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Abstract 

Code for embedded systems is usually developed on a host system and then 
downloaded to the target. Several solutions exist to do this; most of them require 
plugging some hardware on the target system and connecting it to the host. Although 
adequate for mono-processor systems, they become ackward for distributed systems, 
mainly for two reasons. Firstly, several targets are required to be connected 
simultaneously to a single host. Secondly, targets may not be physically close to the 
host. 

One solution is to use the existing network to provide communication between host 
and targets. We have developed a system based on this solution over a CAN network. 
The stations are able to receive the code, store it and start execution, one of the 
stations being the gateway to the host. Our system allows the user to control the 
whole distributed system, downloading code to any of the stations and starting and 
stopping its execution. This is provided at low cost, with no additional hardware 
required.  
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1. Introduction 

Embedded systems development is a 
multidisciplinary trade. The boundary 
between hardware and software is vague. 
In some cases, both hardware and 
software evolve simultaneously through 
several development stages. As 
embedded applications strive for hiding 
the computer inside them, user interface is 
primitive (if exists…) and debugging 
facilities are close to non-existent. The 
features of these systems make 
embedded systems development a distinct 
discipline on its own.  

Several tools exist for the development of 
embedded systems. Most of these tools 
are oriented towards the case of stand-
alone, single processor systems. This is a 
rather simple environment when compared 

to distributed embedded systems, where 
many sites, running possibly different 
versions of the program and physically 
distant, must co-operate to achieve a 
common goal. During the development 
phase, successive versions of the 
software must be loaded on multiple sites. 
It is not impossible that the same 
modification has to be performed on all 
sites at same time, thus requiring the 
replacement of the software in every one. 
This has to be performed in a co-ordinate 
fashion, guaranteeing that at any time, the 
versions that run on the different sites are 
compatible. 

We present a solution to assist the 
development of embedded distributed 
systems, allowing the user to control the 
whole system, downloading code to any of 
the stations and starting and stopping its 
execution. This is provided at low cost, 



with no additional hardware required. In 
section 2 we present the problems of 
developing embedded systems and, in 
section 3, the particular case of distributed 
embedded systems. In section 4 we 
present our proposal, which is detailed in 
section 5. Proposals for further work are 
presented on section 6 and we conclude 
on section 7. 

2. The development of embedded systems 

Embedded applications software is, at the 
present time, mostly developed on a “host" 
system, such as a PC or a workstation, 
which is able to provide an user interface 
that does not exist on the target system. 
The host computer runs a cross-compiler 
and a linker, that generate code to be 
executed on the target system.  

The code generated within the host 
system must be run on the target system 
(the embedded system). Only this allows 
the code to be tested on real (or close to 
real) conditions. Several solutions exist to 
perform this task. In this section, we will 
review the most commonly available [1]: 

- EPROM programming 
- EPROM emulation 
- In-circuit emulation 
- On-board monitor 
- Code loader 

EPROM programming is the "real-thing". It 
uses all the hardware required for a stand-
alone system and it can be used with any 
processor that fetches instructions from 
external memory. This solution can 
become extremely tedious and testing 
facilities are obviously minimal. The use of 
external logic analysers is possible, but 
rarely an user-friendly choice. 

Another possibility is the use of EPROM 
emulators. The native code can be 
downloaded to an EPROM emulator, 
which behaves like the code memory to 
the target system. It is targeted to 
microprocessors that read the code from 

external memory. It may have memory 
access timing problems. It requires one 
EPROM emulator for each target system. 
Debugging capabilities are also minimal 
but testing program changes is much 
easier and quicker. 

When looking for a good insight at the 
target system behaviour, In-Circuit 
Emulators (ICE) can be used. With an ICE 
the target system microprocessor is 
replaced by specific hardware, that 
emulates it on real time. The cost of this 
solution is usually high, namely when 
different microprocessors are to be 
emulated.  

The other two solutions use small resident 
programs that communicate with the host 
(usually through a serial interface). The 
On-board monitor allows the user to 
download and debug code, as well as 
verify the contents of the processor 
registers and memory locations. It can 
provide a good insight into the target 
behaviour at a reasonable cost. As 
processor registers must be accessed 
(e.g., to provide step-by-step execution), 
the portability of a monitor is very small.  

A code loader does nothing but wait for 
the host to download the code to the target 
system. Once this is done, it will wait for a 
signal to start the execution of the 
downloaded code. It usually provides 
better portability than monitors, at the cost 
of  reduced target system insight and of 
some additional hardware. 

3. Embedded distributed systems 
development 

The solutions that have been presented 
for embedded systems development 
become awkward for the particular case of 
distributed systems. This is due mainly for 
two reasons:  

- the multiplicity of the targets; and  
- their distance from the host. 



The first point concerns the number of 
sites where the code must run (either by 
installing an ROM with the programme or 
by connecting these sites to the host). 
Most of the methods we have presented 
are now unsuitable. Handling EPROMs 
with continuously changing versions of the 
software is already difficult for a single 
site; in a distributed system, with changes 
required in several sites, things get even 
worst. Emulators (EPROM emulators and 
ICEs) become expensive solutions, as 
each site requires one. Still, we have the 
problem of connecting several emulators 
to a single host, which may not be always 
possible. 

The physical distance from the targets to 
the host can make things even more 
difficult. The targets may not be accessible 
in order to replace the EPROMs at each 
new test version; emulators require 
plugging some hardware in and 
connecting it (by means of a cable, or a 
radio link, ...) to the host. 

We must therefore look for a solution that 
allows testing software that evolves 

continuously, in a multiplicity of sites. The 
main specifications for our system are: 

- being able to download code from 
one host to multiple targets; 
- allowing targets to be physically 
distant from the host. 

Other characteristics may be envisaged as 
desirable, such as: testing the target 
systems (specially in situations where the 
targets are not easily accessible), 
controlling the execution of the program 
from the host (namely, starting and 
stopping the program), ... 

Distributed systems are built on top of a 
network. This network can be used to 
provide the communication between the 
targets and the host. The advantages of 
this approach are: 

- no extra hardware is required (no 
plug-ins); 
- the communication between targets 
and host is provided by an existing 
infrastructure. 

We are then left with two possible 
approaches: monitors and code-loaders. 
Our solution uses a code-loader over a 

 

Figure 1 - CANivete board 



CAN network. The advantages envisaged 
in this solution were: 

1. simplicity (code loaders are simpler 
to develop than monitors and the time 
to develop a working prototype would 
be shortened); and 
2. the possibility of having a system 
that would execute code that was 
directly "prommable" (code to run in 
monitor systems must usually be 
relocated, in order to leave room for 
the monitor itself, that continues to 
reside in program memory). 

Incidentally, note that a code loader can 
load a monitor; one solution does not 
preclude the other. 

4. CANivete: a CAN based solution for 
distributed systems development 

The CANivete board (fig. 1) is a 
fundamental part of a system aimed at 
providing some help to the designer of 
embedded distributed systems. Each 
CANivete board is a node on a CAN 
network, that is capable of receiving the 
program to execute from the CAN 
interface and start and stop its execution. 
In this way, a large number of nodes of an 
embedded distributed system (30 in the 
current version) can be connected to a 
single host machine, such as a PC or a 
workstation. The CANivete boards are 
also referred to as the “targets”.  

The board has two modes, “download” 
and “run”. After power on, the board is in 
download mode. In this mode, every node 
is waiting to receive the program code 
from the CAN network. After the code is 
received, the board prepares itself to 
change to run mode, which will happen 
after a system Reset.  

The CANivete system is currently being 
used as a development tool within the 
Sistemas Electrónicos Distribuídos 
("Electronic Distributed Systems") group. 

5. System description 

A possible physical system configuration 
for a CANivete system is shown in figure 
2. 
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Figure 2 - System architecture 

The PC (the host) contains the user 
interface software. Normally, the 
development system would be located at 
the PC too.  

Each CANivete board bears an ID 
number, which must be unique within the 
system. Board no. 0, the gateway board, 
provides the communication between the 
host and the remaining boards. The ID 
numbers of the boards do not need to be 
consecutive. The requirements concerning 
board IDs is that board 0 must be 
connected to the PC, and the ID numbers 
of all other boards must be unique.  

A minimal system would consist of the 
host, the gateway board and one remote 
board. (An "hyper-minimal" system would 
consist of the PC and the gateway, but no 
use could be done of the CAN network).  

5.1. Hardware 

The CANivete board is based on the 
80C592 micro-controller, from Philips ([5]). 
This is a variant of the 80C51, to which a 
CAN controller (amongst other things) was 
added. Like all the members of his family, 
this controller uses separate memories for 
program and data. Program memory is a 
read-only memory (there are no 
instructions for writing in the program 
memory space). 
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Figure 3 - CANivete working principle. 



The working principle of the CANivete 
board is depicted in fig. 3. ROM is the 
memory containing the CANivete target 
board software and RAM_P and RAM_D 
are two 32K bytes RAMs. In "Download" 
mode, the controller sees the ROM as 
program memory and RAM_P as data 
memory; after RESET, it will start 
executing the program stored in ROM. 
This program tells it to wait for the 
program to be downloaded through the 
CAN network and to store it in the data 
memory (RAM_P). After the code has 
been received, the board prepares itself to 
change to "Run" mode, which will happen 
after the next Reset. In "Run" mode, the 
controller sees RAM_P as program 
memory and RAM_D as data memory; it 
will then execute the program that was 
previously stored in RAM_P.  

This arrangement allows the system to be 
able to remotely download code and start 
its execution, using software that is directly 
"prommable". This has two advantages. 
First, prommable code is the standard way 
of generating code in any compiler 
targeted for embedded systems. Second, 
the transition from the development 
platform to the working system (where the 

code is stored in a ROM) is 
straightforward.  

5.2. Address space 

From the users point of view, the system 
contains 32k bytes of program memory 
and 32k bytes of data memory. A range of 
32k bytes on the upper half of the 
addressable data space is reserved for 
peripherals (Table 1). The address space 
for peripherals consists of 128 identical 
blocks of 256 addresses.  

  
 Addr. range    Code    Data   

  0000-7FFFh    Program (32k)    Data  (32k)   
  8000-FFFFn    (Not  

available)   
 Peripherals 

(256)   

Table 1: Memory usage  

5.3. Interface 

The CANivete board contains a wide set of 
input and output signals, both digital and 
analogue. These are provided to the user 
in several connectors (Fig. 4) and they 
include general purpose I/O, digital and 
analogue, special function I/O (interrupts, 
…) and communication ports (CAN and 
RS-232). A detailed description can be 
found in [4]. 
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Figure 4 - CANivete board layout 



5.4. Software 

PCLoad program is the user interface at 
the host. In the current version, PCLoad 
allows downloading the code to the 
targets. Commands for starting the 
program at the target are not yet available, 
as the target currently reconfigures itself to 
start executing the code received after a 
successful download.  

PCLoad uses one of the serial ports as the 
default communication port. PCLoad uses 
the following syntax:  

PCLoad progfile Station_ID 
[COM_Port]  

progfile is the file with the code to run on 
the target, in Intel HEX format, either with 
or without the .hex extension. Station_ID is 
the ID number of the target where the 
program is to run. COM_Port is an 
optional argument stating the serial com 
port that will be used to communicate with 
station 0. If omitted, the default port will be 
used.  

While downloading, PCLoad displays the 
size of the program to download and the 
total number of bytes downloaded. 
PCLoad should terminate with the number 
of downloaded bytes equal to program 
size and a message stating the time in 
seconds the program ran. By this time, the 
target that received the code is prepared 
to change to RUN mode.  

The boards software consists on two 
different programs:  

- the gateway program;  
- the remote boards program.  

The gateway program runs on board no 0. 
This is the board connected to the host, 
providing the interface to the CANivete 
system.  

Remote boards run a different program. 
This program can be generated by the 
CANguru utility (CANivete generator 
utility for remote units). CANguru 
automatically generates the code to 
program the remote board EPROM, given 
its ID number. The syntax is:  

CANguru board_id  

This will generate the code for the remote 
board and store in a file called 
CAN030xx.HEX, where  xx=board_id. 
board_id must be an integer between 0 
and 29.  

5.5. Message protocol 

Downloading the code to the target means 
sending through the CAN network a 
stream that can contain as much as 32k 
bytes. Except for very small programs 
(that will probably have no other use that 
performing simple tests), the size of most 
of the programs to download will be on the 
range of hundreds of bytes and over. The 
short size of a CAN message (8 bytes) 
and the associated overhead can reduce 
efficiency in the use of the existing 
bandwidth.  

In this way, we decided to use as much as 
possible the useful data space in a CAN 
message during downloading phase. 
There are currently three kind of 
messages: CONTROL, DATA and 
ACKNOWLEDGEMENT messages. 
CONTROL messages are used to: signal 
start and stop of code download, start and 
stop code execution, enquiring about node 
status,... DATA messages are used to 
convey up to 8 bytes of code. ACKNOW-
LEDGEMENT messages are used to 
confirm the correct reception of a set of 
messages. 

Code download starts with a CONTROL 
message signalling "start of transmission" 
and indicating the program size. The code 
is then sent in DATA messages, each 
message containing 8 bytes of program 
code. The last message may have less 
than 8 data bytes, when the code size is 
not a multiple of 8. Download ends with a 
CONTROL message signalling "end of 
transmission" and sending a checksum. 
The remote node should check both the 
code size and the checksum and respond 
with an ACKNOWLEDGEMENT message, 
in case of success. The identification of 
the remote node and of the message type 
is contained in the CAN message ID field. 



6. Further work 

The CANivete board is yet at an early 
stage of its development. The main track 
for evolution lies currently on the boards 
software. The next version of the board 
will include remote control of program 
execution, allowing , for instance, quasi-
simultaneous starting of program 
execution in the different sites. This can be 
particularly useful in experiments carried 
on in distributed systems, such as the 
study of clock synchronization algorithms, 
which has been one of the reasons for the 
development of the system ([2,3]). 

Developing a monitor will provide a higher 
degree of insight, which will be useful for 
teaching applications as well as for 
research and development.  

Another track to follow is the integration of 
real-time kernels on the boards software, 
allowing the interaction with the remote 
boards to be done at the task level (with 
hard-real time constraints) and not at the 
program level. This real-time kernel would 
be in charge of managing the execution of 
tasks within the node and of interfacing 
with the user trough the network, receiving 
the tasks' code and starting and stopping 
its execution. 

7. Conclusions 

We have presented a working solution to 
assist the development of distributed 
embedded systems. Our solution allows 
circumventing the major problems faced in 
this task - namely the multiplicity of targets 
and its possible distance from the host - 
with no additional hardware required and 
using the existing communication 
infrastructure.  

Our proposal comprises the targets 
hardware and software and the host 
interface. The CANivete board is the 

kernel of our system.  Each board is a 
node on a CAN network, that is capable of 
receiving the code to execute from the 
CAN interface and start and stop its 
execution. The host interface is 
responsible for downloading the code and 
controlling its execution at the users 
request.  

The code to be run at the targets can be 
generated by any compiler and the 
transition from the development system to 
a working prototype is straightforward.  

The CANivete system provides the 
developer of embedded distributed 
systems with a testing platform at low cost 
and ease of use. The system is also 
adequate for teaching environments.  
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