
iCC 1996
3rd international CAN Conference

in Paris (France)

Sponsored by

Motorola Semiconductor
National Semiconductor
Philips Semiconductors

Organized by

CAN in Automation (CiA)
international users and manufacturers group

Am Weichselgarten 26
D-91058 Erlangen

Phone +49-9131-69086-0
Fax +49-9131-69086-79

Email:headquarters@can-cia.de
URL: http://www.can-cia.de

Variability of CAN Network Performance

Bhargav P. Upender Alexander G. Dean
 barg@utrc.utc.com adean@utrc.utc.com

United Technologies Research Center
411 Silver Lane, MS 55

East Hartford, CT 06108

Abstract
Designers of soft real-time systems often ignore worst-case behavior analysis when designing
their systems. We have developed a discrete-event model of Controller Area Network (CAN) to
assess performance under both worst-case and normal conditions. The analysis revealed that
many network events and attributes can lead to message serialization, which causes large network
delays typical of worst-case behavior. This transient network behavior has serious implications
on the application performance. In this paper, we present these results and show how the actual
performance of the system varies over time between the normal and worst-case scenarios.

Introduction
Controller Area Network (CAN) is well suited for real-time control applications due to its
predictable medium access approach, built-in collision avoidance, and global prioritization
features. Several papers present analytic assessments of worst-case message response times
[Tin94, Tin94-2]. In our application, as in many soft real-time applications, designing to worst-
case is cost prohibitive. Consequently, we developed a CAN model to predict network
performance and to make design decisions for our application. After briefly discussing the
modeling environment and application characteristics, we present some interesting results on
network behavior.

TransmitterTransmitterTransmitter
ReceiversReceiversReceiver

Bus

Communication
Workload

Performance
Statistics

Figure 1: Block diagram of CAN model

Modeling Environment
The CAN model was developed in SES/Workbench, a popular generic discrete-event simulation
tool. The simulation environment includes a complete set of queuing disciplines, priority
methods, and statistics gathering tools for rapid model development [SES96, Rum95]. The block
diagram in Figure 1 shows the key modules in the model. Using a communication workload
description table, the transmitter modules periodically inject messages into the bus module. The
bus module arbitrates for bus access and simulates message transmission. The receiver modules
collect the messages and maintain performance statistics.

Application Characteristics
The application contains 12 communicating nodes, with eight of the nodes executing the same
software (resulting in similar traffic patterns). We derived the message traffic by instrumenting a
legacy system. Many of the messages are inherently periodic; the few event-driven messages
were given approximate periods based on the expected peak system operation conditions. Table
1 summarizes the application’s communication characteristics. The workload will grow over
time as features and nodes are added. We simulated the future workload by multiplying the
generation frequency of each message type with a scaling factor.

Number of nodes 12 nodes
Message types 50
Data rate 200 msgs/sec
Typical deadlines 100 ms
Shortest deadlines 10-20 ms

Table 1: Workload characteristics

Results & Analysis

Bus Speed Tradeoffs
Selecting a bus speed is a tradeoff between capacity for growth and application performance.
Low bus speeds can lead to missed deadlines, performance bottlenecks, and limited growth space.
However, high speeds can reduce maximum bus length, amplify susceptibility to noise, and
increase demands on both the network interface and the application.

High bus speeds can place severe demands on the applications during bursty traffic conditions.
The demands placed on the application by a fast bus should be determined early in the design
process, as otherwise they may not show up until prototypes have been built [Dea96]. During
heavy bursts of traffic, messages arrive back-to-back and interrupt the processor. The faster the
bus, the quicker the messages will arrive, and the faster the host processor must suspend the
application task and unload the new messages from the controller (to prevent buffer overwrite).
The solid line in Figure 2 demonstrates how the worst-case interrupt rate grows as the bus speed
increases. Similarly, the dashed line shows the inverse, which is the amount of time the host
processor has to clear the receive buffer. At 100kbps, the host processor has 660µS to clear the
receive buffer. At 1000kbps, the application has only 66µS. Multiple mailbox-type receive

buffers available on the CAN controllers will only decrease the chance of overwrites, but will not
eliminate them. If the CAN controllers supported standard receiver queues (first-in first-out)
instead of mailbox buffers, the application would not have to react as rapidly.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600 700 800 900 1000

Bus Speed (kbps)

M
ax

. I
n

te
rr

u
p

t
R

at
e

(m
sg

s/
se

c)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

M
in

. i
n

te
rr

u
p

t
ti

m
e

(u
S

)

interrupt rate

interrupt time

Figure 2: Maximum interrupt rate and minimum interrupt time
as the bus speed varies

Figure 2 does represent worst-case conditions. Unfortunately, worst-case is not as rare as
expected. Under bursty conditions, the system experiences worst-case behavior. There are
many events which induce message bursts. These events and their impact on the application are
discussed later in this paper.

Bus Speed Selection
We selected the bus speed for our application using simulation results. Two main factors were
considered in selecting the bus speed: remaining capacity and missed deadlines. As a guideline,
we add a liberal growth margin when designing a network. A network is an infrastructure
component: as the infrastructure improves, it will be used more often. In collision-free protocols
like CAN, a growth margin of five is adequate for us. Based on our experience, a growth margin
of ten is recommended for collision-based protocols to compensate for inaccessability of the bus
during collision detection and resolution.

Our application’s baseline workload requires minimum bus speed of 21kbps. Using the above
guideline, our network should operate at minimum speed of 105kbps. Figure 3 shows running at
125kbps will result in 19% excess capacity (for five times the current workload). Therefore, one
criterion for bus speed selection is satisfied with 125kbps bus speed.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 1 2 3 4 5 6 7 8 9 10

Workload Multiplier

R
em

ai
n

in
g

 B
u

s
C

ap
ac

it
y

 .

125 kbps

250 kbps

500 kbps

1 Mbps

Figure 3: Remaining bus capacity as the workload increases

However, at 125kbps, 12% of the messages in the simulation missed their deadline (see Figure 4).
At 250kbps, the missed deadlines are near zero at 5x message traffic. Based on both missed
deadlines and remaining capacity, a bus speed of 250kbps was selected for our application.

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10

Workload Multiplier

%
 o

f
D

ea
d

lin
es

 M
is

se
d

125 kbps

250 kbps

500 kbps

1 Mbps

Figure 4: Percent of the missed deadlines as the workload increases

Assessing message delays
Figure 5 shows some of the delays a message encounters as it travels from the source node to the
destination node. The model assumes task switching delays are minimal and other tasks do not
block or preempt the communication routine. Some delays can be analytically derived while
others require an executable model for practical evaluation.

The interrupt service routine (ISR) and message transmission delays can be calculated
analytically. For example, the ISR which handles data transfer between the host processor and
the CAN controller takes approximately 40 to 50µs on an Intel 386/25Mhz processor. This
delay is derived by writing assembly code and counting processor cycles. Similarly, the message
transmission delay (time taken to send the message on the wire) can be calculated to be between
200 to 400µs (varying with data length) on a 250kbps bus.

The average medium access control (MAC) delay is hard to calculate for an arbitrary workload so
we use an executable model to derive this value. For our application, the MAC delay varied
drastically from 0 to 40,000µs. As this delay is significantly larger than delays caused by other
factors; it is important to understand its root causes.

40 - 50µs

Host
Processor A

CAN
Controller

Media
Interface

Host
Processor B

CAN
Controller

Media
Interface

Processing
Delay

Media Access
Delay

Processing
Delay

Transmission
Delay

40-50 µs

200 - 400µs

0 - 40,000µs

Figure 5: Some of the delays associated with application to application communication

Synchronization and Medium Access Delay
MAC delay depends on message priorities, message generation times, synchronization, bus
bandwidth, and other factors. In particular, message synchronization can lead to large delays
[Upe94]. Synchronization is the degree of correlation between message generation times among
all the nodes in the network. In the worst-case scenario, all nodes are synchronized to a global
clock (with negligible clock drift). Under this scenario, periodic message generators will align
with other periodic generators and request bus access at similar times. As many messages are
contending for the bus, the highest priority message preempts those of lower priority, which in
effect wait in a global priority queue for bus access. This waiting is called serialization, and the
network experiences a burst of back-to-back messages. As mentioned earlier, these traffic bursts
place a high demand on the host processor, forcing frequent interrupts and application
preemption.

The model provides an adjustable message synchronization by starting all message generators at
time zero with no phase difference; this provides worst-case synchronization scenario that is
hard to create without abstract models (i.e. hard to induce in a laboratory setup). The messages
are then delayed by a uniformly distributed random jitter time which is bounded by a user-
specifiable fraction of the message period.

The solid line in Figure 6 shows the average medium access delay varying from 18ms to 32ms as
the workload is scaled from 1x to 10x on a fully synchronized network. The dashed line shows
the average MAC delay when message periods are dithered by 10%. With only this moderate

amount of jitter in the message generators, the mean MAC delay at baseline (1x) traffic has fallen
from 17 ms to just a few microseconds. This shows the network has significant headroom;

delays become significant only when the traffic is highly
synchronized.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1 2 3 4 5 6 7 8 9 10

Workload Multiplier

M
ed

iu
m

 A
cc

es
s

D
el

ay
 (

s)

.

0% Jitter (synchronized)

10% Jitter (non-synchronized)

Figure 6: MAC delay for synchronized vs. non-synchronized nodes

In an actual implementation the level of synchronization is hard to predict and control. The
nature of the communication patterns, the power-up sequence, clock tolerances, and initialization
routines affect the level of synchronization. One can argue that a network with synchronized
message sources represents a worst-case scenario which is not likely to happen in a real
implementation. However, we found that even if these sources of synchronization are controlled,
many other sources can cause serialization which results in behavior similar to worst-case
scenario.

Sources of Serialization
• Noise bursts: a burst of noise from the environment (such as motor switching on) can

corrupt data transmission and disable the network momentarily. This can lead to error
messages, retransmissions, extra acknowledgments, and so forth.

• Command/response broadcast: a Remote Transmission Request (RTR) broadcast, or any
similar control structure, can induce several responses simultaneously, leading to bursts of
messages.

• Heavy bus traffic: when the bus is heavily loaded, low priority messages will queue up.
• Long messages: a long message must be fragmented into small eight-byte messages (dictated

by CAN’s data length limitation) and sent on the network. This will create a burst of
messages. In fact, if the long message has high priority, many other lower priority messages
can queue up.

• Clock drift: as periodic message generators drift, they can align in time cause near-
simultaneous generation of many messages.

All of these conditions can lead to message serialization and bursts of back-to-back messages
which require an application to react quickly. Serialization leads to larger medium access delays
and more missed deadlines. This results in the network sporadically exhibiting worst-case
behavior similar to the synchronized network.

0

40 80

12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

1x

5x

9x

1

10

100

1000

10000

N
u

m
b

er
 o

f
M

es
sa

g
e

B
u

rs
ts

Message Burst Size (in messages)

Workload
Multiplier

Figure 7: Message Burst Length Distribution vs. Workload

Effects of Serialization on Application Design and Performance
The histogram in figure 7 shows how often bursts of messages happen based on burst length and
bus traffic during a ten second loosely synchronized simulation run. The x-axis measures burst
length, which is the number of messages sent back-to-back without any idle bus time. The y-axis
measures bus traffic based the workload scaling factor. The z-axis measures the number of bursts
of a given length detected during the simulation. With the baseline workload, all bursts are shorter
than 20 messages. However, scaling the workload leads to much longer bursts, some longer than

640 messages. During any burst, the controller must handle incoming messages at the maximum
rate supported by the bus. If an application is likely to encounter long message bursts, it makes
sense to minimize the time needed to handle each message. One optimization is to use a
software-implemented queue to hold new messages between unloading from the CAN controller
and processing by the application. Another is to choose a CAN controller with good message
filtering capabilities, allowing the application to ignore messages for other nodes. This requires a
strategy for allocating message identifiers. A CAN interface with software-based filtering will be
overwhelmed during message bursts compared with filtering based on hardware.

Even “soft” real-time system designers should carefully study the interaction of the network
with the application to minimize performance problems. Fortunately, since the protocol’s
contention resolution time overhead is zero, CAN is better suited to handle message serialization
than many other protocols. However, this efficiency can lead to much higher sustained message
arrival rates, complicating the system design. Connecting a processing node to a network requires
a more through analysis of task deadlines.

Summary
We have developed a model of communication system based on Controller Area Network to
predict performance, make design decisions, and assess application behavior. In selecting the bus
speed for our system, we relied on two parameters: remaining capacity and missed deadlines.
While increasing network speed enhances network performance, it can impose tighter constraints
on the application. Selecting the proper bus speed therefore involves a tradeoff between network
and application performance. In assessing the response times, we have shown how message
serialization can lead to large delays and reduced CPU performance. We also have identified
many sources that can lead to message serialization. This serialization can induce transient worst-
case behavior more often than otherwise expected.

References
[Dea96] Dean, A., & Upender, B. P., “Embedded Communications: What You Don’t

Know Will Hurt You”, Embedded Systems Conference, September 1996.
[Rum95] Rumpf, O., & Gassenhuber, A. “Generation of Realistic Communication Scenarios

for the Simulation of Automotive Multiplex Systems”, Society of Automotive
Engineers, 1995, Paper No. 950294.

[SES96] Scientific and Engineering Software, Inc., SES/Workbench Sim Language
Reference, Austin, Texas, 1996. SES/Workbench is a trademark of SES Inc.

[Tin94] Tindell, K., & Burns, A. “Guaranteeing Message Latencies on Control Area
Network”, First International CAN Conference, Mainz, Germany, Sep. 1994.

[Tin94-2] Tindell, K., Hansson, H., & Wellings, A. J. “Analyzing Real-Time
Communications”, Real-Time Systems Symposium, San Juan, Puerto Rico,
December 1994.

[Upe94] Upender, B. P., “Analyzing Real-Time Characteristics of Class C Communication
in CAN through Discrete Event Simulations”, Multiplexing and Fiberoptics, SP-
1012, Society of Automotive Engineers, Feb. 1994, Paper No. 940133, pp. 25-34.

