
Modelling of embedded CAN applications

Dipl.-Ing. Jürgen Pisarz
Dr.-Ing. Martin Schneider

c/o por t GmbH
Droysziger Weg 56

D-06188 Hohenthurm area Leipzig/Halle
Phone +49-34602 33 279

Fax +49-34602 33 280
E-Mail service@por t.de

Abstract
The paper gives an overview over the object-oriented
methodologies including related wor kbenches, which
were developed especially for modelling of distributed
reactive systems. The applicability of this tools will be
discussed with a concrete motion control application
based on CAN.
Also some aspects of hardware/software co-design of
such kind of systems regarding to the quality and effi-
cency of the development process will be part of the pre-
sentation.

1. Application strategy for distributed real-time con-
trol systems
The dramatically increased complexity of distributed real-
time control systems and software is caused by the
requirements Timeliness, Dynamical internal structure,
Reactiveness, Concurrency and Distr ubution.
Each of these aspects adds fundamental difficulties to
the development process - that means that the develop-
ment process itself is a key issue in successfully realis-
ing complex real-time systems.
Following [Tör95] the design of distributed real-time con-
trol systems requires methodologies, models and tools
that facilitate systems engineering supporting the design
phase to determine:
- an appropr iate level of application decentralisation;
- a suitable way of organising the distributed applica-

tion.
With refer to [Ger95], [Sel92], [Stü95] and many others
mainly modelling and simulation can help in evaluating
different design choices to manage the complexity of
such kind of systems, and it is important to obtain infor-
mations about a desired system before constructing it,
mostly in time and money critical market sections.

2. Development Strategies
Tr aditional tools are mainly used for syntactical checks of
design and code, but usually not for validation of result-
ing behaviour and perfor mance of a system implementa-
tion before the coding phase. They have methodological
gaps in the development process and a relatively late
response to system properties.

To deter mine the correct functionality of embedded CAN
applications different bus analyser and other tools are
used.
Therefore methods and tools are needed to support a
better validation of system properties like functionality,
behaviour and perfor mance at the beginning of the life-
cycle on understanding of the problem and on fixing the
desired properties by getting feedback from what is
defined.
Rapid prototyping is already used for better understand-
ing of a problem. But unfor tunately the results of proto-
typing are not consequently used in final implementa-
tions.

system specification and design

pre-integration and early validation

target system validation

target
software

generation

translation
to

VHDL

VHDL
refinement

hardware
manufactoring

hardware - software

execution by simulation

hardware - software

refinement
iteration

co-simulation

Figure 1: Systems development approach [Ger95]

The alternative lifecycle in future development of sys-
tems and software, shown in Fig. 1, is driven by for mali-
sation of the problem and use of sophisticated methods
and tools for early validation of a prototype from which
the final implementation can be derived. That means to
use a problem-or iented language, method or tool for
expressing the problem and not a textual description
[Ger95].
Also reuse is still an issue and object-oriented methods
and tools have the capabilities to provide powerful mech-
anisms for reuse of concepts rather than only code.

The development process to generate systems that meet
the requirements can be viewed as an iterative search
through a tree of design alternatives. Results of the
development progress can be measured in terms of the
achieved par t of the total specified functionality.
Based on this iterative view of dev elopment, the most of
object-or iented methodologies do not part the develop-
ment process into sequential phases with distinct func-
tions perfor med in each. Instead of the strongly phased
Waterfall-model, the development process breaks down
in terms of activities, according to their respective objec-
tives.
The objective of Analysis is to gain an understanding of
the problem at the current level of refinement including
the analysis and refinement of requirements and the
modelling of the environment in which the problem is
defined as well. The inputs to analysis are the system
requirements, system models from previous levels of
refinement, and domain exper tise. The for mal outputs
are analysis models which can for m a basis for the
design model, and perhaps a more refined requirement
specification.
The objective of Design and Implementation is to create
a design model that provides a solution to the require-
ments based on the understanding captured in analysis.
In other words, the choosen analysis model and the
design model are simply two par ts of a system model
with typical commonalities.
The objective of Execution and Ver ification is to ver ify a
model by executing it and comparing its behaviour
against a set of prepared test cases whether the model
meets its requirements.
Several features distinguish this process model from pre-
vious ones:
1. It takes advantage of the fact that analysis models

are executable to gain early insight into the problem;
2. The design starts in an early phase of the process to

explore possible alternatives of the most difficult
par ts - the ability to execute the combined analysis
and design specification is heavily exploited;

3. The analysis model can for m a star ting point for the
design model;

4. Because of the continuity of concepts no distinction
between design and implementation is made (all
executing activities use the same abstractions that
have been used to create the models).

Impor tant for the model is, that tool support is absolutly
necessar y to execute or simulate models, and to man-
age the iterative dev elopment process.

3. Modelling alternatives
The known object-oriented toolsets for simulation of real-
time systems provide complete system architectures
organised in inheritance hierarchies allowing abstraction
and reuse at a much higher level than it is possible with
programming languages.
To descr ibe an application concepts for capturing system
proper ties in terms of structure and behaviour are
offered.

The Str ucture (or architecture) of a system is the defini-
tion of the set of its component parts and the set of com-
munication and containment relationships between those
par ts.
While structure deals mainly with the static aspects of a
system, Behaviour captures its dynamics. This encom-
passes all actions within the system whether they are
generated internally or in response to exter nal stimuli.
The toolset ObjecTime is an implementation of the Real-
Time Object-Oriented Modelling ROOM-methodology,
which was designed for modelling of complex reactive
distr ibuted systems in the telecommunication area.
Str ucture descr iption is given in ROOM with Actor-
Hierarchies and Protocol-Classes for communication
pur poses between Actors shown in Fig. 2.

Containing Actor

Message

Bindings

Component
Actor 2

Component
Actor 1

Figure 2: Actor-Hierarchies

Behaviour capturing is provided by Hierarchical State
Machines for each Actor.
The actor paradigma is strongly focused on distributed
ev ent driven systems.
For high level analysis activities Message Sequence
Char ts (Fig. 3) provided by ObjecTime and SDT are use-
ful to create scenarios of interaction between Actors.

Also Actors as independent active logical machines with
a str ucture and an optional behaviour are useful for mod-
elling CAN networ ks.
Unfor tunately the explicit protocol based communication
between ports - the basic paradigm of ROOM - has
some disadvantages for modelling bus structures, broad-
or multicast and synchronisation which are only sur-
mountable by additional modelling effor t using dynamic
str ucture reconfiguration.
An alternative object-or iented workbench is ControlShell.
This approach addresses the fundamental issue of how
to best merge event driven reaction with cyclic feedback
control.
Dataflow-systems are organised by components to
descr ibe cyclic control. Finite state machines (FSM) are
used for expressing the startegic part of a system. Both
are supported by a database.

Actor A Actor B Actor C

State x

State y

State z

Figure 3: Message Sequence Charts MSC
Developed for motion control and robotics with cyclic and
reactive capabilities and the functionality of the networ k
data deliver y ser vice for distr ibution the ControlShell
approach is suitable to model CANopen applications too.
A remar kable restriction for modelling CAN in this envi-
ronment is the strictly periodic control of the data flow
system. This disadvantage may be overcome for syn-
chronised CANopen applications using the SYNC mech-
anism and with additional time synchronisation functions
for CAN proposed by [Tör95] and advised by [Neu95] to
met the requirements of the real-time market.

4. Application strategy for complex real-time control
A character istic application area for distributed real-time
control systems is advanced motion control for mecha-
tronic systems.
Typical for such systems are heterogenous application
architectures combining centralised and decentralised
application components both in hard- and software with
an increased number of devices coupled by CAN or
other fieldbusses.
The choice of CAN for motion control is caused by the
cost effectiveness and the short worst case bus access
latency, which gives CAN the potential for high perfor-
mance and less missed deadlines in distributed control
systems. Unfor tunately the design of the message prior-
ity assignment algorithm is crucial to guarantee message
latencies [Ba95].
Therefore the aim of designing CAN based real-time
control systems is to assign each message to a prior ity
in a way, that each message not exeed the maximum
allowed delay or deadline in that system.
To manage the product development process and to
reduce the development risks it is useful to split the pro-
cess in two phases
1. Rapid prototyping and
2. Product optimisation
Phase 1 aimes to save the time to market for new tech-
nologies and phase 2 provides the cost effectiveness for
mass products.

The focus in phase 1 is a principal solution for control of
electromechanical systems. Dev eloping tasks are:
- specification of the distribution of functionality;
- evaluation of communication requirements;
- implementation and validation of control algorithms.
Typical tools to solve this type of application tasks are for
example VMEbus and CAN components, real-time oper-
ating systems (RTOS), motion control frameworks and
simulation tools, discussed above .
The aim for phase 2 is a volume dependent optimised
product. The implementation of the validated prototype
needs for example:
- decisions to target microcontrollers;
- dev elopment of the final hardware;
- dev elopment of firmware;
- implementation and test of the integrated system.
The used toolset for phase 2 is dependent of the tar-
geted volumes.
For ver y high volumes complete hardware/software co-
design methodologies based on the system description
language SDL or others for development as a source for
automatic generated code C/C++ or VHDL is useful.
The main advantage of this strategy depicted in Fig. 1 is
given with the opportunity to make design decisions for
realising functionality in hard- or software relativly late in
project.
For low er volumes the development tasks are concen-
trated on systems integration of components partly used
in phase 1 or developed based on design decisions in
this phase.

5. Modelling CAN integrated control
ControlShell is an open expandable object-oriented
application framework for real-time control.
Objects in ControlShell are the FSM’s and the transitions
in FSM’s coupled with data-flow objects, called compo-
nents.
The run-time environment shown in Fig. 4 directly sup-
por ts the two different programming paradigms charac-
ter ised by:
1. The data-flow in a system - fundamentally syn-

chronous and executed in a sequential manner, and
2. The ev ents in a system - fundamentally asyn-

chronous with non-sequential execution.

The application is built from an object hierarchy.
Components are organised in execution lists, sample
habitats, and configurations to serve dynamic internal
str uctures.
All parts of an sample habitat are listed in its execution
list. The list contains activated and deactivated parts
due to the active configuration. The activated parts will
executed periodically with a defined sample rate. Each
sample habitat has its own rate.
There is no need to have only one sample habitat in the
application. The only restriction for the var iety of the
sample rate is their common source, nor mally a hard-
ware clock.

UNIX simulation - VxWorks targets

CSModuleClass

CSMats

CustomTypes
Transition
Modules

Components

Configurations

Sample Habitats

Finite
State

Machines

Execution Lists

Figure 4: Run-Time Hierarchy
Tr ansition modules are bound with the real-time state
engine to for m state machines.
Data expressions consist of objects of the CSMath class
which contains types from simple integer up to complete
matr ices and the necessary operations up to matrix solv-
ing or of custom types build with CSMath types.

JointVelGain

JointPosGain

DesJointVel

DesJointPos

0JointPos

JointVel

MaxJointAcc

JointAcc
Control

DesJointAcc

"RemotePos"
2 0 10.0 1.0 0fifthOrderTrajectory

des

des

des

max act act act

Joint5th

pdControl

pos

vel

des

des

out
Kp Kv ori

JointPD

CSMatNddsProducer
inp
nam typ dom per str opt

JointPosProducer

Figure 5: data flow diagram
simple controller including NDDS producer

The integrated networ k data deliver y ser vice NDDS pro-
vides a transparent networ k connectivity based on the
so-called Subscr iption Communication with similar wor k-
ing principles to CAN.
This communication system builds on the producer and
consumer model. Producer register infor mation unaware
of prospective consumer. It is possible to have more
than one producer of the same data. Consumer sub-
scr ibe to update the infor mation they require without
concer n for who producing them [Par94]. In difference a
CAN producer needs at least one consumer to get a
valid acknowledge.
A producer component is character ised by a set of
parameters:

strength pr ior ity of producers of the same data
persistense duration of validity of strength

option deter mines what part (data, size, name,
units,...) of data has to be sent

name data name in the NDDS networ k

A consumer requests the distrubuted data and delivers it
to the data flow it belongs to. In the ControlShell envi-
ronment it is polling the NDDS networ k per iodically. The
highest possible rate would be the sample rate of its
sample habitat.
There are some parameters too to determine the proper
work of the consumer:

deadline specifies the maximum time between
data updates, old data will be marked as
such

minSeparation specifies the minimum time intervall
between updates to limit networ k traffic

type deter mines the wor king type: immediate
or polled

name data name in the NDDS networ k

Wait and deadline are parameters to regulate tradeoff
beetween returning date as soon as available or waiting
for better data.
The service uses UDP as a means of communication.
Data is encoded with XDR to allow communications
between computers with different data representations.
The service is available for different UNIX systems, Win-
dows NT and VxWor ks.
StethoScope is another tools to provide an effective
developing. It is used for graphical real time monitoring
of every available and needed data both in simulation
and in the run time environement. Application fields are
debugging, (motion) tuning or visualisation.
There is also an interface to MatLab/SimuLink available.
It allows modelling of complex mechatronic systems.

6. Modelling practice
For modelling CAN integrated real-time control the Con-
trolShell framework is suitable without any CAN specific
module like shown in Tab. 1 which compares CANopen
with ControlShell elements.

ISO/OSI CANopen ControlShell
object dictionary CSMath
function blocks components
finite state machines FSM
communication profile

7 CAL NDDS
0-2 CAN bus TCP/IP, Ether net

Table 1: Compar ison of CANopen and ControlShell

NDDS-coupled CS systems/devices are useful to anal-
yse appropriate levels of application decentralisation
constisting of a master (for example on VMEbus) and dif-
ferent numbers of nodes.
This approach offers also some capabilities for modelling
message prior ities by parameter ising the producer and
consumer components of NDDS as shown in the simple
example for a remote controller in Fig. 5 and 6.

0.05.001

"RemotePos"

JointVelGain

JointPosGain

DesJointVel

DesJointPos

0JointPos

JointVel

MaxJointAcc

JointAcc

Control

DesJointAcc

RemotePosStatus

CSMatNddsConsumer

out

sta

nam typ dom dea min

RemotePosConsumer

fifthOrderTrajectory

des

des

des

max act act act

Joint5th

pdControl

pos

vel

des

des

out
Kp Kv ori

JointPD

Figure 6: data flow diagram
simple controller including NDDS consumer

The organisation of the distributed application and the
ev aluation of communication requirements will be done
by:
1. CAN bus models in the way of [Stü95] for communi-

cation assessments and
2. CANopen configurations on distributed development

systems using a CAN driver on each system and
NDDS as monitoring facility in parallel for a complete
verification of an application.

Additionally a CAN simulation daemon for the develop-
ment system for behaviour analysis of an application
with different ControlShell’s is possible.
For case 1 multiplexer and demultiplexer components
and a burst silence generator component must be
defined using the component editor.
The needs for case 2 are CAN hardware and driver for
VxWor ks systems available on the market and CAN pro-
ducer and consumer components to connect the networ k
to the other application components of ControlShell.
These components under development are structered
similar to NDDS components with refer to CANopen.
At this time they get a set of parameters listed below:

name data name in the networ k
identifier specifies the indentifier and prior ity of

data
deadline specifies the maximum time intervall

between updates
minSeparation specifies the minimum time intervall

between updates to limit networ k traffic
sync deter mines the sync type: none, sample

rate, exter nal, other
type deter mines which data parts have to be

sent

This way provides an easy portation of applications
between several hardware or fieldbus architectures by
only changing a small number of similar components.

7. Summary and Conclusion
With ControlShell models and tools that facilitate sys-
tems engineering for the design of distributed CAN inte-
grated real-time control systems are available.
Because the object-orientation of the approach higher
productivity and increased software quality is reachable
compar ing to more traditional techniques.
Different runable models can be created for different
development purposes, and with the CAN components
the system development process is supported up to turn
key solutions running under VxWor ks.
Applying the fast serial link FSL technology for complex
motion control [Pi96] also the hardware dependencies
are solved.
By using the producer/consumer model and the appro-
pr iate components there is an easy way to change and
adapt the communication medium in an application if
needed.

References
[Ba95] M. D. Baba and E. T. Pow er: Scheduling Perfor mance in

Distr ibuted Real-Time Control Systems. Proceedings of
the 2nd international CAN Conference, Published by
CAN in Automation 1995

[Neu95] Dr. K.-Th. Neumann at al.: TOUCAN: A new CAN Com-
munication Module for Embedded Microcontroller. Pro-
ceedings of the 2nd international CAN Conference, Pub-
lished by CAN in Automation 1995

[Pi95] J. Pisarz: Frameworks for designing motion control appli-
cations. Proceedings of the PCIM’96, International Intel-
ligent Motion Conference, Published by ZM Communica-
tions GmbH 1996

[Pi96] J. Pisarz: Digital signal processing and high speed com-
munication for embedded motion control. proposed for
the Proceedings of the ECC ’96, Embedded computing
conference Par is.

[Stü95] M. Stümpfle, J. Charzinski: Simulation of Heterogeneous
CAN-Systems. Proceedings of the 2nd international
CAN Conference, Published by CAN in Automation 1995

[Tör95] M. Tör ngren: A Perspective to the Design of Distributed
Real-Time Control Applications based on CAN. Pro-
ceedings of the 2nd international CAN Conference, Pub-
lished by CAN in Automation 1995

[Ger95] R. Ger lich, C. Jorgensen: An alternative Lifecycle Based
on Problem-Or iented Methods and Strategies. ESTEC
Symposium on "On-Board Real-Time Software", Noord-
wijk 1995

[Par94] G. Pardo-Castellote and S.A. Schneider: The Networ k
Data Deliver y Ser vice: A Real-Time Data Connectivity
System. Conference on Robotics and Automation, IEEE
1994

[Sel92] B. Selic, G. Gullekson, J. McGee, I. Engelberg: ROOM
Real-Time Object-Oriented modelling. CASE’92 Fifth
Inter national Workshop on Computer-Aided Software
Engineer ing, Montreal 1992

[Sn95] S.A. Schneider, V. Chen, G. Pardo-Castellote: The Con-
trolShell Component-Based Real-Time Programming
System. Conference on Robotics and Automation, IEEE
1995

