
Intranet-­‐Based	
  Management	
  of	
  CAN	
  Devices	
  
Dr.-­‐Ing.	
  Martin	
  Wollschlaeger,	
  Dipl.-­‐Ing.	
  Stefan	
  Wehrmann	
  

With	
   the	
   steadily	
   growing	
   use	
   of	
   CAN	
   devices	
  within	
   complex	
   automation	
   systems,	
   the	
  
need	
  for	
  effective	
  management	
  solutions	
  becomes	
  more	
  and	
  more	
  obvious.	
  The	
  spreading	
  
integration	
  of	
  CAN	
  systems	
   into	
  Local	
  Area	
  Networks	
  (LAN)	
  provides	
   the	
  opportunity	
   to	
  
build	
   such	
   solutions	
   on	
   intranet-­‐based	
   technologies	
   like	
   HTTP	
   or	
   COM/DCOM.	
  
Particularly	
   the	
   chances	
   of	
   a	
   link	
   between	
   the	
   intranet-­‐stored	
   information	
   and	
   the	
  
fieldbus	
  layer	
  let	
  the	
  development	
  of	
  a	
  new	
  generation	
  of	
  management	
  tools	
  be	
  more	
  than	
  
likely.	
  

Based	
  on	
  the	
  illustration	
  of	
  principles	
  for	
  connecting	
  fieldbus	
  and	
  LAN	
  new	
  concepts	
  for	
  
the	
   representation	
  of	
   CAN	
  Higher	
  Layer	
  Protocol	
   structures	
   and	
  data	
  by	
   intranet-­‐based	
  
objects	
   are	
   introduced.	
   Examples	
   of	
   practical	
   realizations	
   of	
   the	
   concepts	
   for	
  managing	
  
CAN	
  modules	
  prove	
  the	
  feasibility	
  and	
  show	
  the	
  prospects.	
  

	
  

1. Introduction	
  

One of the most outstanding trends in in-
formation technology’s recent develop-
ments is the trend towards network-centric 
systems. Special attention has to be paid 
to the overwhelming development of the 
Internet and its enabling technologies in 
hard- and software, like TCP/IP, compo-
nentware, browser technology, Java etc. 
Using these technologies in an Intranet on 
top of a LAN enables the integration of 
different hard- and software platforms, as 
well as the integration of data with different 
sources, contents and representation. The 
user interface of an Intranet is imple-
mented using a browser, a de-facto stan-
dard software package not only offering an 
unique look and feel, but a well known, 
user-accepted interface to the underlying 
heterogeneous information system. In 
addition to the representation of data, 
more and more management functions of 
the networked resources are accessible by 
a browser. This introduces a new quality 
for the management of industrial com-
munication systems. 

The steadily growing use of networked 
industrial PCs within fieldbus based sys-
tems offers an interesting platform for the 
integration of fieldbusses and LANs. 
These enterprise networks represent the 
solution for data exchange in process in-
formation systems. The main feature of a 
process information system is the seam-
less integration of fieldbus-based compo-
nents into systems of the technical and 
economical management of the enterprise, 

providing easy access to manufacturing 
related data from standard office 
environment. This offers a starting point 
for the implementation of management 
functions for the underlying fieldbus and its 
components, that are accessible from any 
point within the process information 
system. 

2. Integration	
  concepts	
  

There are different scenarios for the inte-
gration of fieldbus systems into LANs 
(Figure 1). PLC based implementations 
may be integrated using an industrial PC 
(IPC) as a gateway. This IPC is connected 
to both, the fieldbus and the network, by 
means of appropriate interface cards. 
When using an IPC with PC control appli-
cations instead of the PLC, the integration 
becomes more easy. In this case the IPC 
can offer the gateway functions in addition 
to the control applications. Both scenarios 
allow data exchange between the fieldbus 
components and any other networked 
equipment. This enables the access from 
applications of the business management 
as well as from configuration and moni-
toring tools and diagnostic systems to 
fieldbus data. Besides the process related 
data, installation-specific data and de-
scriptions from databases will be opened 
for data access as well. The necessary 
conversion and representation of both 
classes of data - process data and de-
scriptive data - are more and more per-
formed using browser-based software 
components. 



WAN

(LAN)
Local Area Network

marketing,
business 
management

centralized
database

configuration,
monitoring,
diagnosis

gateway

PLC
IPCIPC

 
Figure 1: Scenarios for the integration of fieldbusses into a local area network 

CAN ETHERNET

OLE Auto-
mation server

COM / DCOM (D)COM

CAN 
driver

network 
driver

DCOM server
OLE Auto-
mation client

DCOM 
client

DCOM 
client

operating system (OS) OS

network 
driver

 
Figure 2: Software structure for the integration of a CAN system into a LAN 

A mapping of the fieldbus protocol’s func-
tionality and data structures to appropriate 
objects is the major prerequisite for the 
integration of a fieldbus into an Intranet. 
These objects have to be organized in a 

way suitable for easy access from the ap-
plications relying on fieldbus related data. 

More and more PC applications use the 
Component Object Model (COM) [1]. 
Therefor a fieldbus has to be mapped to 
COM-objects. The access of applications 



to fieldbus data can be performed using 
OLE Automation techniques. Such a map-
ping enables access to fieldbus data from 
any OLE Automation capable local client 
application, without having to implement 
application-specific drivers for the fieldbus 
interface card. In addition, the mapping to 
COM objects is a prerequisite for the im-
plementation of Distributed COM (DCOM). 
DCOM allows access from remote OLE 
client applications over the network in the 
same way as local clients do. Figure 2 
shows the principle structure of the inte-
gration of a CAN system into an Ethernet 
LAN. 

The access to fieldbus data throughout the 
LAN environment is necessary for an 
Intranet based management of fieldbus 
components. Intranet based solutions are 
characterized by: 

• the use of the Hypertext Transport 
Protocol (HTTP) as a network-wide 
unique logical transport layer, 

• the use of web servers (HTTP servers) 
as data source, and 

• the use of web browsers (HTTP clients) 
as a user interface. 

 

The access of the browser to fieldbus ob-
jects is performed using server based 
scripts (Figure 3), or as a distributed ap-
plication using DCOM-Clients (for example 
ActiveX-Controls) (Figure 4).  

When using the script based implementa-
tion, a request from a browser initiates the 
execution of a script at the web server. 
This script starts an instance of an OLE 
Automation client, that accesses the COM 
objects of the fieldbus mapped to the OLE 
Automation server. The other implementa-
tion concept instantiates an ActiveX-Con-
trol [3] as a DCOM client. The web server 
provides the control for download on de-
mand. The control uses DCOM for access 
to a DCOM server across the network. 
The DCOM server then uses the OLE 
Automation server to access the fieldbus 
data. 

Both concepts are suitable for using a web 
browser as an unique interface widely ac-
cepted by the users. It provides access to 
fieldbus data as well as to any other in-
formation provided by the networked envi-
ronment. Especially the direct access to 
data in fieldbus related design and con-
figuration tools, and to database driven 
applications will support future complex, 
but scalable software tools for fieldbus 
handling. 

CAN ETHERNET

OLE Auto-
mation server

COM / DCOM

CAN
driver

network 
driver

HTTP server
HTTP client
(web browser)

OS OS

OLE Auto-
mation client

network 
driver

 CAN ETHERNET

OLE Auto-
mation server

COM / DCOM

CAN
driver

network 
driver

HTTP
server

OS OS

DCOM server
OLE Auto-
mation client

DCOM

HTTP client

DCOM
client

network 
driver

 
Figure 3: Server based integration Figure 4: Integration as a distributed 

application 
 



3. OLE	
  Automation	
  Server	
  for	
  CAN	
  

An important part of the implemented 
prototype solution is the OLE Automation 
server for CAN. Its tasks are the encap-
sulation of the underlying driver for the 
CAN interface card, and the providing of a 
COM based interface for accessing the 
fieldbus. The COM model defines an 
unique, universal expandable binary in-
terface enabling data exchange between 

different address spaces, access to prop-
erties and methods of objects, and the 
analysis of the interface of unknown ob-
jects. It is the prerequisite for other com-
plex technologies, e.g. OLE Automation, 
Drag and Drop, OLE Documents and OLE 
Controls [2]. Figure 5 shows the COM 
object “CAN” with its interfaces in a sche-
matic view.  

 
Figure 5: Structure of the COM Object “CAN” and its interfaces 

The interface IUnknown represents the 
basic interface for all other interfaces. It is 
the only one, that every COM object has to 
implement. IUnknown provides three 
methods for two fundamental properties of 
the COM object. These properties are 
used for life-time control of the object by 
reference counting, and for navigating 
between the object’s different interfaces. 

Reference counting is performed using the 
method AddRef called by each client. Par-
allel to incrementing the value of the inter-
nal reference counter, this initial conver-
sation loads the object into the memory. 
By calling Release a client closes the con-
nection with the object. The method dec-
rements the reference counter. If the 
counter reaches zero, the object termi-
nates and is removed from the memory. 
The method QueryInterface allows re-
questing for special properties and pro-
vides access to the appropriate interfaces. 
A client, that wants to access certain 
properties of an object has to use Query-

Interface in order to get a pointer the in-
terfaces required to handle the properties. 
This method allows further development of 
an object’s functionality by implementing 
additional interfaces without changing ex-
isting ones. The clients can use existing 
functions without any modification. 

The interface IDispatch extends the object 
CAN by implementing the functions nec-
essary to act as an OLE Automation 
server. The interface’s methods allow the 
object to be easily accessed from any 
script based language like Visual Basic as 
well as from any other programming lan-
guage like C/C++. The main method of 
IDispatch is Invoke. It calls functions of the 
COM object and passes the given pa-
rameters to these functions. The selection 
of the appropriate function is performed 
using the parameter DISPID. For example, 
an OLE Automation client that wants to 
call the object’s function InitCAN passes 
the function’s name to the function GetIDs-
OfNames of the IDispatch interface. 



GetIDsOfNames returns the DISPID cor-
responding to InitCAN. Calling Invoke with 
this DISPID at last results in the execution 
of InitCAN.  

A language like Visual Basic encapsulates 
this sequence. The user only has to code 
the statement object.InitCAN. It 
should be mentioned, that this technique 
works across the boundaries of processes, 
and with DCOM across the boundaries of 
computers.  

As an opposite to IUnknown and IDis-
patch, the structure of ICan is not prede-
fined by COM or by technologies based on 
COM. The interface ICan represents an 
application specific interface. It has to pro-
vide functions suitable for access to the 
CAN fieldbus. These functions include for 
example initialization of the CAN interface 
card and  transmitting and receiving of 
CAN objects. The direct access of the 
interface’s functions allows, compared with 
an access using IDispatch, a significantly 
lower access time. However, this 
advantage can only be used within a given 
process and not between different proc-
esses nor different computers. This is a 
disadvantage according to an access us-
ing IDispatch. 

The CAN driver implemented in the pro-
totype system is a 16-bit driver. This re-
quired the OLE Automation server to be a 
16-bit program as well. The direct access 
from 32-bit applications to the interface 
ICan is impossible. So the gap between 
16-bit and 32-bit applications had to be 
closed by using IDispatch. Practical expe-
riences have shown, that the timing condi-
tions are okay for purposes of the man-
agement of CAN modules. 

4. Exemplary	
  solutions	
  for	
  the	
  
management	
  of	
  CAN	
  modules	
  

Based on a CAN installation using Smart 
Distributed System (SDS) [4] as an appli-
cation layer, the feasibility of the integra-
tion concepts are shown. The modules are 
connected to a PC running Windows 95 by 
means of an interface card. This PC im-
plements the gateway function between 
CAN and a local area network. The web 
server is implemented as Microsoft Per-
sonal Web Server on that PC.  

4.1. Installation	
  using	
  scripts	
  

This implementation uses the OLE Auto-
mation server for CAN described above. 
Scripts coded in Visual Basic Script lan-
guage (VBScript) are running on top of the 
web server. They use the interface IDis-
patch provided by the OLE Automation 
server in order to access data and serv-
ices of the SDS objects. Furthermore, 
these VBScripts are used to construct the 
user interface, which is provided by means 
of HTML pages. This interface contains 
different functional layers, that allows ac-
cess to the functionality of SDS objects, as 
well as to its parameters. Compound 
documents represent an excellent possi-
bility for an integration of SDS objects, 
installation-specific data and descriptions. 
Figure 6 shows a code fragment of a 
HTML page containing the PDF coded on-
line documentation of an SDS Binary Out-
put Object and an interface to scripts for 
manipulating the status of the Output Ob-
ject. A screenshot of that page is shown in 
Figure 7.  

<SCRIPT LANGUAGE=VBScript 
 RUNAT=Server></SCRIPT> 
<HTML> 
<HEAD><TITLE>  SDS Binary 
 Output</TITLE></HEAD> 
<BODY> 
<H2>  SDS Binary Output</H2> 
<HR WIDTH=100% ALIGN=center SIZE=5> 
<table border="0"> 
<tr> 
<td><FORM METHOD="POST" ACTION="on.asp"> 
<P><INPUT NAME="BtnOn" TYPE="SUBMIT" 
 VALUE="Switch Binary Output to On"> 
</FORM></td> 
<td><FORM METHOD="POST"  
 ACTION="off.asp"> 
<INPUT NAME="BtnOff" TYPE="SUBMIT" 
 VALUE="Switch Binary Output to Off"> 
</FORM></td> 
</tr></table> 
<FORM METHOD="POST" ACTION="read.asp"> 
<INPUT NAME="Read Binary Output State" 
 TYPE="SUBMIT" VALUE="Read Binary 
 Output State  "> 
</FORM> 
... 
Code omitted here for brievity 
... 
<H3>SDS Component Modeling Specification 
 ( Online ):</H3> 
<body leftmargin=0 topmargin=0 
 scroll=no> 
<embed width=100% height=50% 
 fullscreen=no src=http://141.44.61.248/ 
  NT/CAN/sds/gs052107.pdf> 
</BODY> 
</HTML> 

Figure 6: Code fragment of an SDS 
related compound document 



This installation requires only the OLE 
Automation server as fieldbus-related ap-
plication. However, the management-re-
lated functions have to be provided by the 
scripts. It has to be mentioned, that secu-

rity relevant data has to be transmitted as 
plain text, so that the implementation of 
further security methods have to be con-
sidered.  

 
Figure 7: Screenshot of a compound document 

4.2. Installation	
  using	
  ActiveX-­‐Controls	
  

This solution requires a DCOM server, that 
presents the functions of the OLE 
Automation server to the networked envi-
ronment. The interaction with the user is 
performed by ActiveX-Controls. After a 
download from the web server, these con-
trols are automatically instantiated on the 
client system, where they reside for further 
use. ActiveX-Controls can be integrated 
into any ActiveX-Container application. 
More and more container applications are 
used as a framework for specialized soft-
ware components. This allows the reuse of 
the controls in a large number of different 
applications. The management functions 
have to be mapped to the user interface 
provided by the control. Figure 8 shows a 
screenshot of an ActiveX based 
management solution for SDS systems. 

The treeview control on the left side repre-
sents the logical structure of the SDS in-
stallation. The access to data in the SDS 
components is possible by means of the 
text boxes and buttons on the right side. 
This data is manipulated by the control’s 
internal functions and then transferred to 
the DCOM server that passes the data to 
the OLE Automation server. It is possible 
that the OLE Automation server is imple-
mented as a part of the DCOM server. 
However, it has to be considered that the 
OLE Automation server has to access the 
interface card with its specific interface. 
The major advantage of the described 
installation is that the data is transmitted 
between the controls and the server in a 
binary format, so that security problems 
are reduced. 



 
Figure 8: Screenshot of an ActiveX-based SDS management solution 

5. Conclusion	
  and	
  future	
  trends	
  

An intranet based management solution 
enables an easy handling of a fieldbus 
system as a part of a process information 
system with high complexity. It requires 
the integration of a fieldbus into a local 
area network. This integration is possible 
by implementing appropriate software ob-
jects, that provide unique interfaces for 
applications. The integrative aspects of 
such implementations are considered as a 
new feature of modern software. The 
growing success of OPC (OLE for Process 
Control) [5], that also uses a COM based 
concept, is an example for this. Future 
management solutions can be im-
plemented on top of OPC in order to use 
fieldbus independent data access meth-
ods. 

The installation with ActiveX-Controls can 
be integrated into Java based manage-
ment systems. Java can instantiate and 
access COM objects, so that data ex-
change between Java applications and 

fieldbus data can be performed using the 
OLE Automation server described above. 
On the other hand, ActiveX-Controls can 
be integrated into Java applets [6], that 
can be used in web browsers or Java ap-
plications. Furthermore, applets or controls 
with component-specific management 
functions can be implemented directly in 
the fieldbus components. They can be 
uploaded via the fieldbus into a network-
centric application framework.  

The introduction of Intranet based man-
agement solutions allows fieldbus handling 
with a new quality in user support. It offers 
a platform and a starting point for further 
developments in information technology, 
as well as in electronics and automation 
and control. 

References 

[1] Chappel, D.: 
Understanding ActiveX and OLE.  
Microsoft Press, 1996. 



[2] Brockschmidt, K.: 
Inside OLE.  
Second Edition. 
Microsoft Press, 1997. 

[3] Denning, A.: 
ActiveX Controls Inside Out. 
Microsoft Press, 1997. 

[4] n.n.: 
SDS specification. 
Honeywell Inc. Microswitch Division, 
GS 052 103 ... GS 052 107, 1995. 

[5] n.n.: 
OLE for Process Control. 
Industry Standard Specification, 
Version 1.0 
OPC Task Force, August 29th 1996. 

[6] Ladd, S.R.: 
Active Visual J++. 
Microsoft Press, 1997. 

 

Dr.-Ing. Martin Wollschlaeger 
Otto-von-Guericke-Universität Magdeburg 
Institute for Measurement Technology and 
Electronics (IPE) 
PO Box 4120, D-39016 Magdeburg, 
Germany 
Phone: +49 (391) 67-1 46 53 
Fax: +49 (391) 5 61 63 58 
e-mail: mw@ipe.et.uni-magdeburg.de 
http://www-nt.et.uni-magdeburg.de/ 

Dipl.-Ing. Stefan Wehrmann 
3SOFT GmbH 
Wetterkreuz 19a, D-91058 Erlangen, 
Germany 
Phone: +49 (9131) 7701-159 
Fax: +49 (9131) 7701-333 
e-mail: wehrmann@3SOFT.de 
http://www.3soft.de/ 

 


