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The Controller Area Network (CAN) exhibits a highly reliable and predictable behavior, as 
it is required by embedded real-time control applications. Although CAN provides a con-
sistent view of every transmitted frame among all peer CAN controllers in most fault sce-
narios, the frame-level consistency may be lost due to an error during the last two bits of a 
frame followed by an immediate sender crash, as indicated by Rufino et al [17]. 
Previous Approaches to solve this problem require modifications to the software-level 
communication protocol, which result in additional communication load. This would affect 
the performance parameters of the real-time application system. 
In this paper, a hardware component (SHARE: Shadow Retransmitter) is suggested, which 
undertakes the retransmission of frames in such cases transparently, i.e. the actions of a 
SHARE are not visible to other CAN nodes, and do not influence the performance parame-
ters of the existing application system. 
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1 Introduction 

Real-time control systems must provide 
timely and reliable computing service to the 
real-world environment. Distributed systems 
which inherently provide immunity against 
single failures, are an adequate architec-
ture to achieve high availability of the com-
puting system. Moreover, the availability of 
inexpensive, powerful micro controllers 
promotes distributed solutions. By replicat-
ing the processes on different sites the sys-
tem is able to provide the service despite 
the failure of some processes or sites. The 
need for consistent replication of the pro-
cess state information results in the de-
mand for a communication service which 
provides reliable and consistent delivery of 
information to groups of processes. Such a 
communication service is termed atomic 
broadcast [5]. A real-time atomic broadcast 
protocol must terminate within a well-known 
worst-case message delivery delay. Some 
examples of real-time broadcast protocols 
are the Δ-protocol [5],[6] and the time-
triggered protocol [9]. 
In the area of industrial automation and 
automotive applications, field busses are 
used to disseminate time critical messages. 
Field busses exhibit bounded message 

length, high reliability of data transfer, and 
efficiency of the protocol. Among field bus-
ses, the CAN bus [14] provides advanced 
features, which make it suitable for a wide 
range of real-time applications. Some of 
these features are high robustness against 
electro-magnetical interference, priority-
based multiparty bus access control, varia-
ble but bounded message data length (≤ 8 
bytes), efficient implementation of acknowl-
edgement and error indication, and auto-
matic fail-silence enforcement. 
There are application level protocols avail-
able for CAN which raise the network inter-
face and shield the programmer from low 
level details. The most popular ones are 
CAL [4], CAN Kingdom [8], and Device Net 
[7]. These protocols rely on the consistent 
delivery of broadcast messages to all re-
ceivers by the CAN protocol. However, 
consistent delivery of broadcast messages 
is not provided by the CAN protocol, when-
ever receivers do not agree on the correct-
ness of the message, and the sender 
crashes before a successful retransmission. 
This lack of consistency has been pointed 
out and analyzed by Rufino et al [17]. Alt-
hough this situation is very rare, Rufino et 
al have shown that under assumption of a 
bit error rate of 10–5 and a node mean-time-



  

   

to-fail of 104 hours, the mean time to such 
an inconsistent message omission is 3.98 x 
10–8, which is low enough to justify its con-
sideration in safety critical applications, 
where the system's mean-time-between-
failures must be higher than 109 hours. 
They also have introduced a reliable broad-
cast protocol based on (sender-initiated) 
commit frames1 and message retransmis-
sion by receivers upon timeout. This solu-
tion results in transmission of at least one 
additional frame for every broadcast mes-
sage, and can lead to bandwidth shortage. 
It is not applicable to many existing sys-
tems, because of its impact on the bus 
schedulability. Considering the CAN band-
width as a restricted resource, an optimal 
solution would detect this failure situation 
and retransmit the message only if neces-
sary. 
This paper is organized as following. Sec-
tion 2 surveys the mechanisms of the CAN 
protocol to achieve consistent broadcast. It 
is shown that a consistent delivery of 
broadcast messages in presence of faults 
is not guaranteed by the CAN protocol it-
self. Section 3 reviews some approaches to 
achieve fault-tolerant broadcasts in CAN. 
Section 4 introduces a new approach to 
provide consistent delivery of broadcasts in 
CAN transparently by Shadow Retransmit-
ters. A summary concludes the paper. 
 
                                                             
1 It is suggested in [17] to use RTR frames by 

the sender, to signalize the successful trans-
mission. Since RTR frames are not received 
by hosts, the right choice would be an empty 
data frame. 

2 Broadcast Consistency in the CAN 
Protocol 

2.1 Mechanisms in the physical layer 

The global consistency in the CAN bus is 
based on the fact that all nodes (including 
the sender) scan the value of every bit – at 
a 'safe' sample point – while it is transmit-
ted. Hence all correct nodes have a con-
sistent view of every bit. 
Since the physical connection of the CAN 
bus (Fig. 1-A) is extremely robust against 
electro-magnetical noise, the signal level 
sensed at the sample point, reflects reliably 
the currently valid bit-value to be observed 
by all nodes. 
The nodes of the CAN-Bus are connected 
logically via a wired-AND or, alternatively, a 
wired-OR function. In a wired-AND connec-
tion – as implemented in popular CAN con-
trollers – a ‘1’ is a recessive bit and a ’0’ is 
a dominant bit (Fig. 1-B). Whenever differ-
ent bit-values are put on the bus by differ-
ent nodes simultaneously, the logical AND 
function of them is observed by all nodes. 
In the rest of the paper, the wired-AND 
connection is assumed. 
 
2.2 Mechanisms in the data link layer 

Error and Overload frames. 

The Error Frame and the Overload Frame 
have identical structures. They both consist 
of six dominant bits without bit stuffing. 
Thus, they can be only distinguished by the 
time when they are transmitted. An error 
frame may be started only within a data or 
RTR frame, in order to interrupt the current 
transmission and signalize an error. An 
overload frame, however, may be started 
only immediately after the successful 
transmission of a data or RTR frame in or-
der to indicate that a node is temporarily 
not able to accept further data frames due 
to an internal overload condition.  
 
Error signaling. 

Whenever a CAN node detects an error, it 
switches to the error signaling mode, and 
transmits an error frame. This violates ei-
ther the bit stuffing rule or the frame format, 
and ensures that all other CAN nodes de-
tect an error, too. After sending an error 
frame, a CAN node waits for all other nodes 
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Fig. 1: CAN bus connection (wired-AND) 



  

   

to finish their error frames (i.e. until it de-
tects a recessive bit). A new data or RTR 
frame may start 11 bit-times after the bus 
level becomes recessive. 
 
2.3 Inconsistency in CAN 

Although CAN applies several techniques 
at the physical and data link layer to ensure 
reliable and consistent data transfer, incon-
sistencies among different CAN nodes are 
still possible. 
The lowest level of inconsistency that is 
observable in a CAN bus, is the incon-
sistent view of a bit. Depending on when 
and why an inconsistency at the bit level 
happens, it is either repaired by error detec-
tion and error signaling mechanisms, or it 
grows to an inconsistency at the frame lev-
el, i.e. an inconsistent view of the frame 
status among different CAN nodes. 
Table 1 shows the possible causes and 
effects of bit level errors in CAN. A detailed 
analysis is given in [10]. 
 
2.4 Anonymous error signaling  constituting 

a weak-point 

The data collected in Table 1 show clearly, 
that a frame-level inconsistency is caused 
whenever an error is detected at the end of 
a frame, and the CAN nodes are not able to 
achieve consensus on whether to discard 
the frame, or to accept it. 

The reason of this lack of consensus is that 
it is not possible to indicate an error of the 
last bit of a frame – the error indication 
would seem to be an overload frame. 
Hence receivers are forced to ignore an 
error of the last bit of a frame. 
However, if some but not all of the receiv-
ers detect an error in the last but one bit of 
a frame, they will discard the frame, and 
start an error signal immediately after the 
error detection, i.e. at the last bit of the 
frame. Every other receiver will then detect 
an error in the last bit. Those receivers will 
accept the frame, and inconsistency at the 
frame level occurs. In order to recover from 
this inconsistency, the CAN protocol speci-
fies that a sender retransmits the frame 
upon the detection of an error in the last bit 
of a frame [14]. 
If the retransmission of a faulty frame could 
be guaranteed, the frame-level inconsisten-
cy would be repaired by detecting and dis-
carding duplicate frames, and achieving 
consensus on the delivery order [12]. But if 
the sender crashes before a successful 
retransmission, then the frame is not re-
transmitted, resulting in inconsistent deliv-
ery. 
In the following theorem it is shown that a 
frame-level consistency cannot be guaran-
teed by the CAN protocol itself. 

Theorem 1. By using the error handling 
mechanisms of the CAN protocol, CAN 

Table 1. Effects of errors in CAN depending on their detection time and place 
(EOF is the last bit of the frame, and EOF–1 is the last but one bit) 

 
Error cause Detection time and 

place 
Effects of the error Retransmission  

time 
Frame level 
inconsistency 

Any cause Before EOF – 1 Error frame, all receivers drop the frame Any time No 
Any cause EOF – 1 by all nodes Error frame, all receivers drop the frame Any time No 
Faulty sender EOF – 1 by sender Error frame, all receivers accept the data Any time < ∞ No (duplicate) 
Faulty sender EOF – 1 by sender Error frame, all receivers accept the data Never (crash) No 
Faulty sender EOF – 1 by all receivers Error frame, all receivers drop the frame Any time No 
Faulty channel, 
faulty receiver 

EOF – 1 by some but 
not all receivers 

Error frame, some receivers drop the 
frame, some receivers accept it 

Immediately 
after error frame 

No (duplicate 
at some rec.) 

Faulty channel, 
faulty receiver 

EOF – 1 by some but 
not all receivers 

Error frame, some receivers drop the 
frame, some receivers accept it 

Interfered by 
other frames 

Ambiguous 
ordering 

Faulty channel, 
faulty receiver 

EOF – 1 by some but 
not all receivers 

Error frame, some receivers drop the 
frame, some receivers accept it 

Never (due to 
sender crash) 

Inconsistent 
delivery 

Any cause EOF; also by sender Receivers accept data, sender retrans-
mits 

Any time < ∞ No (duplicate) 

Any cause EOF; also by sender Receivers accept data, sender retrans-
mits 

Never (crash) No 

Any cause EOF; not by sender No effect, no retransmission --- No 



  

   

nodes cannot always achieve consensus 
on accepting or rejecting a frame. 

Proof. The proof is based on the following 
facts: 
i. For each frame, there must be a time 

where the frame is accepted, if it is not 
corrupted until then, and it is discarded, 
if an error was detected earlier. Let’s call 
it the validation point. In CAN, the valida-
tion point is the beginning of the last bit 
of the frame. 

ii. When a node decides to send an error 
frame, other nodes observe the error 
frame not before the following bit-time. 

Due to these facts, if a subset of nodes 
detect an error at the last bit before the val-
idation point, they must discard the frame. 
Although they immediately initiate an error 
frame, this error frame will be observed by 
other nodes after the validation point, thus 
they will accept the frame. Of course, those 
nodes will observe an error frame immedi-
ately after the validation point, but they may 
not discard the frame in this case. This is 
because those nodes cannot be sure that 
they are observing an error frame and not, 
for instance, a burst of dominant bits 
caused by physical faults. 
If a node discards a frame due to the ob-
servation of an ‘error frame’ immediately 
after the validation point, and this ‘error 
frame’ is actually a burst error, it is possible 
that some other nodes in the system will 
observe this burst one bit later. Hence, 
those nodes would accept the frame and 
the result would be again a frame-level in-
consistency.   □ 
The inconsistency noticed above, is a fun-
damental problem whenever diffusing sim-
ple signals (e.g. 6 dominant bits) without 
authentication, to broadcast information 
(e.g. detection of an error). Since such sig-
nals are not authentic and can be produced 
by a faulty component (or a noisy channel), 
they cannot reliably lead to a consensus 
among all observers. 
 
3 Consistent Broadcast Delivery by High 

Level Protocols 

Consistent delivery of broadcast messages 
means that every message is either deliv-
ered correctly to all operational receivers at 
the protocol termination time, or to none of 

them at all. In order to decide on the deliv-
ery of a message at the protocol termina-
tion time, either all operational receivers 
must have received the message, or global 
agreement must be achieved, that at least 
one receiver has not received it. Reliable 
message transmission to all operational 
receivers can be ensured under anticipated 
fault conditions by appropriate retransmis-
sion mechanisms and resource adequacy 
[5] [6] [9] [13] [17]. A global agreement on 
the fact that at least one receiver failed to 
receive a message, however, needs at 
least a phase of individual acknowledg-
ments and a phase of commitment, result-
ing in a two-phased commit protocol [1] [2] 
[3] [15] [20]. 
In the following, some approaches are de-
scribed, which aim at achieving consistent 
broadcast delivery in the CAN bus. 
 
3.1 The EDCAN protocol 

The EDCAN (CAN Eager-Diffusion) proto-
col [17] is based on a multiple transmission 
policy similar to [6]. It has been developed 
to cope with the frame-level inconsistency 
of CAN and immediate sender crash. Ac-
cording to the EDCAN protocol, every node 
attached to the CAN bus keeps track of the 
bus traffic, and attempts to retransmit every 
frame that it receives. The protocol recog-
nizes duplicates of the frames, and if a 
node observes a certain number of dupli-
cates of a frame (Rufino et al named this 
number the inconsistent omission degree), 
it does not retransmit the frame any more. 
The EDCAN protocol ensures the con-
sistent delivery at the cost of a considerable 
portion of the bus bandwidth. E.g. in the 
simplest scenario with an "inconsistent 
omission degree" of 1, every receiver of a 
frame attempts to retransmit the frame until 
it receives a duplicate of it. Thus every 
frame is retransmitted at least by one re-
ceiver. However, after receiving the dupli-
cate at a receiver, the protocol takes more 
than a few µ-seconds to decide on cancel-
ing the retransmission in the CAN control-
ler. Since a transmission request can be 
cancelled only within 3 bit-times from the 
beginning of the bus-idle period, at high bus 
rates the frames are often retransmitted 
twice, resulting in an additional communica-
tion overhead of 200%. 



  

   

 
3.2 The RELCAN protocol 

Rufino et al. have also proposed a more 
efficient protocol called RELCAN [17], 
which uses the EDCAN protocol only when 
the receivers assume that the original 
sender has crashed. According to this pro-
tocol the sender first transmits the data 
frame, and immediately thereafter it trans-
mits a short confirm frame without data. If a 
receiver receives the confirm frame within a 
given time period, it delivers the data to the 
application. Otherwise, it starts the eager 
diffusion of the data frame. Due to this "lazy 
diffusion" policy, the protocol needs less 
than 100% additional overhead in fault-free 
situations. 
A problem related to the above approach-
es, is that the frames are retransmitted by 
ordinary nodes running application soft-
ware. Thus a faulty application software on 
a node may manipulate the contents of re-
ceived messages, before they are retrans-
mitted by that node. This results in the Byz-
antine agreement problem. In order to ob-
tain consistent data at the receiver sites, 
several retransmissions by different nodes 
may be necessary [1], or the communica-
tion subsystem of the nodes must be im-
plemented as an independent hard-
ware/software module with a well-defined 
data interface to the host, e.g. a FIFO dual-
ported memory in each direction [16]. While 
the first solution consumes at least 80% of 
the restricted bus bandwidth, the second 
one demands for at least an additional mi-
croprocessor and a dual-ported RAM com-
ponent at each node, resulting in high addi-
tional hardware costs. 
 
4 Fault-tolerant Broadcast Using Shadow 

Retransmitters 

As we can see in Table 1, CAN ensures 
reliable frame transmission (sometimes with 
duplicates or ambiguous ordering) unless a 
sender crashes after an inconsistent trans-
mission of a frame, and before its success-
ful retransmission. In this case a permanent 
frame-level inconsistency is caused. 
The approach presented in this paper, 
solves the problem of the crashed sender 
by dedicated nodes, which act as ‘Shadow 
Retransmitters’ (SHARE’s). These nodes 

detect the situations where an inconsistent 
frame transmission is possible, and re-
transmit the frame simultaneously with the 
original sender. Since the sender and all 
SHARE’s retransmit identical frames simul-
taneously, these frames are transmitted as 
a single physical frame. Hence the network 
components will detect no conflicts, and the 
redundancy is not visible to them.  
A frame is retransmitted by a SHARE only 
in situations where a retransmission by the 
original sender may be required, too. Thus, 
in real-time systems adequate bus re-
sources must be provided for such re-
transmissions even when no SHARE’s are 
used. Unlike other fault-tolerant broadcast 
protocols, the SHARE approach causes no 
additional communication overhead in fault-
free situations. 
This results in a transparent reliability im-
provement in the sense that the SHARE 
mechanism can be applied in an arbitrary 
CAN bus to achieve consistent broadcast-
ing, without having to change the system 
components and scheduling. Existing CAN 
solutions may add an appropriate number 
of SHARE’s to the bus in order to ensure 
consistent frame delivery even in the case 
of an inconsistent frame transmission fol-
lowed by immediate sender crash.  
The detection of a possible frame-level in-
consistency is based on a simple fact: a 
frame-level inconsistency is possible if at 
least one non-faulty node starts an error 
frame in the last bit of a data frame (let's 
call it bit EOF). In this case, the sender is 
expected to retransmit the frame immedi-
ately. Thus SHARE’s should also immedi-
ately retransmit a frame, whenever they 
observe an error frame starting at bit EOF. 
To tolerate the crash of the SHARE com-
ponents, several SHARE’s can be added to 
the bus. 
 
4.1 Analysis of different error scenarios 

Since SHARE's retransmit CAN frames 
whenever they detect a sequence of 6 
dominant bits starting at bit EOF, the re-
transmission is performed only if a frame-
level inconsistency is likely. Following is a 
discussion on the possible scenarios of 
error detection, which shows that SHARE's 
perform the retransmission whenever a 
frame-level inconsistency is possible: 



  

   

1. No node detects an error before EOF 
but at least one node detects a dominant 
bit sequence starting at EOF: in this 
case, all receivers will accept the frame. 
If any SHARE detects this bit sequence, 
and the sequence is at least 6 bits long, 
then the SHARE will retransmit the 
frame. This sequence is very likely to be 
an error frame. In this case, the original 
sender will detect it and retransmit the 
frame unless it crashes. 
If the original sender does not detect the 
bit sequence at EOF, it won't retransmit 
it. In overload situations, it is possible 
that the retransmission by the SHARE is 
delayed until the original sender at-
tempts to send a new frame with the 
same identifier. This could cause multi-
ple collisions between the old and the 
new frame, and eventually the sender 
and SHARE could switch to bus-off 
state. In order to prevent this serious 
failure, SHARE's cancel the currently re-
transmitted frame upon transmission er-
ror detection. Thus only one single colli-
sion is possible between the retransmis-
sion of old data and the transmission of 
the new data. But this also means that 
SHARE's do not always perform the 
necessary retransmission. 
However, under the assumption of a bit 
error rate of 10–5, a node MTTF of 104 
hours, a message length of 100 bits, and 
permanent bus overload, the mean time 
to permanent frame-level inconsistency 
will be as high as 3.98 x 1011 hours, 
which is acceptable for safety-critical 
applications. 

2. No node detects an error before EOF–1 
but at least one node detects an error in 
EOF–1: in this case, those nodes will 
start an error frame at EOF, which is ob-
served by all non-faulty nodes including 
SHARE's. The first group will discard the 
frame, and the second group will accept 
it. To tolerate an immediate sender 
crash after this error, the frame must be 
retransmitted by SHARE's. In order to 
guarantee that SHARE's receive and re-
transmit the frame in this situation, the 
GAL component of the SHARE locks the 
bus input on the recessive level during 
EOF–1 (see the signals RxD1, locked-
RxD, and bus-in in Fig. 2). This means, 

that in this scenario all non-faulty 
SHARE's will retransmit the frame. 

3. At least one node detects an error be-
fore bit EOF–1: in this case, those nodes 
will start an error frame before EOF, 
which is observed by all non-faulty 
nodes. Thus, all non-faulty nodes will 
discard the frame, and the frame deliv-
ery status is consistent. If the error frame 
starts at EOF–1, and some SHARE's did 
not detect the error before EOF–1, then 
those SHARE's will accept and retrans-
mit the frame simultaneously with the 
sender. Otherwise, either the sender re-
transmits the frame, or it crashes, but in 
any case the frame status at all receiv-
ers is consistent. 

 
4.2 Transparency and effectiveness of the 

SHARE approach 

The main advantage of dedicated shadow 
retransmitters is their transparency. In order 
to perform the frame retransmission trans-
parently, SHARE's must start the retrans-
mission simultaneously with the sender. 
Thus after detecting an error frame begin-
ning at the last bit of a frame, a SHARE 
must become ready to start its retransmis-
sion within 10 bit-times. At the maximum 
bit-rate of 1Mbit/s, a SHARE has no more 
than 10 µ-seconds to initiate the retrans-
mission of a frame. 
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Handler
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Fig. 2: The structure of a SHARE 



  

   

The main component of a SHARE is a 
C167CR micro-controller [18], which has an 
embedded CAN controller and a Peripheral 
Event Control (PEC) unit for fast interrupt 
handling. PEC is a feature that enables 
transferring a word or byte from a source 
address to a destination address upon an 
interrupt. SHARE uses 3 PEC transfer 
channels to: 
1) convert the CAN buffer of the last re-

ceived frame to an output buffer, 
2) initiate its transmission, and  
3) enable the next free buffer for receiving 

the next frame. 
Using PEC channels, the whole procedure 
is completed in less than 3 µs at a proces-
sor clock rate of 20MHz, so the SHARE’s 
are fast enough for operating at the highest 
bit-rate of 1Mbit/s. After the PEC transfers, 
a software interrupt handler prepares the 
PEC channels for the next activation. 
The error detector is realized by a 22v10 
Gate-Array Logic (GAL) which detects a 
sequence of a Zero, 7 One’s, and 6 Zeros. 
This sequence appears on a CAN bus only 
in the following cases: 1) an error frame or 
a burst of at least 6 dominant bits starts at 
the bit EOF of a data frame, 2) an error 
frame or a burst of at least 6 dominant bits 
starts at the bit EOF of a RTR frame, or 3) a 
burst of at least 6 dominant bits is caused 
by a fault, 7 bit-times after the end of an 
error frame or overload frame. In the first 
case, SHARE has received a valid data 
frame, which is then retransmitted. In the 
second and third case, SHARE will transmit 
the original content of the receive buffer, 
which is an empty message with the lowest 
possible priority (ID= 229-1). Although this 
value is not a valid CAN ID, C167CR is able 
to transmit a message with this ID, which is 
not used by any correct CAN application. 
Of course, this situation is detected by the 
software interrupt handler, and the trans-
mission is cancelled as soon as possible. 
 
5 Conclusion 

The paper addresses the fault scenarios 
where a frame-level inconsistency can arise 
in CAN. A transparent solution (the SHARE 
approach) which enforces the frame-level 
consistency in presence of faults, is pro-
posed. In fault-free situations, SHARE's are 
passive components, and upon detection of 

a situation where a frame-level inconsisten-
cy is possible, SHARE's retransmit the 
frame simultaneously with the original 
sender in the same physical frame. Since 
SHARE components do not retransmit any 
frames that are not expected to be re-
transmitted by the original senders, adding 
SHARE components to a CAN bus does 
not affect the schedulability of the existing 
system. 
The SHARE approach relies on the proper-
ties of the CAN protocol and provides relia-
ble and consistent broadcast delivery. 
SHARE's can be added to arbitrary applica-
tion systems with static [19] or dynamic [11] 
bus scheduling mechanisms. 
The paper does not discuss the problem of 
consistent ordering of the frames. An ap-
proach to achieve total ordering of CAN 
frames, which relies on the frame-level 
consistency and timely message transmis-
sion, is proposed in [12]. Other approaches 
to achieve consistent ordering of messages 
in CAN are found in [17] and [21]. 
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