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Abstract: 
This paper describes a general purpose architecture for designing distributed real 
time control systems based on component oriented system decomposition and CAN 
based communications. 
The basic philosophy of the architecture is to use an object – oriented analysis ap-
proach to partition the control system into logical subsystems, each of which is built 
from a set of co-operating software components. 
A CAN message distribution layer provides a transport service for messages sent be-
tween components, thus components can communicate in the same way whether they 
are on the same node or on different nodes. This ‘virtual CAN bus’ approach requires 
only a single CAN channel in the hardware chip. 
As a result highly scalable systems can be developed, with variants of a product 
family being built from a common set of software components using a database to 
define the configuration. Legacy systems can be integrated using components which 
act as agents. 
A generic solution to the CAN duplicate message reception problem is presented 
using this design. 
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1 Introduction 
This paper describes a software 
architecture for distributed control systems 
using CAN networked software 
components The objective has been to 
find a practical design with as little system 
overhead as possible while still giving 
enough flexibility to be able to solve real-
world problems. A lot of consideration has 
been given to the problems encountered 
when enabling control system software 
reuse in similar projects, for example to 
support a range of machines providing a 
scalable solution for customers. Different 
models might be distinguished by offering 
different throughput, either by using faster 
and more expensive devices or by using 
several devices in parallel. A more 
complex machine might employ both 
techniques along the production line. In all 
of these cases the actual hardware 

configuration varies, but the fundamental 
control problems change very little. 
An approach for designing distributed real 
time CAN based systems using a general 
purpose architecture has already been 
discussed in [DART]. That control system 
design model has been used as a basis, 
and then enhanced to follow a rigorous 
system decomposition into components. 
The components are then used as the 
basic building blocks of a configurable 
control system. Unlike most of the 
prevalent component architectures we 
have chosen a lean component model that 
seems more appropriate for a real time 
control system, while preserving many of 
the fundamental ideas found in standard 
component models [Harm]. 
Special attention has also been paid to the 
underlying communications architecture, 
which is called MANTRA (Message Agent 
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for Network TRAnsport). MANTRA is a 
logical extension of the physical CAN bus 
and provides for location independent 
messaging between components, based 
on the ISO Open Systems Interconnect 
reference model. 

2 System Architecture 
Much has already been written about 
system architectures based on compo-
nents [Jacobson, UML] however the 
additional design constraints of having a 
physically modular scalable real-time 
product, involving much component reuse, 
meant that a new approach was needed 
[DART]. 

Subsystems 
The system is partitioned into a series of 
logical subsystems each with a clearly de-
fined purpose, see Figure 1. 
Subsystems are entirely abstract entities 
which aid the process of finding a suitable 
breakdown of the system into smaller sub-
problems during the design phase. The 
notion of a subsystem with a well defined 
purpose and interface to other parts of the 
system greatly benefits the task of finding 
a proper abstraction of the problem 

domain. 
An example for a subsystem might be the 
engine in a car, where the subsystem is 
more tangible as it has a well defined 
physical representation. On the other hand 
a subsystem might also be a product 
tracking system which maintains the 
information on the location of product 
assemblies currently going through the 
production line. In this case the subsystem 
is the representation of a concept, and the 
physical implementation is distributed and 
spans the entire production line. 

Components 
Each subsystem is partitioned into one or 
more components. A component is 
defined as an independent event driven 
software object which communicates with 
other objects via messages. The interface 
of an object is defined by the set of 
messages it expects to receive and by the 
set of messages it is able to send. Its 
behavior is defined in terms of its 
response to incoming event messages, its 
local interaction with input – output 
devices and the messages it sends as 
requests and responses to other 
components. A component is a single 
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Figure 1: System Architecture with Components 



- 3 - 

software entity that is executed on one 
processing node, a single instance of a 
component can not be executed in a 
distributed fashion where parts of the 
component are executed on different 
nodes. A single component may however 
use several tasks, although this complexity 
is avoided wherever possible. 
Ideally the entire external interface of a 
component should be CAN message 
based, making it possible to trace all 
message activity between components at 
the system level. Communication within a 
node consisting of several tasks is only 
procedure call based when timing or 
bandwidth requirements do not permit the 
usage of CAN messages. 
Components are launched by a task 
manager (see Figure 2) on system start 
up. 
Two mechanisms for system wide 
component start up can be used to match 
different levels of configuration needs: 
1. Each node contains the executable 
code of all components. Only one 
executable image is required throughout 
the system, which simplifies maintenance 
and configuration issues. The task 
managers link between activation protocol 
and launching components can be hard 
coded. 
2. Each node contains only a subset of 
the components. Several different 
executable images need to be generated 
and maintained. Each node is specialized 
on specific tasks, depending on which 
components have been compiled into its 
image. During system initialization all 
component class implementations register 
with the task manager, each presenting a 
pair of unique class ID and instantiation 
function. GUIDs (Globally Unique 
IDentifier) have deliberately not been 
used, because the control system does 
not support the concept of persistent 
component representation. Therefore the 
problems introduced when the life span of 
a components representation as data 
exceeds the life span of the code it is 
associated with are not encountered. 

3 Node Software 
The software on each node consists of a 
fixed part, the node infrastructure, and a 
variable part i.e. the components which 
belong to various subsystems. 
The node infrastructure consists of the 
operating system, input – output device 
drivers, a task manager and MANTRA. 
This framework of system components is 
present on all nodes. 
The kind and number of application 
components present in a node depend on 
the specific control system entirely. 

4 System Configuration 
The number and kind of physical devices 
present in an actual machine depends on 
the configuration of the machine. The 
number of nodes present may also vary. 
To simplify configuration issues as well as 
parts and spares management the 
architecture has been oriented towards a 
control system implementation using 
physically identical processing nodes. 
However there is no system inherent 
limitation preventing the use of the system 
architecture on a heterogeneous system. 
The system architecture is designed to 
cope with varying configuration scenarios 
without requiring the re-compilation of any 
part of the control system software. 
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Figure 2: Configuration of nodes via task manager 
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The whole system configuration is stored 
in a database that is located on a PC, 
which is connected to the control system 
(see Figure 3). At system start-up time the 
system configurator on the database PC 
downloads the system configuration into 
the control system. 
The only active component in each control 
node after power-up is the task manager. 
During the first stage of system 
configuration it is used to launch the 
components required to run on each 
individual node by binding them to tasks. 
Each component then runs and registers 
with MANTRA to inform it of the set of 
messages it expects to receive. Once this 
has been completed, each node exhibits 
different behaviour that is specific to its 
purpose in its subsystem (see components 
shown to be active in the nodes in Figure 
3). 

5 Requirements for Messaging Between 
Components 

In order to provide flexibility in allocating 
software components to CAN nodes it is 
necessary to provide a means for location 
independent messaging between compo-
nents. The requirements are 
(a) communicating components may be 

on the same nodes or different nodes 
(b) components sending messages are 

unaware of the identity of the nodes 
which contain the components which 
receive the messages 

(c) the distribution of messages to com-
ponents must be completely trans-
parent to the components 

(d) components should only receive mes-
sages within their expected set (oth-
erwise their error handling has to cope 
with an unknown set of messages) 

(e) it must be possible to monitor inter-
component messages within a node 

(f) the message distribution mechanism 
should be independent of the CAN 
chip and its device driver 

(g) as few physical CAN channels as 
possible should be used 

(h) it should be possible to filter out rogue 
duplicate messages sent as a result of 
physical packet corruption on the CAN 
bus. 

The lifecycles of the components and the 
interactions between them were designed 
and documented using the UML Jacobson 
diagrams [Jacobson]. 

6 The MANTRA Design 
It is highly desirable to allocate software 
components to nodes which are physically 
near to the devices they control in order to 
reduce wiring. This means that messages 
between components need to be routed 
between the nodes which happen to be 
hosting the communicating components. 
The problem of distributing messages 
transparently between nodes has been 
solved by using a software agent called 
MANTRA (Message Agent for Network 
TRAnsport). This is itself a software 
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component which exists on each node in 
the system. 
It is designed to offer a single point of 
access to the network for application 
components, based on a safe 
connectionless datagram network service. 
The design is based on earlier work [Mühl-
Esch, Lei-Schuh], where a similar 
message oriented communication layer 
provided services in the context of an 
object – oriented system. The design of 
MANTRA is more streamlined in 
comparison, as the CAN bus already 
provides a reliable but connectionless 
datagram network service. 
The design of MANTRA is shown in Figure 
4. It has been inspired by the ISO OSI 
Reference Model. Deviations from the 

standard are caused mainly by the desire 
to preserve the unique features of the 
CAN protocol up to the level of the 
application layer, and real time response. 
MANTRA has four levels of activity, which 
are from the bottom up 

Physical and Data Link Layer 
The CAN bus and chips deliver all mes-
sages to all nodes 

CAN Device Driver 
The CAN driver catches incoming mes-
sages and stores them in a receive FIFO 
buffer for later use. It also takes messages 
from a send FIFO buffer and transmits 
them via the CAN chip. In our case this 
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CAN driver is interrupt driven to guarantee 
that incoming messages are never lost. 
The message handling on each level is 
executed concurrently to the handling on 
the other levels. Therefore the FIFOs 
forming the interface between layers use 
protected access mechanisms. 

Network Layer 
The MANTRA layer provides a logical con-
nectivity layer which spans all nodes. 
Within a node at initialization time each 
component registers with MANTRA and 
informs it of all the CAN Objects (COBs) it 
expects to receive [Mühl-Esch]. These are 
stored in a list which is designed for rapid 
read access. 
MANTRA takes received CAN messages 
from the driver, looks up which set of 
components need to receive it (possibly 
none). It then copies the message into 
each components incoming message 
buffer on an as needed basis. 

Transport and Application Layer 
Each component has its own message-
event driven lifecycle and so simply re-
moves messages from its own input queue 
and processes them. A nice feature of 
MANTRA is that each component only re-
ceives the set of messages it expects i.e. 
those it has pre-registered for. In our 
experience this makes the design of each 
component independent of other ones. It 
also makes the error handling and testing 
simpler. 
For the sake of efficiency the message 
service provided to components maps one 
to one to CAN messages. In fact most 
messages fit naturally within the maximum 
CAN message length. However, if a 
component needs to send or receive a 
large block of data, it has to perform the 
operation of splitting up the data into 
messages or the reassembly of messages 
into contiguous data itself. Therefore 
conceptually the OSI Transport Layer also 
resides within the component level. 
With this design it now becomes possible 
to allocate components to nodes which 
have spare computing capacity and/or 
spare input/output hardware interfaces. A 
scheme for providing a generic configur-

able hardware interface driver has also 
been designed so that component soft-
ware can be designed independently of 
the physical hardware interface node loca-
tion. This provides flexibility in moving a 
component and its hardware I/O driver 
from one node to another to balance 
resource allocation between the nodes. 

7 The CAN Message Duplication Problem 
Control systems which use a high integrity 
field bus are generally designed to depend 
on its reliability. Unfortunately the design 
of the CAN bus has an inherent problem: 
under certain circumstances a message 
which has been sent only once by the 
software might be received twice by all 
receivers [CanFAQ]. This has been the 
source of some concern in the industry. 
On each node MANTRA provides a single 
consistent point of access to the CAN bus 
for all other components of the control 
system. Message handling within 
MANTRA (see Figure 4) can be enhanced 
to provide a generic solution to the double 
message reception problem using the 
following mechanism: 
If all messages in the control system use a 
layout where the first byte of the message 
is a message multiplexor, then by limiting 
the multiplexor range to 0..127 per COB 
one bit in the multiplexor can be reserved 
to be used as a toggle bit. MANTRA 
maintains the toggle bit itself, and hides 
the mechanism from the clients. MANTRA 
automatically toggles the bit after each 
message sent on the same COB. 
Therefore by definition there cannot be 
two consecutive valid messages with the 
same value in the multiplexor byte. If such 
a pair of messages is received, the second 
message can be discarded safely, thus 
eliminating the effects of the double 
message reception problem on all higher 
software levels. 
The situation is slightly more complex if 
(a) hardware filtering is used based on the 

current clients COB registrations and 
(b) the clients are allowed to dynamically 

change COB registrations at run-time. 
The main benefit is that duplicate 
messages can be discarded by MANTRA, 
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and no code is required in other 
components to deal with this problem. 
This mechanism is optional and can be 
deployed depending on the reliability of 
the physical bus implementation. 

8 Providing Accurate Event Timing 
Various schemes have been put forward 
for providing a system wide synchronous 
clock across all nodes [Kiencke, Rau Weh, 
Turski]. In order to achieve the highest 
system wide precision, node can be 
synchronised by a single wire which 
interrupts them all simultaneously. It would 
however be easy to extend the CAN driver 
to timestamp the arrival time of all 
messages and store this in the receive 
buffer if it were needed. 
The approach we have taken for event 
timing is for the source of a time critical 
event to timestamp its occurrence and to 
send this as part of the content of the 
message. This has the great advantage 
that various latency and jitter delays in the 
CAN bus, CAN chips, CAN drivers and 
MANTRA do not affect the absolute timing 
of the knowledge of the event’s 
occurrence. This can greatly simplify many 
calculations and greatly improve the 
accuracy of the absolute timing throughout 
the system. 

9 Practical Considerations 
The initial version of MANTRA has high 
and low watermarks on the various 
queues in the system, which has enabled 
the profiling of buffer loading and hence 
provide buffers of reasonable but safe 
size. In practice the queues contain only 
one message unless there is a prolonged 
full bandwidth burst of messages with 3 or 
2 data bytes i.e. the worst case loading 
scenario. 
An idle task is used to monitor spare CPU 
bandwidth and this also confirms that the 
message handling overhead is acceptable 
except in the case already mentioned. 
In practice all the benefits of the clean 
message distribution abstraction have 
been gained with all components written in 
a high level language. No handcrafting of 
coding has been necessary. 

10 Conclusions 
The use of MANTRA has made it possible 
to partition the system into subsystems 
and then into components and to allocate 
them to computing nodes in a flexible way. 
This is of great advantage for the parallel 
development of numerous components by 
larger teams. It also supports the 
separation of specification, design, 
programming and testing of each 
component. 
The flexibility resulting from designing 
separate components and being able to 
allocate them to nodes at system 
initialisation time simplifies the production 
of scalable products and their variants 
without programming changes. 
Thanks to careful design using Jacobson 
diagrams there are very few problems 
when new components are integrated into 
the system.  All this flexibility has been 
gained without loosing the deterministic 
timing character of the CAN bus. 
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