
Footnote: References are shown in square brackets e.g. [KNP]

A Component Based Architecture for
CAN Based Systems

Dean Gifford, Brian Kirk & Bernhard Leisch

Abstract:
This paper describes a general purpose architecture for designing distributed real
time control systems based on component oriented system decomposition and CAN
based communications.
The basic philosophy of the architecture is to use an object – oriented analysis ap-
proach to partition the control system into logical subsystems, each of which is built
from a set of co-operating software components.
A CAN message distribution layer provides a transport service for messages sent be-
tween components, thus components can communicate in the same way whether they
are on the same node or on different nodes. This ‘virtual CAN bus’ approach requires
only a single CAN channel in the hardware chip.
As a result highly scalable systems can be developed, with variants of a product
family being built from a common set of software components using a database to
define the configuration. Legacy systems can be integrated using components which
act as agents.
A generic solution to the CAN duplicate message reception problem is presented
using this design.

Keywords:
CAN, component communication, location independent message transport, duplicate
message filtering, agent.

1 Introduction
This paper describes a software
architecture for distributed control systems
using CAN networked software
components The objective has been to
find a practical design with as little system
overhead as possible while still giving
enough flexibility to be able to solve real-
world problems. A lot of consideration has
been given to the problems encountered
when enabling control system software
reuse in similar projects, for example to
support a range of machines providing a
scalable solution for customers. Different
models might be distinguished by offering
different throughput, either by using faster
and more expensive devices or by using
several devices in parallel. A more
complex machine might employ both
techniques along the production line. In all
of these cases the actual hardware

configuration varies, but the fundamental
control problems change very little.
An approach for designing distributed real
time CAN based systems using a general
purpose architecture has already been
discussed in [DART]. That control system
design model has been used as a basis,
and then enhanced to follow a rigorous
system decomposition into components.
The components are then used as the
basic building blocks of a configurable
control system. Unlike most of the
prevalent component architectures we
have chosen a lean component model that
seems more appropriate for a real time
control system, while preserving many of
the fundamental ideas found in standard
component models [Harm].
Special attention has also been paid to the
underlying communications architecture,
which is called MANTRA (Message Agent

- 2 -

for Network TRAnsport). MANTRA is a
logical extension of the physical CAN bus
and provides for location independent
messaging between components, based
on the ISO Open Systems Interconnect
reference model.

2 System Architecture
Much has already been written about
system architectures based on compo-
nents [Jacobson, UML] however the
additional design constraints of having a
physically modular scalable real-time
product, involving much component reuse,
meant that a new approach was needed
[DART].

Subsystems
The system is partitioned into a series of
logical subsystems each with a clearly de-
fined purpose, see Figure 1.
Subsystems are entirely abstract entities
which aid the process of finding a suitable
breakdown of the system into smaller sub-
problems during the design phase. The
notion of a subsystem with a well defined
purpose and interface to other parts of the
system greatly benefits the task of finding
a proper abstraction of the problem

domain.
An example for a subsystem might be the
engine in a car, where the subsystem is
more tangible as it has a well defined
physical representation. On the other hand
a subsystem might also be a product
tracking system which maintains the
information on the location of product
assemblies currently going through the
production line. In this case the subsystem
is the representation of a concept, and the
physical implementation is distributed and
spans the entire production line.

Components
Each subsystem is partitioned into one or
more components. A component is
defined as an independent event driven
software object which communicates with
other objects via messages. The interface
of an object is defined by the set of
messages it expects to receive and by the
set of messages it is able to send. Its
behavior is defined in terms of its
response to incoming event messages, its
local interaction with input – output
devices and the messages it sends as
requests and responses to other
components. A component is a single

Computing Node Computing Node Computing Node

More
Abstract

More
Real Time

comprising of

mapped onto

communicate using

CAN bus

SubsystemSubsystemSubsystem

ComponentsComponentsComponents

Figure 1: System Architecture with Components

- 3 -

software entity that is executed on one
processing node, a single instance of a
component can not be executed in a
distributed fashion where parts of the
component are executed on different
nodes. A single component may however
use several tasks, although this complexity
is avoided wherever possible.
Ideally the entire external interface of a
component should be CAN message
based, making it possible to trace all
message activity between components at
the system level. Communication within a
node consisting of several tasks is only
procedure call based when timing or
bandwidth requirements do not permit the
usage of CAN messages.
Components are launched by a task
manager (see Figure 2) on system start
up.
Two mechanisms for system wide
component start up can be used to match
different levels of configuration needs:
1. Each node contains the executable
code of all components. Only one
executable image is required throughout
the system, which simplifies maintenance
and configuration issues. The task
managers link between activation protocol
and launching components can be hard
coded.
2. Each node contains only a subset of
the components. Several different
executable images need to be generated
and maintained. Each node is specialized
on specific tasks, depending on which
components have been compiled into its
image. During system initialization all
component class implementations register
with the task manager, each presenting a
pair of unique class ID and instantiation
function. GUIDs (Globally Unique
IDentifier) have deliberately not been
used, because the control system does
not support the concept of persistent
component representation. Therefore the
problems introduced when the life span of
a components representation as data
exceeds the life span of the code it is
associated with are not encountered.

3 Node Software
The software on each node consists of a
fixed part, the node infrastructure, and a
variable part i.e. the components which
belong to various subsystems.
The node infrastructure consists of the
operating system, input – output device
drivers, a task manager and MANTRA.
This framework of system components is
present on all nodes.
The kind and number of application
components present in a node depend on
the specific control system entirely.

4 System Configuration
The number and kind of physical devices
present in an actual machine depends on
the configuration of the machine. The
number of nodes present may also vary.
To simplify configuration issues as well as
parts and spares management the
architecture has been oriented towards a
control system implementation using
physically identical processing nodes.
However there is no system inherent
limitation preventing the use of the system
architecture on a heterogeneous system.
The system architecture is designed to
cope with varying configuration scenarios
without requiring the re-compilation of any
part of the control system software.

Launch Component
 (component type)

T a s k 	
 Ma na g e r
(N od e)

C onfig ura tor
(P C)

a 	
 C omp onent
(N od e)

Title: Node Manager Initialization

P urp os e :
T o 	
 s how 	
 the 	
 in te rna l	
 flow 	
 o f	
 m e s s a g e s
b e tween 	
 the 	
 G C C 	
 a nd 	
 the 	
 nod e 	
 m a na g e r
d uring 	
 s y s tem 	
 in itia liz a tion .

F ile name :	
 g e n0020_p ic 4 .v s d

P ro je c t:
U n ic orn

V iewp o in t:
E vent	
 tra ns a c tion 	
 d ia g ram

F ig ure :

A uthor:	
 S B ,	
 P L ,	
 D G ,	
 B L
D rawn 	
 :	
 B L
D a te 	
 	
 	
 	
 :	
 2 7 /2 /1998
R e v is ion :	
 0A

S hee t	
 1 	
 o f	
 1©	
 1997 ,98 	
 D e 	
 L a 	
 R ue

MA N TR A

Start

Register

Operational

Component Operational

Figure 2: Configuration of nodes via task manager

- 4 -

The whole system configuration is stored
in a database that is located on a PC,
which is connected to the control system
(see Figure 3). At system start-up time the
system configurator on the database PC
downloads the system configuration into
the control system.
The only active component in each control
node after power-up is the task manager.
During the first stage of system
configuration it is used to launch the
components required to run on each
individual node by binding them to tasks.
Each component then runs and registers
with MANTRA to inform it of the set of
messages it expects to receive. Once this
has been completed, each node exhibits
different behaviour that is specific to its
purpose in its subsystem (see components
shown to be active in the nodes in Figure
3).

5 Requirements for Messaging Between
Components

In order to provide flexibility in allocating
software components to CAN nodes it is
necessary to provide a means for location
independent messaging between compo-
nents. The requirements are
(a) communicating components may be

on the same nodes or different nodes
(b) components sending messages are

unaware of the identity of the nodes
which contain the components which
receive the messages

(c) the distribution of messages to com-
ponents must be completely trans-
parent to the components

(d) components should only receive mes-
sages within their expected set (oth-
erwise their error handling has to cope
with an unknown set of messages)

(e) it must be possible to monitor inter-
component messages within a node

(f) the message distribution mechanism
should be independent of the CAN
chip and its device driver

(g) as few physical CAN channels as
possible should be used

(h) it should be possible to filter out rogue
duplicate messages sent as a result of
physical packet corruption on the CAN
bus.

The lifecycles of the components and the
interactions between them were designed
and documented using the UML Jacobson
diagrams [Jacobson].

6 The MANTRA Design
It is highly desirable to allocate software
components to nodes which are physically
near to the devices they control in order to
reduce wiring. This means that messages
between components need to be routed
between the nodes which happen to be
hosting the communicating components.
The problem of distributing messages
transparently between nodes has been
solved by using a software agent called
MANTRA (Message Agent for Network
TRAnsport). This is itself a software

PC

Visualization
System

CAN
Monitoring

MANTRA

Hardware
I/O

CAN Bus

User

Node 1

Component A
Component B

Task
Manager
MANTRA

Node 4

Component C
Component E

Task
Manager
MANTRA

Node 2

Component B
Component C
Component D

Task
Manager
MANTRA

Node 3

Component B
Component C
Component C

Task
Manager
MANTRA

PC

Database

System
Configurator

MANTRA

Real Time Control System
Figure 3: Control system linked to PC based configurator and process visualisation

- 5 -

component which exists on each node in
the system.
It is designed to offer a single point of
access to the network for application
components, based on a safe
connectionless datagram network service.
The design is based on earlier work [Mühl-
Esch, Lei-Schuh], where a similar
message oriented communication layer
provided services in the context of an
object – oriented system. The design of
MANTRA is more streamlined in
comparison, as the CAN bus already
provides a reliable but connectionless
datagram network service.
The design of MANTRA is shown in Figure
4. It has been inspired by the ISO OSI
Reference Model. Deviations from the

standard are caused mainly by the desire
to preserve the unique features of the
CAN protocol up to the level of the
application layer, and real time response.
MANTRA has four levels of activity, which
are from the bottom up

Physical and Data Link Layer
The CAN bus and chips deliver all mes-
sages to all nodes

CAN Device Driver
The CAN driver catches incoming mes-
sages and stores them in a receive FIFO
buffer for later use. It also takes messages
from a send FIFO buffer and transmits
them via the CAN chip. In our case this

MANTRA

component
destination list

Registra-
tion

Distribute

Receive

Send

Send
to

chip

Get
from
chip

CAN bus

Send

CAN Device Driver

Receive

Component

Fi
Fo

Fi
Fo

Fi
Fo

Control
System

Network
Hardware

Data Link Layer (OSI layer 2)
Physical Layer (OSI layer 1)

communication between
layers, messages are just

passed on

Network Layer (OSI layer 3)

Application Layer (OSI layer 7)
Transport Layer (OSI layer 4)Task

CAN	
 Chip Get Send

Figure 4: Message flow via MANTRA in a Node

- 6 -

CAN driver is interrupt driven to guarantee
that incoming messages are never lost.
The message handling on each level is
executed concurrently to the handling on
the other levels. Therefore the FIFOs
forming the interface between layers use
protected access mechanisms.

Network Layer
The MANTRA layer provides a logical con-
nectivity layer which spans all nodes.
Within a node at initialization time each
component registers with MANTRA and
informs it of all the CAN Objects (COBs) it
expects to receive [Mühl-Esch]. These are
stored in a list which is designed for rapid
read access.
MANTRA takes received CAN messages
from the driver, looks up which set of
components need to receive it (possibly
none). It then copies the message into
each components incoming message
buffer on an as needed basis.

Transport and Application Layer
Each component has its own message-
event driven lifecycle and so simply re-
moves messages from its own input queue
and processes them. A nice feature of
MANTRA is that each component only re-
ceives the set of messages it expects i.e.
those it has pre-registered for. In our
experience this makes the design of each
component independent of other ones. It
also makes the error handling and testing
simpler.
For the sake of efficiency the message
service provided to components maps one
to one to CAN messages. In fact most
messages fit naturally within the maximum
CAN message length. However, if a
component needs to send or receive a
large block of data, it has to perform the
operation of splitting up the data into
messages or the reassembly of messages
into contiguous data itself. Therefore
conceptually the OSI Transport Layer also
resides within the component level.
With this design it now becomes possible
to allocate components to nodes which
have spare computing capacity and/or
spare input/output hardware interfaces. A
scheme for providing a generic configur-

able hardware interface driver has also
been designed so that component soft-
ware can be designed independently of
the physical hardware interface node loca-
tion. This provides flexibility in moving a
component and its hardware I/O driver
from one node to another to balance
resource allocation between the nodes.

7 The CAN Message Duplication Problem
Control systems which use a high integrity
field bus are generally designed to depend
on its reliability. Unfortunately the design
of the CAN bus has an inherent problem:
under certain circumstances a message
which has been sent only once by the
software might be received twice by all
receivers [CanFAQ]. This has been the
source of some concern in the industry.
On each node MANTRA provides a single
consistent point of access to the CAN bus
for all other components of the control
system. Message handling within
MANTRA (see Figure 4) can be enhanced
to provide a generic solution to the double
message reception problem using the
following mechanism:
If all messages in the control system use a
layout where the first byte of the message
is a message multiplexor, then by limiting
the multiplexor range to 0..127 per COB
one bit in the multiplexor can be reserved
to be used as a toggle bit. MANTRA
maintains the toggle bit itself, and hides
the mechanism from the clients. MANTRA
automatically toggles the bit after each
message sent on the same COB.
Therefore by definition there cannot be
two consecutive valid messages with the
same value in the multiplexor byte. If such
a pair of messages is received, the second
message can be discarded safely, thus
eliminating the effects of the double
message reception problem on all higher
software levels.
The situation is slightly more complex if
(a) hardware filtering is used based on the

current clients COB registrations and
(b) the clients are allowed to dynamically

change COB registrations at run-time.
The main benefit is that duplicate
messages can be discarded by MANTRA,

- 7 -

and no code is required in other
components to deal with this problem.
This mechanism is optional and can be
deployed depending on the reliability of
the physical bus implementation.

8 Providing Accurate Event Timing
Various schemes have been put forward
for providing a system wide synchronous
clock across all nodes [Kiencke, Rau Weh,
Turski]. In order to achieve the highest
system wide precision, node can be
synchronised by a single wire which
interrupts them all simultaneously. It would
however be easy to extend the CAN driver
to timestamp the arrival time of all
messages and store this in the receive
buffer if it were needed.
The approach we have taken for event
timing is for the source of a time critical
event to timestamp its occurrence and to
send this as part of the content of the
message. This has the great advantage
that various latency and jitter delays in the
CAN bus, CAN chips, CAN drivers and
MANTRA do not affect the absolute timing
of the knowledge of the event’s
occurrence. This can greatly simplify many
calculations and greatly improve the
accuracy of the absolute timing throughout
the system.

9 Practical Considerations
The initial version of MANTRA has high
and low watermarks on the various
queues in the system, which has enabled
the profiling of buffer loading and hence
provide buffers of reasonable but safe
size. In practice the queues contain only
one message unless there is a prolonged
full bandwidth burst of messages with 3 or
2 data bytes i.e. the worst case loading
scenario.
An idle task is used to monitor spare CPU
bandwidth and this also confirms that the
message handling overhead is acceptable
except in the case already mentioned.
In practice all the benefits of the clean
message distribution abstraction have
been gained with all components written in
a high level language. No handcrafting of
coding has been necessary.

10 Conclusions
The use of MANTRA has made it possible
to partition the system into subsystems
and then into components and to allocate
them to computing nodes in a flexible way.
This is of great advantage for the parallel
development of numerous components by
larger teams. It also supports the
separation of specification, design,
programming and testing of each
component.
The flexibility resulting from designing
separate components and being able to
allocate them to nodes at system
initialisation time simplifies the production
of scalable products and their variants
without programming changes.
Thanks to careful design using Jacobson
diagrams there are very few problems
when new components are integrated into
the system. All this flexibility has been
gained without loosing the deterministic
timing character of the CAN bus.

11 Acknowledgements
We would like to thank Libero Nigro from
the Universita’ Della Calabria, Italy and
Peter Dietmüller from the Johannes Kepler
Universität Linz, Austria for contributing
time in many inspiring discussions on the
subject.

12 References
[CanFAQ]

CAN Frequently Asked Questions
http://www.nrtt.demon.co.uk/
canfaq.html

[CiA]
CAN Application Layer
CiA/DS201 … DS205, DS207
CiA, D-90427, Nurenberg

[Harm]
Components
Paul Harmon
Component Development Strategies,
Volume VIII, No.7; July 1998
Cutter Information Corp. 1998

- 8 -

[Jacobson]
Object-Oriented Software Engineering
I Jacobson, M Christerson, P Jonsson,
G. Övergaard
Addison-Wesley 1994
ISBN 0-201-54435-0

[Kiencke]
Controller Area Network – from
Concept to Reality
U Kiencke
Proceedings 1st International CAN
Conference
Pages 0-11 to 0-20

[Kirk – Nigro]
A Distributed Architecture for Real Time
B Kirk, L Nigro
Joint Modular Languages Conference,
1994, Ulm
ISBN 3-89559-22--X

[KNP]
Using Real Time Constraints for
Modularisation
B Kirk, L Nigro, F Pupo
Lecture Notes in Computer Science
1204
Modular Programming Languages,
JMLC 1997
Springer ISBN 0302-9743

[Lei – Schuh]
An architecture for distributed
visualization of technical processes
B Leisch, P Schuhmayer
Journal of Network and Computer
Applications 20
Academic Press 1997

[Mühl – Esch]
A Framework of Classes for Distributed
Controlling
J. R. Mühlbacher, G. Eschelbeck
Proceedings Euromicro Conference
Liverpool
Pages 240-246
IEEE Computer Society Press

[UML]
Applying UML and Patterns: An
Introduction to Object-Oriented Analysis
and Design
Craig Larman
Prentice Hall 1997
ISBN 0-13-748880-7

[Rau Weh]
Synchronous Processes with CAN
Higher Layer Implementations
L Rauchhaupt, S Wehmann
Proceedings 4th International CAN
Conference

[Turski]
A Global Time System for CAN
Networks
K Turski (NEC chip specific)
Proceedings 1st International CAN
Conference
Pages 3-2 to 3-7

Robinson Associates
Red Lion House
St Mary’s Street
Painswick, Glos.
GL6 6QG
United Kingdom
Tel: +44 (0)1452 813699
Fax: +44 (0)1452 812912
Email: enquiries@robinsons.co.uk
Homepage: www.robinsons.co.uk

FIM
Institute for Information Processing
and Microprocessor Technology
Johannes Kepler Universität
Altenberger Straße 69
A-4040 Linz
Austria
Tel: +43 (0)732 2468 440
Fax: +43 (0)732 2468 599
Email: leisch@fim.uni-linz.ac.at
Homepage: www.fim.uni-linz.ac.at

