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In this paper, Earliest Deadline First (EDF) scheduling algorithm has been translated 
to a CAN network by the use of a slightly modified CAN controller, called EDF 
controller. With this controller, the network can be modelled as a single, prioritised 
queue of messages. The messages use their time-to-deadline as their priority level. 
Using EDF scheduling on the network guarantees message transmission times. This 
can be also used in conjunction to the task scheduling algorithms in the CPU nodes 
to obtain a global scheduling policy related to the whole system. The information 
needed to apply a dynamic end-to-end scheduling algorithm can be automatically 
delivered into CAN messages when using EDF controllers. 
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Introduction 

CAN networks ([1, 2]) are becoming more 
and more widespread used in the 
industrial environment. The main 
characteristics of this environment are: 
 
− Short messages are sent across the 

network. The information carried is 
usually the data collected from 
distributed sensors, reference values to 
control algorithms, actuators control 
signals and so on. 

 
− Low bandwidth needs compared to 

general-purpose networks. 
 
− All processes in the system must meet 

hard real time constraints. This 
imposes time constraints on the 
communication network, so the system 
schedule can be guaranteed. 

 
− Low cost is a main factor in the 

protocol/element selection. One of the 
most important cost factors in these 
networks is cabling cost. 

 
CAN restricts the maximum data length to 
8 bytes, and uses two wires to transmit 
balanced data with data rates up to 1 
Mbps. In this network, 1s are called 
recessive bits and can be overwritten by 

0s, called dominant bits. The bus can be 
seen as a large, wired-AND gate. If, at any 
given time, a node transmit a recessive bit 
and a second node transmit a dominant 
bit, the resultant bit seen on the network is 
a dominant bit. This is the base for 
contention resolution. 
 
When several nodes are connected to a 
bus, some access mechanism must be 
used. In a CAN network, any node listen 
the channel until it becomes idle; then, if 
there is a pending message, transmission 
begins. This can cause that several nodes 
compete for the bus transmitting different 
messages at the same time. 
 
However, collision resolution does not 
destroy the message sent. Any node 
transmitting a message still listen the bus 
to compare the bits being transmitted with 
those listened. At any time while 
transmitting the identifier filed, if a 
recessive bit is sent and a dominant bit is 
listened, means that the node has lost 
arbitration and must end transmission 
immediately. 
 
As CAN identifiers must be unique across 
the network, it is impossible that two 
nodes try to transmit data messages with 
the same identifier. At the end of the first 
field of the message, the identifier field, 
the arbitration process has selected one 



node for transmission. That node 
continues sending bits to the network, 
while all the rest keep listening. 
 
Thus, the identifier field of the CAN 
message is also the priority of the 
message. This field is sent MSB first. 
When competing for the bus, dominant 
bits win arbitration over recessive bits, so 
the lower identifier, the higher priority. 
 
In this article, a simple method to a 
dynamic priority assignment to CAN 
messages is described. It uses the time-
to-deadline (also known as time laxity) to 
assign message priority. The resulting 
scheduling policy is the Earliest Deadline 
First (EDF). It is a well-known priority 
assignment that leads to optimal 
scheduling [7] when applied to a set of 
tasks competing for the CPU time. Here, 
this is translated to CAN messages 
competing for bus access. 
 
To obtain EDF message scheduling, it is 
necessary to modify a standard CAN 
controller to accommodate the needs of 
the scheduling algorithm. This modified 
version of a CAN controller is called EDF 
controller. The approach used here also 
allows applying the priority assignment to 
the tasks that communicate over the 
network. In fact, end-to-end scheduling is 
achieved with the use of dynamic priorities 
related to the time-to-deadline attribute of 
every pair of communicating tasks. 

Related work 

To use CAN as a real-time industrial area 
network, message time constraints must 
be guaranteed. 
 
In [11, 12], a deadline monotonic priority 
assignment is (statically) used to assign 
fixed priorities (message identifier values) 
to the messages sent from a set of 
communicating tasks within CAN. These 
are sent by a set of tasks that have their 
period, deadline and length of messages 
transmitted described in a standard 
workload defined in [3] for the automotive 
industry and known as the SAE 
benchmark. A theoretical bound is 
obtained to calculate the worst-case 

response time of any message, and the 
SAE workload is proven to be schedulable 
when using data rates over 125 Kbps. 
 
Another static scheduling is given in [8] for 
the SAE benchmark using bandwidth 
reservation to guarantee message 
deadlines. 
 
Two dynamic scheduling algorithms are 
used in [13, 14] and [9, 10] over a CAN 
network. Both make use of a global clock 
(through the use of a synchronisation 
protocol). Only those messages with tight 
deadlines have their waiting time 
improved in the first one. 
 
In [9, 10] hard real-time messages 
reserve time-slots to guarantee their 
deadlines; however, before the reserved 
slot arrive, these messages compete with 
soft real-time messages for bus access to 
improve transmission times. Soft real-time 
messages use their time laxity as priority. 
 
However, priority updates are performed 
by the communication subsystem, 
increasing the overhead of the CPU 
nodes. For this overhead to be 
acceptable, the time granularity resulted of 
an order of magnitude larger than the 
period of the events it is supposed to help 
scheduling (message transmissions). 

End-to-end scheduling 

In the SAE benchmark, two sets of tasks 
are described, periodic and sporadic. A 
periodic task is a repetitive task with 
period P that sends a message of length L 
that must be transmitted before the 
deadline (D time units after the period 
begin) is reached. It is assumed that 
deadline value is less than or equal to the 
corresponding period. A sporadic task is 
similar except that has no period but a 
minimum inter-arrival time. 
 
A periodic task can be described by figure 
1. After activation at time ta (the sending 
task becomes ready to execute), the 
message must be transmitted before D 
time units have elapsed (at time ta + D). 
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Figure 1. Periodic task attributes 
 
The time from task activation to message 
transmission can be divided into 3 parts. 
First, sender task must compute some 
value that will be delivered on the 
message; this time is called TS (sending 
task time) and includes the time spent by 
the task waiting for CPU service (TS

W) and 
the execution time (TS

X). Second, the 
message built has to wait into the 
controller message queue while higher 
priority messages are sent; this is called 
TQ. And finally, the message is physically 
transmitted over the network; this time is 
called TT. 
 
From the previous three time delays, only 
the last one is known a-priori. Given the 
length of the message and the data rate, 
the time TT needed to transmit the 
message bits over the network wires can 
be easily obtained. The task computation 
time TS depends on the task code, the 
data being processed, and the overall 
workload of the CPU and its scheduling 
policy. The queuing delay TQ is the time 
needed to transmit all the messages in the 
network with higher priorities and depends 
on the bus load and the message own 
priority. 
 
When the receiving task is taken into 
account, a fourth time must be considered 
(see figure 2). This is the time the 
receiving task needs to process the 
message. This time is called TR (receiving 
task time) and, like TS, includes the 
execution time (TR

X) and the time the task 
is waiting for the CPU (TR

W). To guarantee 
that receiving task will process the 
message before the deadline is reached, 
scheduling policies which takes all these 
times into account must be applied. 
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Figure 2. Sending and receiving tasks 
 
To obtain an end-to-end scheduling policy, 
the transmitting node scheduler must take 
TS

X, TT and TR
X into account to assign the 

priority of the task when competing for the 
CPU. In EDF, the priority of a task at any 
given time is the time left to the task 
deadline (also known as time laxity). 
 
If we call R(t) the remaining time at time t, 
R(ta) = D - (TS

X + TT + TR
X). At activation 

time, TS
X and TR

X can only be estimated 
with the worst case execution time (wcet) 
of send and receive tasks. If the sender 
begins execution at any point in time after 
R(ta) time units from activation, the 
scheduling will fail. 
 
In a CAN network, all messages are sent 
through broadcast. It is then possible that 
several tasks (in the same or different 
nodes) receive and process a single 
message. When this is the case, the most 
stringent case (the maximum TR

X) must be 
used. 
 
After the task has finished and built the 
message to be sent, this is queued into 
the communication controller at time tq. 
The remaining time at this moment R(tq), 
must take into account the elapsed time 
since activation, the message 
transmission delay, the receiving task 
computation time and the time to deadline, 
so R(tq) = D - (TS

W + TS
X) - (TT + TR

X). 
Again, TR

X can only be estimated by its 
wcet. However, TS

X is the actual execution 
time of the sending task because at tq the 
sending task has ended. 
 
The expression TS

W + TS
X is the time used 

by the sending task to compute and queue 
the message. This can be rewritten as tq - 



ta, or now - ta at the moment of message 
queuing. The expression TT + TR

X is the 
minimum time needed for the message to 
traverse the network and be processed by 
the receiving task. 
 
The operating system of the sender node 
is responsible to activate the task every P 
time units. Almost every OS include a 
service to obtain the actual time (now), 
and it should be easy to add a service to 
obtain the activation time of the current 
task (ta). The final expression for R(tq) is 
then R(tq) = D - (now - ta) - (TT + TR

X). 
 
When the message is sent over the 
network it reaches the receiving node at 
time tr. The remaining time then is R(tr) = 
D - (tr - ta) - TR

X. 
 
The use of the value ta for the receiver 
scheduling imposes several problems. 
First, ta is the activation time of the sender 
task executed in the sender node, and this 
information must be delivered to the 
receiver somehow. Second, ta is a point of 
time measured from the sender node that 
has meaning in the receiver node only if 
both nodes share the same time clock (ta 
is an "absolute" time value). 

EDF requirements 

There are three scheduling stages in the 
end-to-end communication. First, the 
transmitting task competes for the CPU at 
the sender node. Second, the message to 
be sent competes for the bus. Third, the 
receiving task competes for the CPU at 
the receiving node. If all these stages use 
EDF scheduling and time information is 
delivered from stage to stage, the whole 
system will be EDF scheduled. 
 
At the sender node, TT can be computed 
as depends on the time length and 
network data rate, which are known 
values. TS

X and TR
X can be estimated with 

worst-case execution times of sender and 
receiver tasks, respectively. All this 
information can be introduced into the 
scheduler at the sender node to schedule 
tasks using EDF policy. When the sending 
task becomes ready, its laxity time and 
priority is R(ta) = D - (TS

X + TT + TR
X). 

 
For the bus to use EDF, the laxity time for 
any real-time message must be used to 
assign the message priority within the 
network. To accomplish this requirement, 
the laxity time at tq is directly used as the 
message priority. In fact, as the lower the 
CAN message identifier the higher the 
priority, if this identifier is the remaining 
time of the message, those messages 
with less laxity time will be delivered first. 
At queuing time, it is easy to compute the 
laxity time R(tq) as R(tq) = D - (now - ta) - 
(TT + TR

X) and use this as the message 
priority. 
 
However, once the message has been 
queued and compete with other messages 
for the bus, this priority must be 
dynamically updated as time goes.  
 
Suppose that a message m1 is queued at 
time 5 with 7 time units as its laxity time 
and is waiting for the bus to be idle to 
begin transmission. At time 10 a second 
message m2 is queued with 4 time units 
as the remaining time and bus becomes 
idle at time 11. This example is illustrated 
in the following figure. 
 

t
t=5 t=10 t=11

m1 queued
with priority 7

m2 queued with
priority 4

bus idle.
m2 selected

 
Figure 3. Fixed priorities example 

 
If fixed priorities are used (e.g. deadline 
monotonic as in [11]), message m2 will be 
transmitted first. But the message with 
lower laxity time at t = 11 is message m1, 
so it should be transmitted first. To avoid 
this kind of priority inversion (a lower 
priority message being transmitted while a 
higher priority message is waiting), 
priorities should be dynamically updated. 
If the time-to-deadline for each message 
is periodically updated, message m1 will 
have priority 1 and m2 priority 3 at time 
11. The message transmitted will be the 
lower remaining time, m1, as shown in the 
following figure. 
 



t
t=5 t=10 t=11

m1 queued
with priority 7

m2 queued
with priority 4

bus idle.
m1 selected

m1 priority
updated to 2

m2 priority
updated to 3

m1 priority
updated to 1

 
Figure 4. Dynamic priorities example 

 
For this update to be effective, the update 
frequency must be higher than the 
maximum frequency of the events on the 
bus. In the preceding example, if the 
update period is larger than 6 time units, 
the schedule will fail. This frequency 
requirement invalidates any update 
mechanism that uses the same CPU that 
executes tasks and queues messages to 
be sent over the bus.  
 
When the message arrives at the 
receiving node, the message priority (the 
CAN identifier) carries the time left to 
deadline R(tr). This is the laxity time for 
the activation of the receiver task. The 
message priority has taken TT and the 
wcet of TR

X into account, so the value of 
the priority field when the message arrives 
at the receiver node is the maximum time 
the receiver task can delayed. 
 
If the receiving task begins execution at 
any point of time R(tr) time units after 
message reception, the scheduling will 
fail. 

EDF controller design 

This section is devoted to reveal the 
differences between a standard CAN 
controller and a controller to achieve EDF 
scheduling, which will be denoted as EDF 
controller. 
 
First, queuing a high priority message 
while a low priority message is waiting 
should not help a lower priority message 
in another node gaining access prior to 
the high priority message. This problem 
has been shown in [12] for the 82c200 
CAN controller, with a single transmission 
buffer [4]. To queue the high priority 
message, the lower priority message must 
be released first from the transmission 
buffer. Between the time the lower priority 

message is released and the time the 
higher priority message is copied into the 
controller transmission buffer, no message 
can begin transmission for this node. It is 
then possible that a lower priority 
message from other node gains access to 
the CAN network. This is avoided when 
the CAN controller offers more than one 
transmission buffer, because no buffer 
release is needed to queue the high 
priority message. 
 
This problem persists even on new 
controller designs, like the SJA1000, 
described in [5]. 
 
Second, message ordering in the queue of 
the controller should be based on the 
priority field of the message. Interestingly, 
only some the newest controller designs 
(e.g. the Motorola's TouCAN controller [6]) 
use this approach, and as "added" 
feature. Message ordering inside a CAN 
controller with more than one buffer is 
usually done through the buffer slot 
number. Message stored in the first slot is 
transmitted first and competes with its 
priority to gain access to the bus with the 
rest of messages of other nodes. This 
breaks the EDF rule, and must be 
avoided. In [13], this problem is avoided 
ensuring that no node has more 
messages to transmit than transmission 
slots in a CAN controller.  
 
Finally, once a message is built and ready 
for transmission, its priority must be 
periodically updated at a frequency higher 
than maximum message transmission 
frequency. This can be achieved by 
specialised hardware only, a down 
counter associated with each message 
identifier on the queue. As the laxity time 
used as message priority is a time interval 
value (a count of time units) and not an 
“absolute” time, there is no need for the 
clocks of the nodes to be synchronised for 
this purpose. 
 
Not all the bits in the message identifier 
field can be used to store the laxity time 
for the message. The CAN standard 
requires message identifiers to be unique 
across the network. In [13], eight bits are 
used to store the laxity time of the 



message. This value is encoded and 
stored into the most significant bits of the 
CAN identifier.  
 
However, deadline values for the set of 
tasks described by the SAE benchmark 
range from 5ms to 1000ms. To use a 
direct encoding (as proposed in [13]) the 
time granularity of the encoded time laxity 
must be 4ms or more. With a set of tasks 
that execute and send messages every 
5ms, this time granularity is impractical. 
 
The approach taken with the EDF 
controller is a two-level encoding, as 
shown in figure 5. Time granularity is 
reduced to the maximum for tight 
deadlines, while a larger time period (2K 
times the time granularity) is used for 
larger deadlines. Those deadlines 
encoded with the former time granularity 
are called fine-grained deadlines; when 
the latter is used they are called coarse-
grained deadlines. 
 

0 fffffff i... ii Tight deadline,
fine-grain encoded time laxity

1 ccccccc i... ii Large deadline,
coarse-grain encoded time laxity

1 1111111 i... ii Background message,
no deadline

K bits to code the message's laxity time.

M bits to code the message's identifier

 
Figure 5. Priority encoding 

 
When a coarse-grain deadline reaches its 
last period, it is automatically translated 
into a fine-grain deadline. When a fine-
grain deadline reaches 0, the message 
has lost its deadline and an interrupt is 
immediately raised to inform the system. 
To ensure those tight deadlines (coded 
with fine-grain time granularity) will have 
always the highest priority, they are 
preceded by a dominant bit. 
 
As shown in the figure above, the CAN 
identifier is divided into 3 parts. The MSB 
bit is a dominant/recessive bit to 
distinguish between tight and large 
deadlines. The next K bits are used to 
encode the time laxity of the message. 
This leaves M = L - K - 1 bits for the 
message identifier, being L the total 

number of bits into the CAN identifier field 
(11 bits on standard frames, 29 bits on 
extended frames). This arrangement 
ensures that messages will have a unique 
CAN identifier and that messages with 
lower laxity times will have higher priority 
over large laxity time messages. 
 
Each coarse-grain period is 2K times a 
fine-grain period. With K=7, and a fine-
grain of 64 µs, each coarse-grain period is 
greater than 8 ms. The larger time laxity 
than can be encoded is greater than 1000 
ms. This ensures the whole range of 
deadlines of the SAE benchmark is 
covered. Tight deadlines (laxity times up 
to 8 ms) are updated every 64 µs while 
larger deadlines are updated every 8192 
µs. 

Design considerations for background 
messages 

Not all the messages in a network have 
time constraints. There are also 
background messages that should be sent 
only when the bus is idle and no time-
constrained message is waiting. These 
messages are usually related to added 
functionality of the system, not needed for 
the basic function. 
 
The EDF controller is able to work in a 
different way for these messages. As 
background messages, no laxity time is 
used and the priority is never updated. 
One control bit of the transmission buffer 
is used to enable the priority update. If this 
update is disabled and the laxity time field 
is filled with recessive bits, these 
messages never reach the priority levels 
of any time-constrained message. 

EDF controller design details 

In this section, a detailed explanation of 
the controller design trade-offs is shown. 
 
The main objective of this work is to 
modify a standard controller design as 
little as possible, resulting into reasonable 
silicon costs. 
 
To achieve this goal, the easiest way is to 
use two global clock lines (fine and coarse 



clocks) to update priorities of all the 
messages into the controller, as shown in 
figure 6. 
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U
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MSB of
CAN id

Each transmission
buffer

 
 Figure 6. Two global clock lines 

 
This will minimise the silicon costs. 
However, this approach leads to large 
quantization errors when the application 
maps the laxity time R(tq) within the two-
level encoding mechanism used by the 
EDF controller that must be taken into 
account. 
 
As both clock dividers are asynchronous 
to message queuing events, using this 
design will lead to a mapping worst case 
error of 2(K+1) Tfg, being Tfg the fine-grain 
period. 
 
This worst case comes from a coarse-
grain message with a time laxity of 
((N+1)2K - Δ)Tfg, Δ→0, queued just before 
the coarse-grain period expires. 
 
The application maps the message's laxity 
into 2KTfg blocks (coarse-grain periods), 
giving N. As the coarse period is about to 
expire, this laxity is immediately updated 
to N-1. The mapping error is ε = actual 
laxity - laxity mapped value = ((N+1)2K - 
Δ)Tfg - (N-1)2KTfg = 2(K+1)Tfg - ΔTfg. 
 
With Δ→0, the error is ε = 2(K+1)Tfg. 
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clock

Fine-grain
clock

Coarse-grain clock

M
U
X

Update laxity
field clock

MSB of
CAN id

Each transmission buffer

Reset each time the laxity
field is written by the CPU

 
Figure 7. EDF controller design detail 

 
To reduce this mapping error, the 
controller design (see figure above) uses 
a single, programmable frequency divider 
to obtain the fine-grain clock from a base 

clock. Each transmission buffer has its 
own clock divider to obtain the coarse-
grain period; this is re-started each time 
the CPU writes the laxity field of the CAN 
identifier.  
 
As the coarse-grain period starts when the 
message is queued, the worst case 
mapping error is reduced to ε = ((N+1)2K - 
Δ)Tfg - 2KNTfg = 2KTfg - ΔTfg = 2KTfg.  
 
Following the above reasoning, the worst 
case mapping error for a fine-grain 
message is ε = 2Tfg. These mapping 
errors must be included into R(tq) to 
perform schedulability tests, as follows: 
 
R(tq) = D - ε - (now - ta) - (TT + TR

X) 
 
To summarise, an EDF controller is a 
CAN controller with these added features: 
i) it offers more than a single transmission 
buffer, ii) the messages ready for 
transmission in the controller are ordered 
by their priority, and iii) the message 
priority is periodically updated without 
CPU intervention and with small mapping 
errors. 
 
The EDF controller design has been 
targeted on an Altera's EPF10K10 
macrocell-based PLD device. The silicon 
size increase is well below 5% when a 
single transmit buffer is taken into 
account. When the size of the whole 
controller is used, the silicon costs 
induced by the EDF requirements are 
negligible. 

Conclusions 

In this paper, the CAN network has been 
shown as a good choice to schedule a set 
of communicating tasks with hard real-
time constraints. A well-known dynamic 
scheduling algorithm, EDF, has been 
applied. 
 
Even better, CAN messages deliver 
automatically-updated, valuable time 
information from sender to receiver nodes 
allowing the use of EDF not only in the 
network but also as the scheduling 
algorithm for the tasks competing for CPU 
access in a given node (end-to-end 



scheduling). The whole system schedule 
is EDF, an optimal dynamic priority 
assignment based on the time-to-deadline 
attribute of the object (task, message) 
being observed. 
 
A modified CAN controller, called EDF 
controller, makes use of time laxity of 
messages to order them across the 
network. The modifications needed over a 
standard CAN controller have also been 
shown to be of a reasonable cost. These 
are focused on the message queue of the 
controller, that meets the characteristics of 
being priority-ordered and periodically 
updated. 
 
Finally, as not every message in the 
network has a deadline, background 
messages are included in the EDF 
controller with minor modifications. 
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