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Abstract
The increasing complexity and the distributed
architecture of automotive control systems, in
combination with an economic pressure for
shortened design periods, is a challenge for
electronic engineers. In this paper, an integrated
design approach is presented. For enhanced
efficiency, a hierarchical approach is proposed,
which is based on a uniform scheme to assign
functional units to hardware units in different levels.
The different design levels consider network, ECU
(electronic control unit) and µC peripherals.
Network design is simplified by the emerging
OSEK/VDX standard. By an equivalent
standardisation within the ECUs, functional models
may be automatically assigned to software and
hardware-objects.

1 Introduction
Electronic technology is applied in automotive
systems as a basis for the implementation of new
functional features. The application of electronics
has provided higher performance, more comfort, a
higher safety level and less exhaust emission for
today's automobiles.
The cheap application of electronics depends on
the fast progress of semiconductor technology. This
means faster cycle times of logic components,
growing complexity of integration and falling
component prices.
New functions are still generated for automobiles, a
process, which will probably continue during the
next years. New control functions are needed to
meet the ever tightening regulations for exhaust
emission, the growing demands for comfort, the
introduction of enhanced driver information and
traffic control systems [1]. To be able to implement
such new features, enhanced electronic
architectures have to be applied.
There are two alternatives approaches to enter new
control functions into an automotive electronic
system: distributed or locally integrated (Figure 1).
The distributed approach emerged with the first in-
vehicle networks in the '80s. By this approach,
different electronic control units are connected by a
communication link through equivalent network
interfaces [2]. In addition, autonomous intelligent
sensors [3] and actuators can be connected to

other units through the network. Networking is the
basis for new top-down control approaches,
independent of local ECU platforms. Examples are
traction control, vehicle dynamic control and
electronic torque control.
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Fig. 1: Distributed architecture of automotive
electronics

In some cases, it turns out to be more cost effective
integrating separate control functions in one local
unit. Such a local integration is especially attractive,
when fast and frequent interactions between
several control functions are needed. An example
of this approach is the integration of engine and
transmission control into one ECU.
Another way to implement new additional features
like on-board diagnosis, which very heavily depends
on remote sensor data and pre-processed
information from other ECUs, is the introduction of
a separate ECU.
This is then the platform for integrated vehicle
models and control schemes exclusively
determined by their physical behaviour, rather than
by their random local assignment to ECUs.
Distributed microelectronics gives control engineers
the chance to take over the lead in the development
of innovative automotive systems.
The implementation of new control functions in
automobiles requires also a significant growth in µC
performance. A way to boost µC performance is to
increase parallelism within the Hardware by
embedding enhanced peripherals and co-
processors on the chip. This approach is a current
trend in automotive electronics. Figure 2 shows an
eventual future µC architecture containing
enhanced peripheral units on the chip. Most of such
peripherals already exist today, but are not yet used
in combination for an integrated control approach.
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Fig. 2: Enhanced µC structure
The limits for the application of electronics in
automobiles will not only be determined by the
progress of the semiconductor technology, but also
by the ability of designers to handle the growing
complexity of distributed automotive electronic
systems. The application of complex electronics
also requires an enhancement of the design
methods in order to shorten development cycles
and to ensure the design quality.

2 Integrated System Design
Figure 3 illustrates the design problem of
automotive electronics. On the network level, the
system designer has to decide, which functions are
to be implemented on which network node, or ECU.
In addition to the function assignment for nodes, the
communication bus has to be dimensioned in a
way, that application specific response times for the
communication are met. The designer has also to
consider hardware cost requirements, which limit
the implementation possibilities.
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Fig. 3: Hierarchical design problem
The designer is confronted with a similar problem,
when a hardware platform should be designed for
an ECU. Typically, an ECU hardware consists of a 
µC, which has different peripherals assisting the
main CPU (see Figure 2). The designer has to
decide, which special tasks should be implemented

on peripherals to fulfil application specific
performance requirements and cost limitations.
The main factors influencing the design in each
level are summarised in Figure 4.
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This rather complex cost-performance-problem
makes it necessary to develop new integrated
methods, which allow the automation of the design
process. In an integrated approach, the functions of
an automotive control system are first described
using a suitable modelling method, but without
considering any hardware solutions. After this,
functional tasks are assigned to system
components in a hierarchical manner. On the
highest level, the functional system model is
partitioned and the partitions are assigned to
network nodes, or ECUs. On the next design level,
a hardware platform is designed for each ECU to
implement the functionality, which was assigned for
that ECU by the partitioning on the network level.
Figure 5 shows a basic scheme for a design
process handling a partitioning problem [4]. The
included design steps are introduced in the
following sub-sections. This basic scheme can be
applied for each design level illustrated in Figure 3.
Sections “Network Design“ and “ECU Design“
describe more detailed these two design levels, i.e.
network and ECU design.
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2.1 Functional modelling
In this step, the behaviour of the application is
described with an appropriate granularity using a
suitable modelling method. In addition, eventual
arrangements for fault tolerance are embedded into
the functional model. The step should also contain
a functional verification, which includes e.g. a
deadlock investigation.
Beyond application functions, also the characteristic
of activating events and application specific time
constraints are included in the model. As an
example, an activating event may have a certain
repetition characteristic, such as:
• periodic

The succeeding activating events appear after a
constant period.

• quasi-periodic
Only a minimal time interval between any two
events is known.

• aperiodic
No exact quantities (like in the above cases) are
known.

For tasks, which are triggered by events, a certain
execution response characteristic is required. The
required response characteristics are described as
time constraints. Different cases can be defined by
distinguishing, how to deal with an application
specific time limit for a task:
• hard

An exceeding of the time limit is not allowed.
• medium

Exceeding of the time limits for a task are
allowed for a certain portion of all activations.

• soft
No time limit exists. The task is executed as
soon as possible without violating the response
characteristics of other more critical tasks.
Average execution statistic can be derived.

2.2 Process-oriented modelling
A process-oriented model describes the interaction
between the processes (i.e. tasks) in a system (see
Figure 6). The process-oriented model can be
derived from the functional model by grouping
functions into processes, which represent units, that
can be executed in parallel.

2.3 Hardware-oriented modelling
This design phase includes the performance
modelling of different hardware components, which
form a pool of available resources, and a functional
partitioning in process-level. Functional partitioning
divides the various system processes into groups
and assigns each group to a resource from the
pool. The partitioning is made in accordance to the
performance goals and cost requirements. Figure 6
shows an assignment case using ECU functions as
an example.
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Fig. 6: Hardware-software partitioning
The partitioning is performed in an iterative manner,
as illustrated in Figure 5. A partitioning algorithm
tries to reach the design goals through small
modifications of the previous temporary
assignment. The partitioning is assisted by an
analysis, which is responsible for examining, if the
time constraints and cost requirements are fulfilled.
If the result of the partitioning does not meet the
design goals, another iteration cycle of the system
design must be made by returning to one of the
previous modelling steps. Otherwise, the system
design can proceed to the next more detailed
design level.

2.4 Analysis
The temporary assignment can be analysed in two
different ways. The performance analysis exams, if
the application specific time constraints are met.
The analysis needs the following input information
for each process, which is derived from the
previous modelling phases:
• execution form: parallel or quasi-parallel
• execution time using the chosen active resource

(in case of a software implementation, a 100%
availability of the resource is assumed for the
execution time estimation)

• time limit (if exist)
• repetition characteristic of the activation signal
• response characteristic (including the

percentage portion for the allowed exceedings
of the time limit by a medium response
characteristic)

For processes having a hard response
characteristic, a 100% guarantee for meeting the
time limits is needed. This leads to a worst-case
arithmetic analysis. In case of a quasi-parallel
execution of a process group, the chosen
scheduling algorithm has a central role by the
determination of the worst-case situation.
For processes with a medium response
characteristic, exceedings of the time limit for a task
are tolerated for a certain portion of all activations.
This performance requirement is examined by a
statistical analysis. E.g. the simulation can be
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performed upon the basis of an enhanced Petri-Net,
which is derived from the process-oriented model.
In case of a statistical performance analysis, a
probability distribution (e.g. Poisson) has to be
additionally defined for quasi-periodic and aperiodic
task activation signals.
Obviously, both arts of the performance analysis
are needed for a system including processes with
hard and medium response characteristics.
In addition to the functional and performance
aspects, the cost requirements can be examined by
a cost analysis.

3 Network Design
During the network design phase the application
functions are assigned to the nodes of the target
system. This assignment must consider the
requirements of the application, especially the time
constraints. The network design results in a
process-oriented partitioning of the application, i.e.
each ECU is assigned a set of processes to be
executed on it. In addition a high level specification
of the network is determined, comprising the
network structure and the performance
requirements for the components of the network.
A network consists of a set of nodes (ECUs) and a
communication system connecting the entire nodes
as depicted in Figure 1. On the level of network
design, each ECU is assumed as consisting of a
CPU with main memory (RAM and ROM), a
communication interface, and some sensors and
actuators. In comparison with the ECU design,
described in the next section, this view of an ECU
abstracts from the manifold components an ECU
may consist of. The communication system
normally consists of a single bus, but nevertheless it
also may consist of several bus systems connected
via gateways. The component modelling therefore
must enable the network designer to describe
arbitrary kinds of network structures and the
performance characteristics of the network
components.
As mentioned in section “Integrated System
Design“, processes are the units of assignment,
whereby the processes are derived from the verified
functional model by grouping of functions. The
functional model normally is of a very low
granularity, and therefore a lot of dependencies and
communication links exist between the units of the
functional model. With regard to the network design
the grouping of functions to processes should
minimise these dependencies and communication
links and lead to processes that can be executed in
parallel. The resulting process graph contains:
• precedence relation between processes, i.e.

requirements on the order of execution
• time constraints of processes, e.g. deadlines,

periods, etc.
• communication relationship between processes,
• requirements for assignment, i.e. some

processes may only be assigned to special

nodes, e.g. dependence to a specific sensor that
is not available at all nodes.

Another approach to get a process-oriented model
is the use of a pool of standard processes or
objects for the application modelling. Advantages of
such a pool are:
• reusability of verified processes
• the tedious task of derivation of processes from

the functional model can be omitted
Input of the partitioning algorithm is the process
graph of the application and a network model. After
the first iteration also the result of the analysis of the
previous temporary assignment can be used for
further assignments. The partitioning algorithm has
to determine an assignment of the processes to
ECUs by use of these inputs and with respect to the
following constraints/ requirements:
• all requirements/constraints specified in the

process graph, e.g. time constraints,
precedences, etc.

• the execution of a process may depend on the
node it is assigned

• the communication via the network takes time
The main target or constraint of the partitioning is to
find an assignment that meets all time constraints.
Moreover, the partitioning algorithm may have
additional targets like e.g. minimisation of wiring
costs, number of nodes, or bus baud rate.
During partitioning a process may be assigned to
different nodes. This portation of processes
requires more or less expensive adaptations of the
process implementations. The costs for such
adaptations may significantly reduced, if the
application software is based on standardised
interfaces for communication, operating system and
network management, as introduced by the Franco-
German co-operation OSEK/VDX (abbreviation of
Open Sytems and their Corresponding Interfaces
for Automotive Electronics/Vehicle Distributed
eXecutive).
Subsequent to each partitioning step the analysis
checks whether the determined temporary
assignment fulfils the given constraints. The
analysis of the overall system, not seldom
comprising hundreds of processes, tends to be
extremely complex. Also a simulation of the overall
system may be very time expensive. In order to
reduce the complexity of analysis and the time
demand for simulation, it therefore seems to be
beneficial to decompose the analysis into two
stages:
• Analysis of the communication system

Within this stage it only is checked whether the
communication system is capable to overcome
the message transfer with respect to the given
time constraints. The processes are only
considered as far as they have an impact to the
network communication. For each node it is
assumed that all processes assigned to this
node fulfil their time constraints. Obviously the
dependence of messages on other messages or
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on application data must be considered. As
additional results the communication load and its
variation in dependence on the portation of
processes may be determined.

• Node analysis
The node analysis checks separately for each
node the capability to manage the assigned
processes with respect to the given time
constraints. The processes assigned to other
nodes are only considered if they communicate
with processes of the node in question. Within
the analysis the messages of such processes
are generated, assuming that the
communication system and the affected
processes fulfil their time constraints.

Beyond these two analysis stages the analysis of
dedicated function paths may be useful, especially if
a function path consists of processes which are
assigned to different nodes.
At the end of this section an additional aspect of the
development of automotive systems should be
outlined. The aim of an integrated development
process is shown in Figure 7. The commercial
contract between a car manufacturer and a supplier
usually contains a functional specification which is
recursively more detailed, until it describes all
requirements of the contracted subsystem. The
MSR project (Messen, Steuern, Regeln, i.e.
Measuring, Regulating, Controlling), another multi
company project in the German Automotive
industry, supports this co-operation between car
manufacturer and supplier [6, 7]. The aim here is an
enhanced development efficiency by an improved
information exchange between car manufacturers
and their suppliers, on the basis of a common
procedural model and uniform interfaces and tools.
The MSR framework allows for the simulation of
functions in advance, so that the subsequent
development work necessitates significantly fewer
modifications of target functions. The final MSR
specification is done on the basis of the OSEK/VDX
interface. From there, functional prototypes can be
built and tested in vehicles. The suppliers use the
same basis to develop their electronic control units
for production purposes. Today's extremely costly
and error-prone barrier between prototypes and
final products is thus overcome.
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Fig. 7: Integrated development process

When several different suppliers must co-operate to
integrate their individual subsystems into a
complete system, the combination of the MSR and
OSEK/VDX approaches is even more beneficial
(Figure 8). Since the OSEK/VDX interface can
integrate end products together with prototypes,
different time scales or eventual time delays of one
supplier no longer impede vehicle tests of the
complete system at the car manufacturer.
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Fig. 8: Integration of automotive systems

4 ECU Design
The system tasks to be implemented on an ECU
are determined by the network design, as explained
in section “Network Design“. In addition to the
control tasks, an ECU contains typically tasks for
network communication and signal conditioning,
among others. On this design level, a hardware
platform is designed for each ECU to implement the
assigned functionality.

An ECU hardware consists typically of a µC, which
includes different peripherals assisting the main
CPU. The basic µC structure was already illustrated
in Figure 2. During the design in this level, the µC
architecture consisting of an appropriate CPU and a
set of peripherals is determined for an ECU. The
design process also delivers an assignment of the
different system tasks to the chosen hardware
units. The design process has to ensure the
fulfilment of application specific time and cost
constraints. This first phase of the ECU design is
called system design.
The result of the system design is a high-level
specification describing the µC architecture, the
required performance for each hardware unit and
the functions to be implemented on each unit. The
system design is followed by a detailed software
design concerning the implementation of the
functions on the CPU and eventually on a peripheral
unit, if it consists of a co-processor. If the
determined µC architecture does not exist
completely, also a further detailed hardware design
has to take place in addition to the software design.
Figure 9 shows the different phases of the complete
ECU design. This integrated approach is called
hardware-software co-design [8-12]. After the
system partitioning has been done during the
system design step, the actual hardware and
software design can proceed separately in a
conventional manner.
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Hardware-software co-design may be applied either
by a semiconductor  supplier or a customer to
determine  the µC architecture for a specific
application or a market segment of applications.
The system design is performed according to the
scheme introduced in section “Integrated System
Design“. The design process has to additionally
consider OS (Operating System) functions, which
are needed, when a group of processes share a
CPU. An OS takes care e.g. for interaction between
processes and for serialisation of the execution, i.e.
scheduling. The needed OS features can be, if
necessary, explicitly modelled by the designer or
derived according to other aspects modelled by the
designer and using a standard set of available OS
functions. As an example, process priorities for a
static-priority scheduling could be derived according
to the available repetition characteristics of the
activating events and the required response
characteristics of the processes. A standard set of
OS functions is made available by the OSEK/VDX
project [5, 6].
Functional partitioning divides the various system
functions into groups and assigns each group to a
system component [10]. A process-level partitioning
approach was already shown in <<Figure 6>>. The
partitioning can be also done using lower
granularity, i.e. instead of processes, smaller
functional units are treated as indivisible. As an
example, a statement-level partitioning would group
statements together and assign the groups to
available components.
The hierarchical approach introduced by network
and ECU design can also be applied in further
design levels to derive peripheral units for µCs
supporting specific functional areas. The next
section shows as an example a design method of
signal conditioning peripherals. This method can be
combined with the ECU design in a hierarchical

manner. The design on ECU-level would determine,
which signal conditioning functions are to be
implemented on peripherals, i.e. not necessarily the
complete signal conditioning should be ported into a
peripheral unit. The design on ECU-level would also
deliver application specific time constraints for the
execution of the peripheral signal conditioning. The
time constraints are then used as requirements,
which guide the design of the signal conditioning
peripherals.

4.1 Design of Signal Conditioning Peripherals
We are currently working on a hardware-software
co-design method, which determines a peripheral
hardware platform for the signal conditioning of a
real-time control system. Signal conditioning
transforms the input information received from the
controlled technical process into a presentation
required by the application. Input signal conditioning
includes tasks like sampling, scaling, normalising,
filtering, monitoring etc. Concerning the output to
the technical process, the signal conditioning offers
a higher level functional interface for the application.
The output signal conditioning takes primarily care
for an autonomous generation of output signal
sequences of different kinds.
Signal conditioning includes often rather complex
and extensive autonomous tasks, which may
concern both input and output interfaces of the
control unit. Such examples in automotive control
are ignition and fuel injection, where output pulses
are generated relative to the position of the
crankshaft. By signal conditioning, very short
response times are often required. As a trend to
reduce the load of the application processor, signal
conditioning is ported to a peripheral unit. This
relieves the application processor from the most
time critical tasks and makes it easier to design the
application in a predictable manner. Figure 10
shows the structure of a control system, where the
peripheral unit consists of a co-processor and an
ASIC portion.
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signal conditioning
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ASICco-
processor

CPU

sensors actuators

peripheral unit

ECU

Fig. 10: System structure for peripheral signal
conditioning

In our method, the peripheral hardware platform
may consist of a co-processor and logic units,
which represent an ASIC portion. A co-processor or
an ASIC can also alone build the peripheral unit.
The assignment of functional units to components
has to consider application specific time constraints
for the execution of the signal conditioning tasks.
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The peripheral hardware platform is designed in a
manner, that the time constraints are fulfilled under
every circumstances. This leads to a worst-case
performance analysis. Additionally, the assignment
process should minimise the costs for the
peripheral platform, when choosing components
from an available component pool.
An object-oriented modelling is used in the
hardware-software co-design method to describe
the signal conditioning functions. The signal
conditioning for a certain application is modelled
connecting objects, each of which implements its
own specific signal conditioning task. Figure 11
shows a small signal conditioning example for a
square wave signal.
Due to the similar art of signal conditioning in
different applications, a pool of reusable signal
conditioning objects can be constructed to ease the
modelling. Also, objects of the pool can be refined
to make slightly different variations.
Object-oriented modelling is a way of thinking
abstractly about a problem using real world
concepts, rather than computer concepts [13].
Signal processing tasks can be modelled in a
conventional manner using well-known elements
like filters and timers, among others. An object
combines all the data and operations, which are
necessary to perform a signal conditioning task. An
object-oriented communication model shows also
the natural information flow between the elements.
Object-oriented modelling has already been
adapted in several related projects [14-16]. These
projects concern code generation for signal
processing in analysis and measurement
applications.
In addition to the easy understandable presentation,
object-oriented techniques offer further advantages.
Although originally aimed for software design,
object-oriented modelling can be also used for
hardware design [17]. Therefore, an object-oriented
modelling technique offers a uniform,
implementation independent abstraction level as a
framework for hardware-software co-design. Clearly
defined interfaces also support design automation.
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Fig. 11: An example for signal conditioning

Repetition characteristics of signals, which activate
signal conditioning tasks, are described in the way
shown in sub-section “Functional modelling“.
Activating signals are: input signals from the
controlled process containing events (i.e. interrupts
and pulse sequences), clock signals for sampling
purposes and commands from the application
processor.
As time constraints, a required response time is
assigned for each sequence of operations activated
by an input signal. A required response time means
a time bound, during which all operations of the
corresponding sequence have to be completed
after the activation. Further tighter time bounds can
be optionally assigned inside an operation
sequence.
The designer chooses a pool of components, which
implement the modelled signal conditioning
functions. The component pool, or allocation, can
contain several components implementing the
same function, but distinguishing concerning
performance and cost.
We apply object-level partitioning, where objects
represent the smallest indivisible functional units
used in partitioning. Objects can be seen as
autonomous functional units, which can be
executed in parallel due to the object-oriented
communication, i.e. message passing.
Data clustering is already used as an essential
feature of the object-oriented  modelling method. In
data clustering, functional units using shared data
are grouped together to reduce data access
overhead. Through the indivisibility of an object,
also the data consistency within an object can be
ensured with a rather small overhead. The data
consistency is ensured by performing the
operations of an object in a non-pre-emptive
manner.
The design method delivers as a result a
specification containing the as objects modelled
signal conditioning functions, the assignment of
objects to peripheral components and a
performance description for each component. The
software for a co-processor can be generated from
the specification with a rather small effort, because
the functionality of each object is described in the
"C"-language during the functional modelling phase.
If a peripheral unit should be implemented as logic,
the objects assigned to it form the functional
specification for a detailed hardware design.
Estimated execution times for the operations of the
corresponding objects represent performance
goals, which are to be met in the detailed hardware
design. The estimated execution times are already
required by the partitioning process.

5 Conclusion
The designer of automotive ECU is confronted with
the problem, how to describe real-time function, and
how to find a cost-effective software-hardware
implementation that meets the real-time constraints.
Starting with a functional modelling, functions are
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grouped into parallel processes which are then
assigned to hardware and software objects. The
efficiency of such a partitioning is measured by a
performance and cost analysis. The platform for
such an approach is the emerging OSEK/VDX
standard for distributed systems, as well as a pre-
defined set of software and hardware objects for the
final implementation. While the entire procedure is
not yet available today, it shows a direction how to
simultaneously decrease development times and
product costs.
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