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In recent years distributed systems using the CAN bus have been increasing in both 
size and complexity. In order to meet system requirements, the impact of communica-
tion on the overall system must be understood early in the design cycle. 
 
Several approaches have been used to address questions like response time at differ-
ent bus loads, functional partitioning, etc. However most approaches neglect real life 
conditions like execution time, transmission errors or component damage. This paper 
presents a modelling strategy to simulate CAN based systems under real life condi-
tions. We present a high performance CAN protocol model working on message level 
but providing bit level accurate functionality and timing. 
 
The presented methodology allows to analyze the reliability, performance and overall 
behavior of CAN systems under real life conditions. Results can be used early in the 
system design cycle to make a tradeoff analysis, repartition functionality, refine algo-
rithms and to optimize the network configuration. 
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1 Introduction 
In the automotive industry a continuous 
trend of increasing complexity can be ob-
served, especially with respect to electron-
ic systems. With regard to distributed sys-
tems this is true not only for ECUs (Elec-
tronic Control Unit) but also for the com-
munication between ECUs. The complexi-
ty must be handled during system devel-
opment and be addressed by appropriate 
simulation capabilities, which are powerful 
enough to allow the simulation and analy-
sis of a set of ECUs including their inter-
connection. Moreover turn around times 
are decreasing, so the traditional sequen-
tial development flow will be paralleled 
even more than today. Concurrent engi-
neering is one of the drivers for „executa-
ble specification“. One concrete way to 
achieve this is to use high level simulation 
models. The high level approach promises 
to achieve the required performance even 
for complex systems. However very often 
they neglect low level effects, which can 
have a significant impact on the whole 
system. Examples are timing or error han-
dling - without a reasonable modelling of 
errors the reliability aspect of a system 
cannot be simulated. To avoid expensive 

pitfalls in later development phases, these 
effects must be estimated with enough 
margin to be able to compensate for un-
expected problems. If the margin turns out 
to be too high the system might be more 
expensive than necessary. In case the 
margin is too low, expensive reiterations 
are required to fix the problem, which 
again increase system costs. As a conse-
quence we think that high level simulation 
models can be a reasonable approach to 
simulate complex systems, however they 
must also take into account those low level 
effects which have a significant impact on 
the overall system performance and relia-
bility. 
 
This paper describes a new simulation 
methodology used to implement a mes-
sage level CAN model which provides high 
simulation performance combined with bit 
level accuracy regarding arbitration, timing 
and error handling. Section 2 compares 
characteristics of high level and low level 
CAN simulations. It is shown why a pure 
high level approach is not feasible for CAN 
based distributed systems. In order to 
overcome this problem we tried to make a 
mix in order to get the advantages of both 
worlds, accuracy and high performance, 
under one umbrella. Section 3 describes 



the abstractions we choose for the repre-
sentation of message data, physical time 
and errors. Section 4 presents a new 
simulation paradigm followed by some 
simulation results and an outline of poten-
tial application areas. In the last section 
the key points ar summarized. 

2 High Level versus Low Level 
The intention of this paper is to describe a 
high level CAN simulation methodology. In 
this paper the terms „high level“ and „low 
level“ are used with respect to the degree 
of abstraction imposed on models and 
assumptions. In this context going up the 
abstraction level means ignoring more and 
more details of reality. The following two 
sections try to provide some means to the 
different levels. 

2.1 Characteristics of Low Level 
For low level simulations the primary goal 
is „accuracy“. Usually this means that the 
models used are relative near to the accu-
rate physical representation, or, in case of 
software that the simulation behaves very 
similar to the final target system. Often 
more or less accurate timing information is 
taken into account and the number of sim-
ulation instances can be very large com-
parable to the number of bits and pieces in 
the real system. The computational effort 
can be tremendously high either because 
complex mathematical formulas must be 
solved or because there is a large number 
of events to process. This is a main rea-
son why a pure low level approach is not 
feasible for system level. 
 
A second point is that in order to get rea-
sonable simulation results the system 
needs to be defined quite accurately - 
which is kind of a chicken-and-egg prob-
lem. One important goal of system simula-
tion is to play with parameters, architec-
ture, etc. during early design phases in 
order to optimize and define further de-
tails. So details needed for a low level 
simulation are not known at this phase. 

2.2 Characteristics of High Level 
For high level simulations there are three 
primary goals 
 
• performance must be high enough to 

have reasonable simulation times 
• results must be accurate enough to 

help making the most critical system 
decisions 

• it must be possible to build a complete 
system without knowing all details 
 

These goals are met by neglecting all 
those effects, which are assumed not to 
affect critical decisions. Timing for exam-
ple is ignored frequently, instead the focus 
is on pure functional simulation. Effects 
that can not be ignored completely are 
often estimated with statistical formulas 
based on mathematical theories 
[KiSch97], measurements, experience and 
assumptions. 
 
Performance is usually the most critical 
point, to reach this goal a certain degree of 
inaccuracy is accepted. However the art is 
to decide how much inaccuracy is feasible 
and where assumptions are too coarse. 

2.3 Communication Channel Impact 
As we are talking about distributed sys-
tems one of the most important factors is 
the communication channel. It significantly 
affects the system’s behavior regarding 
performance and reliability. Important fac-
tors are 
 
• response time & message latency 
• dynamic load of the communication 

channel 
• behaviour under error conditions (relia-

bility) 
• handling of concurrent transfer requests 

(arbitration) 
• protocol modes 

 
In a pure high level approach, these as-
pects can be covered only partly. This is 
especially true for CAN, where identifiers 
play a significant role, transfer times de-
pend on many factors, nodes can become 
error passive or even go in bus-off mode, 
etc. Things get even worse if errors need 
to be taken into account, e.g. to analyze 
the system’s stability under real world 
conditions. Even though mathematical 
formulas can be used to estimate minimal, 
maximal and average response times as 
well as latency and busload, the actual 
values depend very much on the concrete 



application and configuration. 
 
Therefore we believe that when we are 
talking about CAN it is not sufficient to 
consider „system level“ to be identical to 
„high level“ - there are some low level ef-
fects that also must be taken into account. 

3 Bridging the Gap of Abstraction Levels 

3.1 Message Representation 
„Communication on message level“ means 
that messages are not transferred bit by 
bit, but with a single event.  Keeping the 
number of events as low as possible is key 
for high simulation performance. 
 

Please note that this structure contains 
some data which is not part of a real CAN 
message like receive time, sender ID, etc. 
Partly the reason is to improve the system 
transparency by making messages trace-
able. The field bit duration, however, car-
ries data, which would otherwise be lost 
(see section 3.2). It is used to emulate the 
duration of a CAN bit and can be changed 
to model different bit timings. The current 
implementation checks all transmitters 
connected to a single bus to use the same 
bit timing. Nevertheless different busses 
can have completely different timing, 

which might be connected by gateways. 
Effects like resynchronization and inter-
connect delays are not modeled, but they 
can be imitated by the error injection 
method presented in section 3.3. 
 
Element Contents 
due to 
transmit 

time when transmitter got trig-
ger to transmit the message 

Transmission 
start time 

time when message transmis-
sion really started 

bit duration Duration of a single CAN bit 
receive time time when complete message 

was received and accepted 
sender ID string - unique identifier of the 

sender 
Message ID CAN identifier 
data length DLC field 
Message 
data 

Vector with up to 8 bytes con-
taining the data field 

is_remote True if it is a remote message, 
false otherwise 

is_extended True if the message has an 
extended identifier, otherwise 
false 

Table 1 – CAN Message Data Structure 

On the other hand it lacks some data of its 
real representation like CRC and stuff bits. 
In reality this information is needed due to 
redundancy reasons in order to avoid or 
recognize transmission errors. Even 
though the simulator must take into ac-
count the delay added by these bits, it not 
necessary to push around their values. If 
the values are really needed they can be 
calculated any time. This might look con-
tradictory to the goal to correctly model 
error handling, however let us elaborate 
first on what this representation means 
with respect to timing and then focus on 
error modelling. 

3.2 Representation of physical Time 
A real CAN message has a certain dura-
tion depending on the number of bits and 
the duration of a single bit. However, to 
keep the number of events low in our 
model a message is transferred with a 
single event - which is a point in time ra-
ther than a time span. The duration of a 
message is no more measurable by look-
ing at the continuous change of the bus 
signal as there is only one change - the 
transfer event. That is also the reason why 
the field “bit duration” was added to the 
message data structure. This little detail 

As neither a pure „high level“ nor a pure 
„low level“ approach would fit our needs, 
we decided to go for a mix of both worlds: 
We used a network simulator as high level 
platform and implemented CAN modules, 
which are able to switch between both 
levels. The requirements for these mod-
ules were 
 
• communication on message level in 

order to minimize the number of events 
• accurate timing 
• accurate error handling 
• arbitration 
• support the complete CAN2.0B protocol 

according to [ISOStd1] and [ISOStd2] 
 

The following sections show what it means 
to combine the different abstraction levels 
addressed in this list. 

Therefore messages are represented by 
data structures similar to those used in 
modern programming languages. Table 1 
shows this structure for a CAN data frame. 
 



has a significant impact on the whole 
modelling. For example let us look at arbi-
tration. 
 
In reality CAN messages sent concurrently 
overlap until loss of arbitration. However, 
an event based simulator can only work on 
one event a time. Consequently in the 
model concurrent messages must be sent 
in sequential events. If a real CAN node 
looses arbitration it simply stops transmis-
sion. In our model all the data is already 
transferred at the beginning. A node, 
which received the lower priority message, 
does not know if the transmitting node saw 
the higher priority message and therefore 
stopped transmission. This is why an addi-
tional message was invented, which is 
sent by the node that lost arbitration and 
marks the time when the node recognized 
this. Please note that like in reality the 
transmitter decides about arbitration. 
 
This is an example that going upwards the 
abstraction level does not only mean to cut 
away information, but sometimes also 
means to add data not existing in reality. 
 
Figure 1 shows which events are sent 
when a sender looses arbitration. There is 
one event for each message, then the first 
sender indicates loss of arbitration and 
acknowledges the receipt of the other 
message. After the interframe space it 
restarts transmission. 

3.3 Error Modeling 
In order to model bit errors another struc-
ture was invented containing basically a 
dynamic error bit array and a strength in-
formation. By using a bit array rather than 
single bits it is still possible to keep the 
number of events low - even if many con-
secutive error bits occur, only one event is 
required. Only very long error bit sequenc-
es should be split in several arrays. The 
strength information is necessary to distin-
guish between errors that overwrite domi-
nant and recessive bits (like EMC (Electro 
Magnetic Compatibility) or shortcuts) and 
those that only overwrite recessive bits 
(like line driver errors). These error struc-
tures are used to overlap the CAN data 
structure described in 3.1. 
 
This model allows imitating very different 

kinds of errors. For example the impact of 
resynchronization can be modeled. This 
can be achieved by overlapping a mes-
sage with an error array where some bits 
of the message are shifted. The injection 
can be triggered either by statistical or by 
deterministic processes. 
 

Figure 1 - Arbitration Modelling 

4 A New Simulation Paradigm 

Instead a specialized simulation engine 
was developed that is dedicated to the 
task to link a high level simulator with the 
low level aspects of the CAN protocol. 
Similar to a cosimulation this protocol sim-
ulator tries to run as far into the future as 
possible in order to predict the next high 
level event. However, in contrast to a co-
simulation it does so not only based on the 
current state, but also with consideration 
of data which is valid only in the future. 
This is possible due to the message level 
communication concept. Moreover the 
protocol predictor is tiny compared to a 
normal cosimulation kernel, it is not run-
ning as a separate process (reduces 

The data structures described above con-
tain a lot of information. In order to achieve 
accurate timing and behaviour under error 
conditions, the CAN simulation module 
must understand the protocol very well. 
Obviously it does not make sense to use a 
high level simulator to implement the CAN 
protocol. 
 



communication overhead), it is not event 
based, and it is absolutely dedicated to the 
CAN protocol not caring about any other 
overhead. 
 
The task of this module is to predict and 
schedule events for the high level simula-
tor. Typically these events trigger mes-
sage transmission, put the node in bus-off 
mode, trigger message acknowledgement, 
etc. If it turns out that the prediction was 
wrong, the event is removed from the 
schedule list by the protocol simulator and 
the prediction is restarted. 
 
Figure 2 shows an example of the data 
flow when an error is injected. First the 
node starts transmission of a message 
and schedules an event to check if at least 
one acknowledgement arrives. Before that 
it receives errors overwriting partly the 
transmitted message. The original event is 
removed, an error frame is sent, and a 
new event is scheduled for retransmission. 

5 Results 

5.1 Accuracy 
Timing is accurate down to bit level for 
message delay, arbitration, error behavior, 
etc. Table 2 shows a protocol excerpt 
where two nodes „X1“ and „Y“ start trans-
mitting concurrently, then „Y“ looses arbi-
tration, two error bits are injected and 
node „X1“ sends an error frame. 

5.2 Performance 
Even in the worst case of a fully loaded 
two-node system an Ultra Sparc 2 simu-
lates with the performance of a 50kbit 
CAN network. For systems with more than 
30 nodes and a realistic message traffic 
the simulation performance was measured 
to be about 10-20 times slower than the 
real CAN system. 

 
Please note that due to the message level 
communication the number of events to 
process is significantly lower than in a bit 
level simulator. So this approach reduces 
the number of events by a factor between 
44 and 132. 
 
CAN Protocol, 250Kbit/s 
TNow:     0.020768 
Type:     CAN Message 
 
due to transmit    0.02 
transmission start 0.020768 
sender ID          “Y” 
CAN message ID     9 
CAN data length    4 
is extended        No 
is remote          No 
data field         Length: 4 
Element Index      Element Value                  
0                  73                             
... 
----------------------------- 
TNow:     0.020768 
Type:     CAN Message 
 
due to transmit    0.02 
transmission start 0.020768 
sender ID          “X1” 
CAN message ID     5 
... 
----------------------------- 
TNow:     0.020808 
Type:     Abort Message 
 
transmission start 0.020808 
sender ID          “Y” 
----------------------------- 
TNow:     0.020852 
Type:     bit sequence 
 
transmission start 0.020852 
sender ID          “Error Injection” 
strength           error injection bits 
bit array          Length: 2 
Element Index      Element Value                  
0                  0                              
1                  0                              
----------------------------- 
TNow: 0.02086 
Type:     active error frame 
 
transmission start 0.02086 
sender ID          “X1” 

Table 2 - CAN Protocol 

5.3 Application for System Development 

placed almost everywhere in the system, 
which allows measuring performance, re-
sponse times, etc. as well as tracking a 
single node’s state transitions. 
 

The CAN module was tested in different 
configurations ranging from a small two 
node system up to complete car networks 
with more than 30 nodes. Tests were run 
with and without error injection. We also 
rebuilt the case study [SiSoRa97] and 
could reproduce their results. The pre-
sented modelling strategy turned out to be 
very efficient regarding performance, ac-
curacy and usability for high level system 
descriptions. 

The module turned out to be very handy to 
develop and analyse even large CAN sys-
tems in a short time. The CAN module can 
be stimulated with cyclical or statistical 
message generators or even by real appli-
cation code. Different types of errors can 
be injected easily, modelling statistic or 
deterministic processes. Probes can be 



6 Potential Application 
Areas & Outlook 

6.1 Future Protocols 
The presented simulation 
technology can be applied 
not only to CAN, but also to 
any other protocol. It allows 
analyzing very efficiently 
the protocol specific impact 
on a distributed system’s 
behavior. This is also a 
quick method to compare 
advantages and disad-
vantages of different proto-
cols. 

6.2 Virtual Hardware Pro-
totypes 
Relatively simple hardware blocks like 
message filters and buffers can be mod-
elled efficiently in the network simulator. 
This method provides a way to analyze 
and optimize future CAN controller hard-
ware with low effort. New filtering and 
buffering concepts can be tested in realis-
tic network environments. 
 
Apart from that the presented simulation 
technology is not bound to modelling of 
protocols. Looking at the model as a gen-
eral CAN controller, any other hardware 
block, peripheral or even CPU can be 
modelled the same way. The concept of 
event prediction combined with higher lev-
el data exchange allows to cut down the 
communication overhead significantly. 
Peripherals or CPUs can be connected to 
the CAN unit in the network simulator like 
any other message source or sink. With 
those models it will be possible to estimate 
the CPU load depending on the applica-
tion, network traffic, filter configuration, 
buffer scheme, etc. 

6.3 Running real Application Software 
Due to the fact that the implemented CAN 
module can be programmed similar to a 
real CAN controller, only small modifica-
tions are necessary (basically the CAN 
driver) to make real application code work 
together with that model. Even though the 
CAN module has accurate timing, this is 
not true for the application, which would be 
running in a pure functional mode. How-

ever, this might not be feasible for perfor-
mance critical applications and must be 
addressed in future developments. 

6.4 Comparison to Hardware Prototype 
Systems 
Some of the features described are al-
ready fulfilled or even outperformed by 
hardware prototype systems currently on 
the market. However, we do not consider 
this technology as replacement or compe-
tition for existing prototyping methods. The 
presented technology does not have real-
time capabilities neither can it be integrat-
ed in a real car. Nevertheless, it has other 
features making it more attractive for the 
earlier system definition phase, e.g. 
 
• analysis and integration of hardware 

not yet existing (virtual prototype) 
• high flexibility 
• low effort to build systems 
• highly parameterizable 
• error injection 
• excellent debugging features 

7 Conclusion 
The presented simulation methodology 
allows to run high level simulations of dis-
tributed systems with consideration of low 
level effects of the CAN protocol. Data 
communication is handled on message 
level whereas all details of the protocol are 
handled with bit level accuracy in a sepa-
rate simulation unit. 
Simulations can be used to analyze the 
system performance and reliability for ide-
al operating conditions as well as under 
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worst case conditions with transmission 
errors. The methodology can be used to 
make tradeoff analysis early in the design 
phase. Application software can be linked 

into the simulation. By building virtual pro-
totypes new hardware architectures can 
be tested and optimized in a realistic net-
work environment.
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