
Enhancing the efficiency of Controller Area Networks

G. Cena (†) A. Valenzano (‡)

Fieldbus networks should be able to support several kinds of data exchanges,
characterised by very different requirements. The most popular solutions available
today on the market are designed bearing in mind some sets of specific needs and
usually are not always satisfactory for every kind of communications which can be
found in an industrial environment.
In this paper a modification of the basic Controller Area Network (CAN) medium access
technique is described which increases significantly the communication efficiency for
the periodic exchanges of process data and for the messages devoted to high level
functions, without affecting the very good responsiveness and flexibility of the
conventional CAN protocol.

1 Introduction
Fieldbus networks should support several
kinds of traffic, as a consequence of today’s
more and more sophisticated control
applications. In an automated factory
environment, in particular, there are
basically two kinds of communication
needs: process data, which directly affect
the controlled system and messages,
devoted to high level functions and
parameterisation. Process data are small-
sized (8 to 32 bit-long words are commonly
adopted) and characterised by real-time
requirements, while messages can be
arbitrarily long and the timings involved in
their transmission usually are not a critical
issue. Process data exchanges can be
further classified as predictable and
unpredictable. Predictable data exchanges
(also known as cyclic, periodic or synchro-
nous) take place at well defined times,
which are known a priori by the control
application, while it is not possible to know
in advance the exchange times for
unpredictable data (also known as sporadic,
asynchronous, acyclic or aperiodic).
On the one hand, predictable data are
usually involved in those systems in which a
controller device (PLC, CNC, etc.) inquiries
the different I/O devices for the measured
input data and status information and sends
them back the related commands and set-
points according to a fixed schedule. In this
case, it is very important that cyclic data be
exchanged at a very precise rate and that
the jitters be kept low, in order for the
physical system to be accurately controlled.
On the other hand, unpredictable data are
important in event-driven systems, where

sensor devices have to send the measured
values to the intended destination(s) as
soon as they are sampled from the physical
system. Moreover, sporadic transmissions
are useful for implementing urgent
interactions such as, for example, alarm
notifications or trigger signals. In this case,
the communication system should be able
to order the concurrent transmission
requests according to some precedence
criteria, so as to grant a suitable schedule
for the related exchanges.
High level functions usually have not
particular timing constraints and the related
messages can be sent at a lower priority
than the real-time data. However, they may
require the transmission of a large amount
of information. Hence, it is required that the
available bandwidth of the communication
system be shared out efficiently and fairly
among the different nodes.
Each fieldbus network has basically to face
two main physical limitations: first, the
available bandwidth is a limited resource
and, second, at any time only one node can
be enabled to transmit a frame on the

† Dipartimento di Automatica e Informatica
‡ Centro di Studi per l’Elaborazione

Numerale dei Segnali
Politecnico di Torino
Corso Duca degli Abruzzi, 24
10129 Torino - Italy
Phone: +39 011 564 7078 / 7061
Fax: +39 011 564 7099
E-mail: {cena,valenzano}@polito.it
Homepage: http://www.polito.it/~cena

 http://www.polito.it/~valenzano

shared communication medium. Bearing in
mind these constraints, an ideal communi-
cation system for industrial environments
should behave as follows:
• the transmission of cyclic process data

(which requires a percentage of the
system bandwidth known in advance)
have to be carried out with the highest
precedence at the required rate, and the
frequency jitters must be kept as low as
possible;

• the part of network bandwidth which is
not assigned to cyclic exchanges is
used for non-critical real-time sporadic
process data; as long as an overload
condition does not occur on the
network, bounded transmission delays
must be ensured: to this extent, priority
tags can be assigned to the different
data in order to set the correct
precedence among concurrent
exchanges;

• the amount of network bandwidth not
used for real-time data exchanges (both
cyclic and sporadic) is shared out fairly
and efficiently among the different
nodes needing to transmit messages for
supporting high level functions, so as to
maximise the throughput for each node;
in this case temporary network
overloads are tolerated and must be
managed correctly by the network
without affecting the real-time
exchanges;

• timings of very urgent sporadic data
(critical alarms, whose occurrences are
unpredictable) must be strictly
respected; to this extent, their
transmissions can pre-empt any non-
critical transmission (either process data
or messages) which is currently taking
place on the network.

In the following, a new access technique
and new transmission services are
proposed for the Controller Area Network
protocol whose behaviour is close to the
ideal solution mentioned above. The paper
is structured as follows: section 2 analyses
the properties of several existing medium
access control (MAC) mechanisms, while
section 3 introduces the relevant
characteristics of the new protocol. Section
4, finally, contains considerations on how
the new technique can be applied.

2 Medium access techniques
characteristics

When the timings of all the data exchanges
are known in advance, such as in the case
of systems based only on cyclic exchanges,
a time division multiple access (TDMA)
technique is surely the most efficient
solution. TDMA combines all the data
produced or consumed by different nodes in
a single (summation) frame and requires
that the protocol control information be
added only once per frame in order to
achieve bit and frame synchronisation and
appropriate error controls.
TDMA ensures the highest efficiency
among all the different MAC techniques. In
Interbus [1] (which is based on a MAC
technique whose behaviour is similar to
TDMA), for example, the efficiency for a
sample controlled system can be as high as
0.6 (i.e. 60%). On the contrary, TDMA is
very unsuited for sporadic data exchanges
and high level communications, in that it
requires the system bandwidth to be
allocated in advance to the different nodes
thus leading to poor flexibility. In this case,
the bandwidth which is not used by a node
cannot be reallocated to other stations, so
that it is effectively wasted.
When sporadic process data need to be
exchanged, a carrier sense multiple access
(CSMA) technique with deterministic
collision resolution, such as the one
adopted in the controller area network
(CAN) protocol [2][3], appears to be one of
the most suited solutions. In this case,
unlike pure CSMA, each different piece of
information is assigned a priority tag
(identifier). When a node needs to send a
message, it starts the transmission as soon
as the medium is free and, if a collision
takes place, the contention is solved by
means of an arbitration phase based on the
value of the identifiers. The access
technique of CAN, together with its limited
payload size (up to 8 data bytes per frame
are allowed), ensures very short response
times and enables a scheduling policy
which is truly distributed and dynamic.
Exchanging small pieces of information in a
message-based network like CAN,
however, leads to very poor efficiency. In
the case of remotely requested 8 bit cyclic
process data, the efficiency drops down to
about 0.08, which means that the neat
bandwidth effectively available is less than

one tenth of the network bit rate. In the
same way, the small payload of CAN
frames leads to a reduced efficiency for
large messages, because of the relevant
effect of the fragmentation [4].
Finally, when message transmissions are
considered, a token-based access
technique such as that adopted in Profibus
[5] (where each single frame can include up
to 246 user data bytes) seems to offer more
satisfactory performances with respect to
Interbus and CAN, at least from the point of
view of the bandwidth share-out (in terms of
both flexibility and efficiency). In this case,
however, a reduced responsiveness and
increased jitters are obtained for real-time
process data.
As shown in Tab. 1, each kind of medium
access technique provides optimal
performances for a particular type of data
exchanges, while it is usually less suited to
other kinds of communications required in
the factory automation systems. The basic
idea of this paper is to find a satisfactory
trade-off between the CSMA and TDMA
access techniques for getting the most out
of a fieldbus network. In this paper we
propose a modification to the CAN protocol
[2] [3] (called CAN+) which introduces
TDMA-like data exchanges and also
improves the transmission efficiency of low
priority messages without reducing the
responsiveness and the flexibility of
conventional CAN. As will be shown, the
resulting protocol combines the best
features of a number of fieldbus protocols
and ensures a very high efficiency and
responsiveness in all the operating
conditions.

3 CAN+ basics
The original CAN protocol exhibits very
good performance for exchanging sporadic
real-time data, while no special service is
provided for cyclic data exchanges or for
the transmission of large messages. This
section describes the additional services of
CAN+ which enhance the performance of
CAN for the data exchanges mentioned
above.
CAN+ introduces two new services, which
are used respectively to collect the process
input data and to distribute the process
output data to a number of slave devices at
the same time, thus providing a mechanism
similar to the summation frame of Interbus
[1]. Since the summation frame is usually
larger than the conventional frames, the
overall responsiveness is somehow
reduced. To avoid excessive transmission
delays, a pre-emption mechanism has been
provided for extremely urgent notifications.
Moreover, a service explicitly conceived for
high efficiency message transmissions has
also been introduced.
The new services make use of a MAC
technique and frame formats very similar to
conventional CAN, hence a certain degree
of backward compatibility is ensured, at
least from the applications’ point of view.
3.1 Cyclic exchanges
Since the timings of cyclic data exchanges
are known in advance, a technique similar
to TDMA is used in CAN+ which relies on a
master-slave interaction model to increase
the communication efficiency. In particular,
a solution similar to the summation frame of
Interbus has been adopted where all the

Medium Access
Technique

Kind of traffic
Predictable Unpredictable Messages

TDMA
(Interbus-S)

High efficiency (combined
message, one master / many
slaves)

Medium responsiveness
(can only be implemented
with periodic exchanges)

Medium efficiency / medium
flexibility (high fragmentation,
static allocation)

CSMA
(CAN)

Medium efficiency (message-
based, each node is a
master)

High responsiveness (truly
dynamic and fully
distributed)

Medium efficiency / high
flexibility (high fragmentation,
dynamic allocation)

Token Passing
(PROFIBUS)

Medium efficiency (message-
based, more than one master
/ many slaves)

Medium responsiveness
(can only be initiated by
masters at token reception)

High efficiency / high flexibility
(low fragmentation, dynamic
allocation)

CAN+ High efficiency (combined
message, many masters /
many slaves)

High responsiveness (truly
dynamic and fully
distributed, pre-emptive)

High efficiency / high flexibility
(low fragmentation, fair and
dynamic allocation)

Tab. 1: Characteristics and performances of some popular fieldbus networks.

output process data are transmitted in a
single (large) OUT frame, while a special IN
frame is used to collect all the input process
data. The resulting efficiency increases
because in general a smaller number of
control bits are used by the protocol.
Unlike the single summation frame of
Interbus, two kind of data-link services are
provided, that is L_IN and L_OUT, which
are used to read/write the input/output data
from/to the slave devices, respectively. This
is mainly due to the simple bus structure of
CAN networks, whose nodes have not
separate incoming and outgoing links as in
Interbus. In the case of cyclic exchanges,
the initiator of the service (either L_OUT or
L_IN) is the cycle master, while the other
devices involved are said cycle slaves.
Unlike Interbus, CAN+ is able to support
more than one master on the same
network, and each master can support
different kinds of cycles (each one
characterised by a unique cycle identifier),
to allow each group of slave devices to be
sampled at a different rate (as occurs, for
example, in the FIP [6] protocol). This
provides a further improvement of the
overall efficiency. At a first glance, the use
of long frames could reduce the network
responsiveness unacceptably. In practice,
cyclic process data usually have a higher
precedence than the other kinds of
information exchanged on the network, and
the strict respect of their timings is always
considered a fundamental requirement. If
urgent sporadic data need to be sent with
very tight timing requirements a pre-
emption mechanism is provided in CAN+ to
stop the IN and OUT frame transmissions,
as described in detail in section 3.3.
Fig. 1 shows the format of the OUT frame.

In this case, the cycle master puts the
output process data for the different devices
(one output slot for each slave device)
directly after the frame length field (which is
6 bits long). Optionally (as specified in the
configuration phase) a 4-bits ACK field can
be included in each output slot immediately
after the data field. As in CAN, the OS ACK
field is made up of an ACK slot, which is
overwritten with a dominant value by the
intended receiver of the process datum to
confirm the correct reception, followed by a
recessive ACK delimiter bit. The ACK field
begins with a synchronisation sequence,
consisting of a dominant bit followed by a
recessive bit, which provides a
synchronisation edge in the bit stream and
is used to transfer temporarily the right to
access the shared communication medium
to the slave device. The last output slot is
followed by a dummy field which pads the
overall data field to the nearest byte
boundary.
Fig. 2 depicts the format of the IN frame. In
this case, each piece of input data is
preceded by a pair of bits which
respectively specify whether the responding
device is operating (slot present bit) and if
the returned data have been refreshed
since the last read operation (slot valid bit,
used for checking the temporal coherency
[6]). If a slave device does not respond (as
indicated by a recessive value in the
“present” bit), the cycle master must fill the
gap on the bus with a dummy pattern so
that the overall IN frame does not violate
the bit stuffing rules.
Each input slot is followed by a
synchronisation sequence for transferring
the ownership of the bus to the next slave.
When the last input slot has been

OS ACK delimiter

Output Data field (OD)

OS ACK slot

optional OS ACK field

S
O
F

OS1 PAD CRC Frame
Length ACK

0 to N output slots

EOF Cycle
ID OS2 OS3

Sync.
Seq.

Output Slot
(OS)

Fig. 1: Format of the OUT frame.

exchanged, the cycle master sends a pad
field, followed by the CRC field which is
checked by all the nodes in the network.
Each slave device computes the CRC and
invalidates the whole frame in the case a
mismatch is detected.
Input data are updated on the slave side by
means of the L_UPDATE service, which
writes the new value for the device into a
local buffer. The data read from the different
devices are then transferred effectively to
the cycle master by means of the next IN
frame circulated on the network.
Fig. 3 (which is related to the L_IN service)
shows that the communication efficiency
depends directly on the size of the
combined data field, that is on the number
of slave devices and the size of the process
data. Since we do not wish to affect the
responsiveness of the system heavily, the
size of the data field in the IN and the OUT
frames is limited to 63 bytes. As shown in
Fig. 3, any further increase of this size does
not lead to any real improvement of the
network efficiency but the transmission
delays are worsened accordingly. When
cyclic process data exceed the 63 bytes
limit, they can be split in several (different)
cycles.
To make a comparison, in a conventional
CAN network the efficiency for a cyclic
exchange of 8 bit-sized asynchronous
process data is only about 0.14, irrespective
of the number of slave devices in the
system, and that value drops down to 0.08
when slave devices are polled by the
master by means of RTR frames. In a
similar system where 10 different slave
devices are grouped together by means of
the L_IN service, the efficiency of CAN+
rises up to 0.46.

Cyclic services are not symmetric and
hence two different roles are involved, that
is master devices (controllers) and slave
devices (sensors and actuators). The exact
position of a particular slot in the IN and
OUT frames is known only to the
associated slave device and to the cycle
master. This means that the combined
frame is seen by the other nodes in the
network as any conventional frame, since
the mechanism ensures that the bit stuffing
rules are always respected, even when
some slave is in a non-operational state.
A suited configuration phase should be
provided (before the normal operations are
started) where the cycle master notifies
each device the position of its input and
output data slots in the combined frame.
Such a configuration phase can be either
static or dynamic; in the latter case, the
conventional services of CAN can be used
for the configuration operations.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 10 20 30 40
Number of slave devices

E
ffi

ci
en

cy

8 bits
16 bits
32 bits

Fig. 3: Transmission efficiency of the cyclic
exchanges vs. number of slave devices and

size of data.

Slot valid bit

Input Data field (ID)

S
O
F

IS1 PAD CRC Frame
Length ACK

0 to N input slots

EOF Cycle
ID IS2 IS3

Sync.
Seq.

Sync.
Seq.

Slot present bit

Input slot
(IS)

Fig. 2: Format of the IN frame.

3.2 Block transfer
To ensure a satisfactory responsiveness for
high priority frames, CAN frames have a
data field which is very small with respect to
other popular fieldbus protocols. This
implies that long messages have to be split
into a sequence of smaller chunks (which
are referred to as fragments) according to
some fragmentation protocol, which is
usually placed in the application layer [7, 8].
Fragmentation protocols perform all the
operations needed to split the message,
send each fragment into a separate frame
and reassemble all the fragments at the
destination node to rebuild the original
message.
Whichever the kind of the fragmentation
protocol used, the resulting efficiency for
exchanging messages is quite low. In the
case of CAL/CANopen, for example, each
fragment causes a pair of frames to be
exchanged. This leads to an efficiency
which is theoretically not better than 0.25.
The major drawback in performing
fragmentation at the application level,
however, is that it has to be carried out in
software and hence it consumes CPU time.
Instead, a hardware implementation at the
data-link level (communication controller),
can lead to noticeably higher performances.
An improvement of the transmission
efficiency for the low priority messages
(without penalties for the network
responsiveness) can not be obtained by
simply increasing the payload of the frame.
A possible solution is to split the message
into a sequence of 8 byte fragments, which
are then sent sequentially by the transmit-
ting node. Each fragment is followed by a
stop field, which consists of a stop bit
preceded by a synchronisation sequence
and followed by a stop delimiter. By
overwriting the stop bit with a dominant
value, each node in the network which has
to transmit a higher priority frame can
temporarily (and gracefully) stop the current
message transmission, without discarding
those fragments that have already been
sent.
A special BLOCK frame has been
introduced in CAN+ to support the
transmission technique described above
whose data field is organised as a
sequence of adjacent message fragments,
as shown in Fig. 4. When the transmission
of the block frame is stopped, the node

which is currently transmitting the message
adds (immediately after the stop field) the
CRC, ACK and EOF fields to the bits
already transmitted, as in the conventional
CAN frames. Then, the transmission of the
message will be resumed from the point it
was abandoned (whole fragment boundary)
when the bus becomes free again. In this
way, a long message is sent as a sequence
of block frames, each one consisting of a
number of fragments. If the message
transmission is never interrupted, only one
block frame is effectively transmitted.
If an error is detected, the error
management mechanism of CAN stops the
current frame transmission and ensures
that both the transmitter and all the
receivers are notified of the error. In this
case all the fragments in the current block
frame have to be re-transmitted.
In CAN+ two kinds of fragment are used,
that is intermediate (IF) and final fragments
(FF). All the intermediate fragments contain
exactly 8 data bytes, so that it is
unnecessary to specify their length
explicitly. The final fragment, instead, can
contain 0 to 7 user data bytes and hence
includes a 3-bit fragment length (FL) field,
while the stop field is not present. In block
frames, the conventional length field of CAN
is replaced by two 4 bit-wide fields: the
fragments number (FN) field contains the
total number of intermediate fragments in
the whole message, while the starting
fragment (SF) field specifies the sequence
number of the first fragment in the block
and is used to resume an interrupted
transmission. A value of SF equal to 0
means the transmission of a new message,
while any other value reminds that a
message transmission previously inter-
rupted is being resumed. In the latter case,
the SF value also shows the number of
fragments of that message which have
already been exchanged successfully in the
previous transmission(s).
A block frame can contain up to 15
intermediate frames and exactly one final
frame. In this way the L_BLOCK service
can be used to transmit messages whose
total length is up to 127 bytes. The
L_BLOCK service does not worsen too
much the responsiveness of a CAN
network: the sending node, in fact, can be
stopped after each (whole) fragment.

As shown in Fig. 5, the block transmission
of a message consisting of 127 user bytes
results in an efficiency which is about 0.90
in the best case (that is, when the block
frame is never interrupted). In the worst
case, that is when the transmission is
repeatedly interrupted (and thus each block
frame carries only one fragment) the
efficiency decreases to 0.55.
In addition, to ensure a fair bandwidth share
out among the different nodes, a technique
similar to the priority promotion mechanism
discussed in [10] can be adopted, which
dynamically modifies the priority of the
different nodes and enforces an overall
behaviour which is similar to the token-
based networks.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100

Message size (Bytes)

E
ffi

ci
en

cy

best case

worst case

Fig. 5: Transmission efficiency of messages

vs. message size.

3.3 High priority notifications
In fieldbus networks, a phenomenon which
is known as priority inversion [9] could take
place when the transmission of an urgent
frame is delayed because of the current

transmission of a lower priority message.
This is due to the fact that the MAC
mechanism is not pre-emptive and hence
when a frame transmission is started it is
always allowed to be taken to completion. It
should be noted that the priority inversion
problem is not relevant in the CAN networks
because of the very limited frame size.
To provide an extremely high responsive-
ness for very urgent interactions, the CAN+
protocol can be modified to allow the
communication media to be pre-empted. In
particular, a new L_ERROR service is
provided to abort the transmission of the
current frame on the network. In practice,
this service initiates the transmission of an
ERROR frame which corrupts (and hence
stops abruptly) the current transmission.
The L_ERROR service has two parameters:
maximum priority (MP) and maximum
remaining bytes (MRB). The error frame is
effectively transmitted only if a frame is
currently being exchanged on the network,
the priority of that frame is (numerically)
strictly higher than MP and the number of
remaining data bytes to be sent is strictly
greater than MRB (these information are
known by each node in the network), so as
to ensure bounded transmission delays
without reducing the efficiency too much. If
MRB is set to 0, for example, the frame can
be stopped provided that the data field has
not been completely exchanged yet. For
efficiency reasons, the current transmission
cannot be stopped if the CRC field is
already being sent.
In CAN+, the L_ERROR service is mainly
conceived to interrupt the cyclic process
data exchanges when small-sized very
urgent notifications (critical alarms) have to
be sent. Whenever possible (as specified
by the MRB parameter), message transmis-

S
O
F

8B
fragment data

Intermediate
Fragment

(IF)

0 .. 7B
fragment data

Frag. Len
(FL)

Final Fragment
(FF)

Stop bit
Reserved

IF1 IF2 IF0 FF CRC Starting
Frag. ACK Frag.

Num.

0 to FN fragments

EOF Message
ID

Stop delimiter Sync.
Seq.

Stop field

Fig. 4: Format of the BLOCK frame.

sions should be preferably interrupted
(gracefully) by means of the block
mechanism (that is, using the stop bit).
A node needing to transmit an urgent frame
as soon as possible has first to invoke the
L_ERROR service in order to stop any
possible current transmission of a low
priority frame and, immediately after, to
transmit the higher priority frame.

4 Conclusions
In this paper a new access technique has
been introduced, which is mainly based on
CAN but also inherits a number of good
features from other kinds of fieldbus
networks such as Interbus. The resulting
CAN+ protocol has the same optimum
responsiveness of the original CAN
protocol, but ensures a higher efficiency for
periodic data exchanges, which is compara-
ble to Interbus. Moreover, a particular
message transfer technique has been
conceived which ensures a transmission
efficiency similar to Profibus for the long
messages and enables a completely
dynamic management of the available
bandwidth. To give some figures, the CAN+
protocol has a throughput that, in the usual
operating conditions found in a factory
environment, outperforms CAN by a factor
which is about 5 for cyclic data exchanges
and 3 for message transmissions.
In the near future, it is very likely that the
cost of developing and producing network
controller chips will decrease more rapidly
than the cost of the physical communication
supports, at least from the point of view of
the distributed factory applications. Hence,
networks which ensure an optimal use of
the available bandwidth (even at the cost of
a slightly more complex protocol) will
probably be the preferred solutions. The
substantial increase of the network
performance of CAN+ enables to use the
communication support as efficiently as
possible and hence lower bit rates can be
adopted on the network.
CAN+ constitutes a proper superset of the
CAN protocol and it is backward compatible
with all the existing applications (not
devices) developed for that protocol suite.
Moreover, it should be noted that with a
minimum effort (an intermediate
compatibility software layer) most of the
applications conceived for other fieldbus
networks (such as Profibus, Interbus or

WorldFIP) can also be adapted to rely on a
CAN+ communication support.

References
[1] German Institute of Normalisation,

“Sensor/Actuator Network for
Industrial Control Systems”, Technical
Report 46, DIN E 19 258, 1993.

[2] International Standard Organization,
“Road vehicles - Interchange of digital
information - Controller area network
for high-speed communication”, ISO
11898, November 1993.

[3] International Standard Organization,
“Road vehicles - Interchange of digital
information - Controller area network
for high-speed communication” Draft
Amendment, ISO 11898:1993/DAM 1,
February 1994.

[4] G. Cena, C. Demartini and A.
Valenzano, “On the Performances of
Two Popular Fieldbuses”, in Proc.
WFCS’97 IEEE Workshop on Factory
Communication Systems, Barcelona,
Spain, October 1997, pp. 177-186.

[5] German Institute of Normalization,
“PROFIBUS Standard Part 1, 2,3 and
4”, DIN 19 145, April 1991.

[6] French Association for
Standardization, “FIP Bus for
Exchange of Information between
Transmitters, Actuators and
Programmable Controllers”, NF C46
601-607, March 1990.

[7] CAN in AUTOMATION International
Users and Manufacturers Group e.V.
“CAN Application Layer (CAL)”,
CiA/DS201- CiA/DS205, CiA/DS207.

[8] CAN in AUTOMATION International
Users and Manufacturers Group e.V.
“CANopen Communication Profile for
Industrial Systems Based on CAL”,
CiA Draft Standard 301, Revision 3.0,
October 1996.

[9] K. Tindell, A. Burns and A. Wellings,
“Analysis of Hard Real-time
Communications”, technical report
YCS 222, Real-Time Systems
Research Group, Department of
Computer Science, University of York,
England.

[10] G. Cena and A. Valenzano, “An
Improved CAN Fieldbus for Industrial
Applications”, in IEEE Transactions
on Industrial Electronics, Vol. 44, No.
4, August 1997, pp. 553-564.

