

which object and service type has to be used for which parameter, and how this parameter is to be

interpreted.

Network-Master Device

Domain Download

Write Parameter 1

Param. 1
Param. 2
Param. 3

Param. n

Network-Master Device
Param. 1
Param. 2
Param. 3

Param. n

Write Parameter 2
Write Parameter 3

Write Parameter n

CAL

Figure 4: Purpose of communication profile

By defining the subset and use of CAL, the CANopen “CAL based communication profile for industrial

systems” (CiA-DS 301) provides the missing user manual that is needed to establish open and

interoperable communication with CAL. Or, in other words, CANopen reduces CALs degrees of

freedom in order to achieve interoperability, lean implementations and superior performance. This is

comparable with Profibus, where Profibus-DP represents a successful real-time subset of Profibus-

FMS, which is too complex for most applications. However, although similar in leanness, CANopen

provides significantly more functionality than Profibus-DP.

All devices following the CANopen communication profile can interact perfectly in the same physical

network (if required together with generic CAL devices). Full interoperability regarding data content is

achieved by employing the appropriate device profile. The communication profile describes how to

communicate, the device profiles detail what to communicate for each type of device (see fig. 5).

3.2 SDO and PDO

Two data types with different characteristics are dominating in most automation system networks: one

type is the real time data, which has to be transmitted quickly, preferably without any overhead, and

with pre-defined structure. This process data is either transmitted in a cyclic, synchronous manner or

asynchronously, event driven (taking advantage of CANs unique features: transmitting process image

changes rather than the entire process image). Typical data content is I/O data or command/actual

values for drives. An explicit confirmation of each process data is generally not required. A message of

this data type is called Process Data Object (PDO), and CANopen uses the CAL event-service to

transmit PDOs. The event service principally describes a CAN layer 2 message as it carries no

overhead. CANs broadcasting features as well as its multi master features remain fully intact. PDOs

get high priority identifiers in order to ensure their real time behaviour.

Figure 2: CANopen Structure

Secondly there is parameter communication which has very different requirements: parameters have

to be confirmed, they may consist of many bytes and then have to be split in several segments;

parameters are typically transmitted asynchronously, and the requirements towards transmission

times are moderate. It has to be possible to include address information in order to access a specific

parameter out of a parameter list. CANopen introduces the Service Data Object (SDO) for such data

and employs the CAL multiplexed domain service for transmission. The multiplexed domain protocol

allows one to transmit parameters of up to 4 bytes with one handshake (protocol overview see Fig.6),

including 3 bytes of address information. Most existing profiles (e.g. the Drivecom profiles) use 3 bytes

addresses for parameters, and often limit the parameters to 4 bytes, so this expedited transfer covers

all requirements for such devices. In case the service data length exceeds 4 bytes (e.g. an application

program or a log file), a sequence of segmented messages follows to the initiate command. SDOs get

low priority identifiers as they are not supposed to interfere with the PDO real time communication.

 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

16 bit index 8 bit
sub-index

CMS
domain
protocol

Multiplexor

4 bytes data

CMS
domain
protocol

7 bytes data
Segmented
Transfer
(parameter > 4 bytes)

Initiate/Expedited
Transfer
(parameter < 4 bytes)_

Figure 6: Service Data Object: Multiplexed Domain Protocol

3.3 Device Profiles and Object Dictionary

All device parameters are listed in an object dictionary. This object dictionary contains the description,

data type and structure of the parameter as well as the address. The address being composed of a

16bit index and a 8bit sub-index guarantees compatibility with the object dictionaries of available

device profiles (e.g. Drivecom). Therefore, only the bus specific entries have to be exchanged with

CANopen entries. The object dictionary is organised in a communication profile specific part which

contains the communication entries, and in a device specific part which contains the device entries.

The device specific part is specified in the device profile, the communication entries form the common

subset of all devices, therefore they are specified in the communication profile. There is a range of

mandatory entries in the dictionary which ensure that all CANopen devices of a particular type show

the same basic behaviour. The object dictionary concept caters for optional device features which

means a manufacturer does not have to provide certain extended functionality on his device but if he

wishes to do so he must do it in a pre-defined fashion. Additionally, there is sufficient address space

for truly manufacturer specific functionality. This approach ensures that the CANopen device profiles

are “future-proof”.

The CANopen device profiling provides a non-manufacturer specific path with upward compatibility. By

defining mandatory device characteristics basic network operation is guaranteed. By defining optional

device features a degree of defined flexibility can be built in. By leaving “hooks” for manufacturer

specific functionality vendors will not be constrained to an out-of-date standard.

3.4 Boot-Up

The CANopen boot-up approach caters both for simple and sophisticated devices by defining a

mandatory minimal boot-up procedure that can be optionally enhanced if additional features are

required. The full version is equivalent to the standard CAL boot-up, ensuring that the whole range of

CAL features is accessible. However, the minimal version already covers a wide range of applications.

The boot-up procedure assumes that by default the peripheral devices do not have to know what kind

of application they are operating in. The network configuration takes place at one unit which can be

the network management (NMT) master or a separate configuration tool called configuration master

which remotely controls the NMT master. At the boot-up this master device can download the

configuration data via service data objects to the configuration slaves. If the slaves are capable of

storing this information, this only has to take place if the configuration changes.

CANopen defines a set of default identifiers which are derived from a node-ID, thus providing access

via an SDO to the object dictionary and real-time master/slave communication via PDOs without any

specific parameterisation. Of course this default identifier distribution can be modified either by

changing the appropriate parameters in the object dictionary (SDO access), or by employing CAL DBT

services, if present. However, applications that comprise one device that controls all others can

operate sufficiently well with the default settings.

a) Minimal CANopen boot-up procedure b) Full CANopen boot-up procedure

Operationaldisconnect

Pre-operational

reset communication
parameters

Prepared

Preparing

Connecting

Disconnected

reset communication
parameters

disconnect

disconnect

Power on

Pre-operational

Operational

Figure 7: CANopen Boot-Up

The minimal boot-up covers only two states: pre-operational and operational (see Fig. 7a). After

power-on, a device is pre-operational, thus giving read and write access to its object dictionary as the

service communication is established using default identifiers. The devices can now be configured

(including identifier distribution via object dictionary access) if the default settings are not satisfactory.

With the standard CAL “start_remote_node” command then the devices are switched into “operational”

in order to start PDO communication. PDO transmission can be stopped altogether if requested by

switching the device back into pre-operational. By using the CAL command

“disconnect_remote_node” all communication parameters are reset, default values (e.g. preset

identifiers) are valid again. All (NMT-) commands needed for this minimal boot-up use identifier 0 and

are distinguished with the command specifier (cs) in the first data byte.

More sophisticated devices will support the full (CAL) boot-up (Fig 7.b) including DBT services which

is started with a “disconnect” command, as all devices enter “pre-operational” after power-on. It is

possible to have all combinations of devices in the same network, as the full boot-up can be performed

separately with each device supporting it whilst the minimal boot-up is performed with the other

devices. If the network master only supports minimal boot-up, all slaves behave like minimal slaves.

This boot-up concept ensures that very lean implementations are possible as all parameterisation

(including most of the network configuration) can be done via one single CMS service, the multiplexed-

domain protocol of the service data object. If the default settings are sufficient or if the devices are

capable of storing their configuration data, the boot-up is reduced to one single two-byte message:

“start all nodes”.

3.5 Bus Timing

Besides the cyclic exchange of data many real time applications demand synchronisation between

different bus nodes. I.e. axis of a kinematic have to be synchronised or I/O modules have to set

outputs or read inputs simultaneously like a PLC. Synchronised drives expect commanded positions

and send actual positions in pre-defined time windows. CANopen meets these requirements by

introducing an optional synchronisation telegram with a high priority, which divides the time axis in

equidistant communication cycles (see fig. 8). The synch-message does not contain data and can be

used as an interrupt by I/O modules to then set outputs or read inputs. Intelligent devices like drives

can synchronise e.g. using the PLL method. In the report window right after the synchronisation

telegram the drives send their actuals and the I/O modules send their input values. Afterwards, in the

command window, the commands and the output values are transmitted, which are then set valid at

the next synch-signal. As the report window directly follows on the synch-signal it can be hit even by

simple components without using timers. Bandwidth not used inside the windows and the time

between the command window and the synch telegram is available for low-priority SDO messages.

As the synchronisation telegrams are optional, it is also possible to operate CANopen networks in

totally asynchronous manner if desired. However, bus traffic and processor loading are much more

predictable if bus synchronisation is used.

For applications that require optimal synchronisation (the synch-message may jitter slightly due to bus

traffic at the synch transmission time), an optional high resolution synchronisation method has been

specified which uses time stamping of synch messages. This enhanced synchronisation is especially

useful for low speed networks with hard synchronisation requirements. However, it has been shown

that the standard synchronisation method perfectly good at operating robot kinematics.

Figure 3: CANopen Bus Timing

4 Implementations

CANopen emerged from a joint European research project. In this project, several pilot networks

featuring CANopen prototypes have been set up, thus ensuring that implementation experience

accompanies the final profile specifications. A multi-vendor network similar to the one shown in Fig. 1

was displayed at the Hanover Industrial Fair 1995.

Although the CANopen communication profile specification was finalised only recently, there are

already a number of CANopen implementations from several companies, many of them supported,

some performed by STA Reutlingen. Experience with these implementations shows, that the

CANopen approach allows generation of very lean code. It was possible to program a CANopen drive

interface in C-language on an 8051-type controller with CANopen boot-up, dynamic identifier

distribution, two PDOs, two SDOs, synch and emergency message support and full object dictionary

access with less than 80 bytes of RAM and less than 6 Kbytes of ROM. The interrupt routine for the

protocol is executed in less than 100 µs. A full implementation for a digital I/O module (including all

features) requires about 10 Kbytes ROM, a down-sized version can be implemented with less than 4

Kbytes.

5 Test and Certification

The advantages of open systems are only achieved if the protocol implementations are in exact

agreement with the specification. Therefore suitable protocol test methods are being developed. Both

in conformity testing (ISO/OSI-layers) as in interoperability testing (profiles) the device under test is

stimulated with extensive test message sequences. These are combined manually or in automatic

mode randomly out of a large number of small test strings in order to achieve maximal variance of test

states. The test evaluation is performed automatically as well. In doing so long time tests are possible

with changing characteristics.

Communication Cycle

Report
Window

Command
Window

Synch
Telegram

Synch
Telegram

inputs and actuals
read at the

synch telegram

commands (i.e. outputs, drive commands)
are executed at the
next synch telegram

asynchronous messages

Apart from the peer to peer test set-up there are multi vendor test beds available. Special care is taken

to ensure that the devices not only work in one specific set-up, but in various environments with

differing complexity, e.g. minimal slave implementations together with a full master implementation

and vice versa.

The test will be performed by independent and acknowledged institutions, certification based on the

test results will be done by the CANopen organisation.

6 CANopen: the Open Communication Standard

The CANopen development started in 1992, first prototype implementations have been available since

beginning of 1994. CANopen so far has mainly focused on the technical aspects of the protocol

development, ensuring that the resulting specifications meet the technical demands of a wide range of

applications. Now that the specifications are available, the promotion and marketing of this protocol

family is becoming more active. There is no large dominating company pushing this protocol with a

large marketing budget, but there are many medium sized companies involved reflecting the structure

of the European automation market, especially of the CAN market.

First products are already available, others are currently developed. Major drive and I/O component

manufacturers have decided to use CANopen as their CAN protocol, several master implementations

on PLCs and PLC interfaces are under way. The manufacturers have understood that CANopen has

the following advantages:

• it is an open protocol, that is independent of a specific manufacturer

• the real-time capabilities of CAN are not restricted, but easily accessible

• it is modular, one only has to implement the required features

• it is interoperable

• it covers a wide range of applications, from robot control and PLC applications to networks

with distributed intelligence, building automation applications etc.

• the profile structure is similar to existing profiles from Interbus-S, Profibus and others

Process data communication with CANopen is “pure CAN” without protocol overhead.

CANopen supports:

• auto-configuration of the network

• comfortable access to all device parameters

• device and network synchronisation

• cyclic and event driven process data transmission

• simultaneous reading of inputs

• simultaneous setting of outputs

Market Acceptance

 Effort, Complexity

Covered Applications

Figure 4: Market Acceptance versus Effort

Carefully the balance between the range of covered applications and the related effort and complexity

has been restored (see fig.9), as market acceptance decreases significantly (due to costs) when the

protocol gets too complex. Experience with the CANopen approach in various pilot applications has

proven the usability of this protocol family.

Literature

[1] ISO 11898: 'Road vehicles - Interchange of digital information - Controller Area Network (CAN)

for high speed communications'.1993.

[2] CiA Standard 'CAN Physical Layer for Industrial Applications', CiA-DS 102, 1994.

[3] CiA Standard 'CAN Application Layer', CiA/DS 201-207, 1994.

[4] CiA Standard 'CAL based Communication Profile for Industrial Applications', CiA/DS 301, 1995.

[5] Gruhler, G.; Rostan, M.: ‘A New Generation of Control Systems for Production Cells’,
Proceedings of the 5th FAIM Conference. Begell House, New York 1995.

[6] Tischer, M.; Pisarz, J.:'Open Communication for Drives', Proceedings PCIM 1995.

[7] Rostan, M.; Gruhler, G., ’CAN Real Time Communication Profile’, Proceedings 1st International
CAN Conference 1994, pp. 6-36...6-43, Erlangen 1994.

[8] Rostan, M., Gruhler, G.; 'Echtzeitkommunikation mit CAN/CAL unter Nutzung von
Geräteprofilen', Vortragsband iNet 1994, pp. 250...256, Hagenburg: Network 1994.

[9] Gruhler, G.; Jantzer, M.: 'Anforderungen an einen Feldbus für Montagezellen'. Vortragsband
iNet 1993, pp. 77...82, München: Drebinger 1993.

[10] Jantzer, M.; Rostan M., ’Requirements on an Installation Bus Concept for Production Units’,
CIM-Europe Conference, Amsterdam 1993.

[11] Gruhler, G.; Rostan, M.: Auswahl eines Feldbussystems für Produktionszellen. Elektronik plus
6/93, S. 77...82, München 1993.

[12] Einführende Darstellung und detaillierter Vergleich von Feldbussystemen. 1993/1995. Available
from: STA Reutlingen, phone +49 7121 271-327.

[13] ASPIC Consortium: Specification of CAN Real Time Communication Profile. 1994.

[14] Ratcliff, K.; Booth, R.; Farsi, M.: Principles of ASPIC Device Communication. University of
Newcastle upon Tyne, United Kingdom 1994.

