
Accurate Message Level CAN Simulation

Florian Bogenberger, Carsten Mielenz

In recent years distributed systems using the CAN bus have been increasing in both
size and complexity. In order to meet system requirements, the impact of communica-
tion on the overall system must be understood early in the design cycle.

Several approaches have been used to address questions like response time at differ-
ent bus loads, functional partitioning, etc. However most approaches neglect real life
conditions like execution time, transmission errors or component damage. This paper
presents a modelling strategy to simulate CAN based systems under real life condi-
tions. We present a high performance CAN protocol model working on message level
but providing bit level accurate functionality and timing.

The presented methodology allows to analyze the reliability, performance and overall
behavior of CAN systems under real life conditions. Results can be used early in the
system design cycle to make a tradeoff analysis, repartition functionality, refine algo-
rithms and to optimize the network configuration.

Keywords: Distributed Systems, System Simulation, High Level Modelling, CAN Network,
Reliability Analysis, Performance Evaluation, Communication Network

1 Introduction
In the automotive industry a continuous
trend of increasing complexity can be ob-
served, especially with respect to electron-
ic systems. With regard to distributed sys-
tems this is true not only for ECUs (Elec-
tronic Control Unit) but also for the com-
munication between ECUs. The complexi-
ty must be handled during system devel-
opment and be addressed by appropriate
simulation capabilities, which are powerful
enough to allow the simulation and analy-
sis of a set of ECUs including their inter-
connection. Moreover turn around times
are decreasing, so the traditional sequen-
tial development flow will be paralleled
even more than today. Concurrent engi-
neering is one of the drivers for „executa-
ble specification“. One concrete way to
achieve this is to use high level simulation
models. The high level approach promises
to achieve the required performance even
for complex systems. However very often
they neglect low level effects, which can
have a significant impact on the whole
system. Examples are timing or error han-
dling - without a reasonable modelling of
errors the reliability aspect of a system
cannot be simulated. To avoid expensive

pitfalls in later development phases, these
effects must be estimated with enough
margin to be able to compensate for un-
expected problems. If the margin turns out
to be too high the system might be more
expensive than necessary. In case the
margin is too low, expensive reiterations
are required to fix the problem, which
again increase system costs. As a conse-
quence we think that high level simulation
models can be a reasonable approach to
simulate complex systems, however they
must also take into account those low level
effects which have a significant impact on
the overall system performance and relia-
bility.

This paper describes a new simulation
methodology used to implement a mes-
sage level CAN model which provides high
simulation performance combined with bit
level accuracy regarding arbitration, timing
and error handling. Section 2 compares
characteristics of high level and low level
CAN simulations. It is shown why a pure
high level approach is not feasible for CAN
based distributed systems. In order to
overcome this problem we tried to make a
mix in order to get the advantages of both
worlds, accuracy and high performance,
under one umbrella. Section 3 describes

the abstractions we choose for the repre-
sentation of message data, physical time
and errors. Section 4 presents a new
simulation paradigm followed by some
simulation results and an outline of poten-
tial application areas. In the last section
the key points ar summarized.

2 High Level versus Low Level
The intention of this paper is to describe a
high level CAN simulation methodology. In
this paper the terms „high level“ and „low
level“ are used with respect to the degree
of abstraction imposed on models and
assumptions. In this context going up the
abstraction level means ignoring more and
more details of reality. The following two
sections try to provide some means to the
different levels.

2.1 Characteristics of Low Level
For low level simulations the primary goal
is „accuracy“. Usually this means that the
models used are relative near to the accu-
rate physical representation, or, in case of
software that the simulation behaves very
similar to the final target system. Often
more or less accurate timing information is
taken into account and the number of sim-
ulation instances can be very large com-
parable to the number of bits and pieces in
the real system. The computational effort
can be tremendously high either because
complex mathematical formulas must be
solved or because there is a large number
of events to process. This is a main rea-
son why a pure low level approach is not
feasible for system level.

A second point is that in order to get rea-
sonable simulation results the system
needs to be defined quite accurately -
which is kind of a chicken-and-egg prob-
lem. One important goal of system simula-
tion is to play with parameters, architec-
ture, etc. during early design phases in
order to optimize and define further de-
tails. So details needed for a low level
simulation are not known at this phase.

2.2 Characteristics of High Level
For high level simulations there are three
primary goals

• performance must be high enough to

have reasonable simulation times
• results must be accurate enough to

help making the most critical system
decisions

• it must be possible to build a complete
system without knowing all details

These goals are met by neglecting all
those effects, which are assumed not to
affect critical decisions. Timing for exam-
ple is ignored frequently, instead the focus
is on pure functional simulation. Effects
that can not be ignored completely are
often estimated with statistical formulas
based on mathematical theories
[KiSch97], measurements, experience and
assumptions.

Performance is usually the most critical
point, to reach this goal a certain degree of
inaccuracy is accepted. However the art is
to decide how much inaccuracy is feasible
and where assumptions are too coarse.

2.3 Communication Channel Impact
As we are talking about distributed sys-
tems one of the most important factors is
the communication channel. It significantly
affects the system’s behavior regarding
performance and reliability. Important fac-
tors are

• response time & message latency
• dynamic load of the communication

channel
• behaviour under error conditions (relia-

bility)
• handling of concurrent transfer requests

(arbitration)
• protocol modes

In a pure high level approach, these as-
pects can be covered only partly. This is
especially true for CAN, where identifiers
play a significant role, transfer times de-
pend on many factors, nodes can become
error passive or even go in bus-off mode,
etc. Things get even worse if errors need
to be taken into account, e.g. to analyze
the system’s stability under real world
conditions. Even though mathematical
formulas can be used to estimate minimal,
maximal and average response times as
well as latency and busload, the actual
values depend very much on the concrete

application and configuration.

Therefore we believe that when we are
talking about CAN it is not sufficient to
consider „system level“ to be identical to
„high level“ - there are some low level ef-
fects that also must be taken into account.

3 Bridging the Gap of Abstraction Levels

3.1 Message Representation
„Communication on message level“ means
that messages are not transferred bit by
bit, but with a single event. Keeping the
number of events as low as possible is key
for high simulation performance.

Please note that this structure contains
some data which is not part of a real CAN
message like receive time, sender ID, etc.
Partly the reason is to improve the system
transparency by making messages trace-
able. The field bit duration, however, car-
ries data, which would otherwise be lost
(see section 3.2). It is used to emulate the
duration of a CAN bit and can be changed
to model different bit timings. The current
implementation checks all transmitters
connected to a single bus to use the same
bit timing. Nevertheless different busses
can have completely different timing,

which might be connected by gateways.
Effects like resynchronization and inter-
connect delays are not modeled, but they
can be imitated by the error injection
method presented in section 3.3.

Element Contents
due to
transmit

time when transmitter got trig-
ger to transmit the message

Transmission
start time

time when message transmis-
sion really started

bit duration Duration of a single CAN bit
receive time time when complete message

was received and accepted
sender ID string - unique identifier of the

sender
Message ID CAN identifier
data length DLC field
Message
data

Vector with up to 8 bytes con-
taining the data field

is_remote True if it is a remote message,
false otherwise

is_extended True if the message has an
extended identifier, otherwise
false

Table 1 – CAN Message Data Structure

On the other hand it lacks some data of its
real representation like CRC and stuff bits.
In reality this information is needed due to
redundancy reasons in order to avoid or
recognize transmission errors. Even
though the simulator must take into ac-
count the delay added by these bits, it not
necessary to push around their values. If
the values are really needed they can be
calculated any time. This might look con-
tradictory to the goal to correctly model
error handling, however let us elaborate
first on what this representation means
with respect to timing and then focus on
error modelling.

3.2 Representation of physical Time
A real CAN message has a certain dura-
tion depending on the number of bits and
the duration of a single bit. However, to
keep the number of events low in our
model a message is transferred with a
single event - which is a point in time ra-
ther than a time span. The duration of a
message is no more measurable by look-
ing at the continuous change of the bus
signal as there is only one change - the
transfer event. That is also the reason why
the field “bit duration” was added to the
message data structure. This little detail

As neither a pure „high level“ nor a pure
„low level“ approach would fit our needs,
we decided to go for a mix of both worlds:
We used a network simulator as high level
platform and implemented CAN modules,
which are able to switch between both
levels. The requirements for these mod-
ules were

• communication on message level in

order to minimize the number of events
• accurate timing
• accurate error handling
• arbitration
• support the complete CAN2.0B protocol

according to [ISOStd1] and [ISOStd2]

The following sections show what it means
to combine the different abstraction levels
addressed in this list.

Therefore messages are represented by
data structures similar to those used in
modern programming languages. Table 1
shows this structure for a CAN data frame.

has a significant impact on the whole
modelling. For example let us look at arbi-
tration.

In reality CAN messages sent concurrently
overlap until loss of arbitration. However,
an event based simulator can only work on
one event a time. Consequently in the
model concurrent messages must be sent
in sequential events. If a real CAN node
looses arbitration it simply stops transmis-
sion. In our model all the data is already
transferred at the beginning. A node,
which received the lower priority message,
does not know if the transmitting node saw
the higher priority message and therefore
stopped transmission. This is why an addi-
tional message was invented, which is
sent by the node that lost arbitration and
marks the time when the node recognized
this. Please note that like in reality the
transmitter decides about arbitration.

This is an example that going upwards the
abstraction level does not only mean to cut
away information, but sometimes also
means to add data not existing in reality.

Figure 1 shows which events are sent
when a sender looses arbitration. There is
one event for each message, then the first
sender indicates loss of arbitration and
acknowledges the receipt of the other
message. After the interframe space it
restarts transmission.

3.3 Error Modeling
In order to model bit errors another struc-
ture was invented containing basically a
dynamic error bit array and a strength in-
formation. By using a bit array rather than
single bits it is still possible to keep the
number of events low - even if many con-
secutive error bits occur, only one event is
required. Only very long error bit sequenc-
es should be split in several arrays. The
strength information is necessary to distin-
guish between errors that overwrite domi-
nant and recessive bits (like EMC (Electro
Magnetic Compatibility) or shortcuts) and
those that only overwrite recessive bits
(like line driver errors). These error struc-
tures are used to overlap the CAN data
structure described in 3.1.

This model allows imitating very different

kinds of errors. For example the impact of
resynchronization can be modeled. This
can be achieved by overlapping a mes-
sage with an error array where some bits
of the message are shifted. The injection
can be triggered either by statistical or by
deterministic processes.

Figure 1 - Arbitration Modelling

4 A New Simulation Paradigm

Instead a specialized simulation engine
was developed that is dedicated to the
task to link a high level simulator with the
low level aspects of the CAN protocol.
Similar to a cosimulation this protocol sim-
ulator tries to run as far into the future as
possible in order to predict the next high
level event. However, in contrast to a co-
simulation it does so not only based on the
current state, but also with consideration
of data which is valid only in the future.
This is possible due to the message level
communication concept. Moreover the
protocol predictor is tiny compared to a
normal cosimulation kernel, it is not run-
ning as a separate process (reduces

The data structures described above con-
tain a lot of information. In order to achieve
accurate timing and behaviour under error
conditions, the CAN simulation module
must understand the protocol very well.
Obviously it does not make sense to use a
high level simulator to implement the CAN
protocol.

communication overhead), it is not event
based, and it is absolutely dedicated to the
CAN protocol not caring about any other
overhead.

The task of this module is to predict and
schedule events for the high level simula-
tor. Typically these events trigger mes-
sage transmission, put the node in bus-off
mode, trigger message acknowledgement,
etc. If it turns out that the prediction was
wrong, the event is removed from the
schedule list by the protocol simulator and
the prediction is restarted.

Figure 2 shows an example of the data
flow when an error is injected. First the
node starts transmission of a message
and schedules an event to check if at least
one acknowledgement arrives. Before that
it receives errors overwriting partly the
transmitted message. The original event is
removed, an error frame is sent, and a
new event is scheduled for retransmission.

5 Results

5.1 Accuracy
Timing is accurate down to bit level for
message delay, arbitration, error behavior,
etc. Table 2 shows a protocol excerpt
where two nodes „X1“ and „Y“ start trans-
mitting concurrently, then „Y“ looses arbi-
tration, two error bits are injected and
node „X1“ sends an error frame.

5.2 Performance
Even in the worst case of a fully loaded
two-node system an Ultra Sparc 2 simu-
lates with the performance of a 50kbit
CAN network. For systems with more than
30 nodes and a realistic message traffic
the simulation performance was measured
to be about 10-20 times slower than the
real CAN system.

Please note that due to the message level
communication the number of events to
process is significantly lower than in a bit
level simulator. So this approach reduces
the number of events by a factor between
44 and 132.

CAN Protocol, 250Kbit/s
TNow: 0.020768
Type: CAN Message

due to transmit 0.02
transmission start 0.020768
sender ID “Y”
CAN message ID 9
CAN data length 4
is extended No
is remote No
data field Length: 4
Element Index Element Value
0 73
...

TNow: 0.020768
Type: CAN Message

due to transmit 0.02
transmission start 0.020768
sender ID “X1”
CAN message ID 5
...

TNow: 0.020808
Type: Abort Message

transmission start 0.020808
sender ID “Y”

TNow: 0.020852
Type: bit sequence

transmission start 0.020852
sender ID “Error Injection”
strength error injection bits
bit array Length: 2
Element Index Element Value
0 0
1 0

TNow: 0.02086
Type: active error frame

transmission start 0.02086
sender ID “X1”

Table 2 - CAN Protocol

5.3 Application for System Development

placed almost everywhere in the system,
which allows measuring performance, re-
sponse times, etc. as well as tracking a
single node’s state transitions.

The CAN module was tested in different
configurations ranging from a small two
node system up to complete car networks
with more than 30 nodes. Tests were run
with and without error injection. We also
rebuilt the case study [SiSoRa97] and
could reproduce their results. The pre-
sented modelling strategy turned out to be
very efficient regarding performance, ac-
curacy and usability for high level system
descriptions.

The module turned out to be very handy to
develop and analyse even large CAN sys-
tems in a short time. The CAN module can
be stimulated with cyclical or statistical
message generators or even by real appli-
cation code. Different types of errors can
be injected easily, modelling statistic or
deterministic processes. Probes can be

6 Potential Application
Areas & Outlook

6.1 Future Protocols
The presented simulation
technology can be applied
not only to CAN, but also to
any other protocol. It allows
analyzing very efficiently
the protocol specific impact
on a distributed system’s
behavior. This is also a
quick method to compare
advantages and disad-
vantages of different proto-
cols.

6.2 Virtual Hardware Pro-
totypes
Relatively simple hardware blocks like
message filters and buffers can be mod-
elled efficiently in the network simulator.
This method provides a way to analyze
and optimize future CAN controller hard-
ware with low effort. New filtering and
buffering concepts can be tested in realis-
tic network environments.

Apart from that the presented simulation
technology is not bound to modelling of
protocols. Looking at the model as a gen-
eral CAN controller, any other hardware
block, peripheral or even CPU can be
modelled the same way. The concept of
event prediction combined with higher lev-
el data exchange allows to cut down the
communication overhead significantly.
Peripherals or CPUs can be connected to
the CAN unit in the network simulator like
any other message source or sink. With
those models it will be possible to estimate
the CPU load depending on the applica-
tion, network traffic, filter configuration,
buffer scheme, etc.

6.3 Running real Application Software
Due to the fact that the implemented CAN
module can be programmed similar to a
real CAN controller, only small modifica-
tions are necessary (basically the CAN
driver) to make real application code work
together with that model. Even though the
CAN module has accurate timing, this is
not true for the application, which would be
running in a pure functional mode. How-

ever, this might not be feasible for perfor-
mance critical applications and must be
addressed in future developments.

6.4 Comparison to Hardware Prototype
Systems
Some of the features described are al-
ready fulfilled or even outperformed by
hardware prototype systems currently on
the market. However, we do not consider
this technology as replacement or compe-
tition for existing prototyping methods. The
presented technology does not have real-
time capabilities neither can it be integrat-
ed in a real car. Nevertheless, it has other
features making it more attractive for the
earlier system definition phase, e.g.

• analysis and integration of hardware

not yet existing (virtual prototype)
• high flexibility
• low effort to build systems
• highly parameterizable
• error injection
• excellent debugging features

7 Conclusion
The presented simulation methodology
allows to run high level simulations of dis-
tributed systems with consideration of low
level effects of the CAN protocol. Data
communication is handled on message
level whereas all details of the protocol are
handled with bit level accuracy in a sepa-
rate simulation unit.
Simulations can be used to analyze the
system performance and reliability for ide-
al operating conditions as well as under

Data Structure

Time

Error Injection
1 0 1 10

Error Frame

Data Structure

Event
Predicter

Protocol Machine

Action
Initiater

transmit

receive
transmit expect

acknowledgement

retransmit

Figure 2 - Event Prediction

worst case conditions with transmission
errors. The methodology can be used to
make tradeoff analysis early in the design
phase. Application software can be linked

into the simulation. By building virtual pro-
totypes new hardware architectures can
be tested and optimized in a realistic net-
work environment.

8 References
[KiSch97] Uwe Kiencke, Dirk John, Sandra Schneider, „Performance analysis of a distributed
automotive real-time system“, ICC’97 Proceedings, page 07-02
[SiSoRa97] F. Simonot-Lion, Y.Q. Song, J. Raymond, „Validating real-time applications dis-
tributed over CAN: an interoperability verification“, ICC’97 Proceedings, page 07-09
[ISOStd1] ISO Standard: Low speed controller area network (CAN), ISO/DIS 11519-1
[ISOStd2] ISO Standard: Road vehicles - Interchange of digital information - Controller area
network (CAN) for high-speed communication, ISO/DIS 1898

Motorola
{Florian Bogenberger, Carsten Mielenz}
Schatzbogen 7, 81829 Munich, Germany
Tel.: +49-89-92103-{421,311}
Fax: +49-89-92103-820
{ttg560,ttg585}@email.sps.mot.com

