
SHARE: A Transparent Approach to Fault-tolerant
Broadcast in CAN
 Mohammad Ali Livani

The Controller Area Network (CAN) exhibits a highly reliable and predictable behavior, as
it is required by embedded real-time control applications. Although CAN provides a con-
sistent view of every transmitted frame among all peer CAN controllers in most fault sce-
narios, the frame-level consistency may be lost due to an error during the last two bits of a
frame followed by an immediate sender crash, as indicated by Rufino et al [17].
Previous Approaches to solve this problem require modifications to the software-level
communication protocol, which result in additional communication load. This would affect
the performance parameters of the real-time application system.
In this paper, a hardware component (SHARE: Shadow Retransmitter) is suggested, which
undertakes the retransmission of frames in such cases transparently, i.e. the actions of a
SHARE are not visible to other CAN nodes, and do not influence the performance parame-
ters of the existing application system.

Keywords: Real-time communication, fault-tolerance, reliable broadcast, CAN.

1 Introduction

Real-time control systems must provide
timely and reliable computing service to the
real-world environment. Distributed systems
which inherently provide immunity against
single failures, are an adequate architec-
ture to achieve high availability of the com-
puting system. Moreover, the availability of
inexpensive, powerful micro controllers
promotes distributed solutions. By replicat-
ing the processes on different sites the sys-
tem is able to provide the service despite
the failure of some processes or sites. The
need for consistent replication of the pro-
cess state information results in the de-
mand for a communication service which
provides reliable and consistent delivery of
information to groups of processes. Such a
communication service is termed atomic
broadcast [5]. A real-time atomic broadcast
protocol must terminate within a well-known
worst-case message delivery delay. Some
examples of real-time broadcast protocols
are the Δ-protocol [5],[6] and the time-
triggered protocol [9].
In the area of industrial automation and
automotive applications, field busses are
used to disseminate time critical messages.
Field busses exhibit bounded message

length, high reliability of data transfer, and
efficiency of the protocol. Among field bus-
ses, the CAN bus [14] provides advanced
features, which make it suitable for a wide
range of real-time applications. Some of
these features are high robustness against
electro-magnetical interference, priority-
based multiparty bus access control, varia-
ble but bounded message data length (≤ 8
bytes), efficient implementation of acknowl-
edgement and error indication, and auto-
matic fail-silence enforcement.
There are application level protocols avail-
able for CAN which raise the network inter-
face and shield the programmer from low
level details. The most popular ones are
CAL [4], CAN Kingdom [8], and Device Net
[7]. These protocols rely on the consistent
delivery of broadcast messages to all re-
ceivers by the CAN protocol. However,
consistent delivery of broadcast messages
is not provided by the CAN protocol, when-
ever receivers do not agree on the correct-
ness of the message, and the sender
crashes before a successful retransmission.
This lack of consistency has been pointed
out and analyzed by Rufino et al [17]. Alt-
hough this situation is very rare, Rufino et
al have shown that under assumption of a
bit error rate of 10–5 and a node mean-time-

to-fail of 104 hours, the mean time to such
an inconsistent message omission is 3.98 x
10–8, which is low enough to justify its con-
sideration in safety critical applications,
where the system's mean-time-between-
failures must be higher than 109 hours.
They also have introduced a reliable broad-
cast protocol based on (sender-initiated)
commit frames1 and message retransmis-
sion by receivers upon timeout. This solu-
tion results in transmission of at least one
additional frame for every broadcast mes-
sage, and can lead to bandwidth shortage.
It is not applicable to many existing sys-
tems, because of its impact on the bus
schedulability. Considering the CAN band-
width as a restricted resource, an optimal
solution would detect this failure situation
and retransmit the message only if neces-
sary.
This paper is organized as following. Sec-
tion 2 surveys the mechanisms of the CAN
protocol to achieve consistent broadcast. It
is shown that a consistent delivery of
broadcast messages in presence of faults
is not guaranteed by the CAN protocol it-
self. Section 3 reviews some approaches to
achieve fault-tolerant broadcasts in CAN.
Section 4 introduces a new approach to
provide consistent delivery of broadcasts in
CAN transparently by Shadow Retransmit-
ters. A summary concludes the paper.

1 It is suggested in [17] to use RTR frames by

the sender, to signalize the successful trans-
mission. Since RTR frames are not received
by hosts, the right choice would be an empty
data frame.

2 Broadcast Consistency in the CAN
Protocol

2.1 Mechanisms in the physical layer

The global consistency in the CAN bus is
based on the fact that all nodes (including
the sender) scan the value of every bit – at
a 'safe' sample point – while it is transmit-
ted. Hence all correct nodes have a con-
sistent view of every bit.
Since the physical connection of the CAN
bus (Fig. 1-A) is extremely robust against
electro-magnetical noise, the signal level
sensed at the sample point, reflects reliably
the currently valid bit-value to be observed
by all nodes.
The nodes of the CAN-Bus are connected
logically via a wired-AND or, alternatively, a
wired-OR function. In a wired-AND connec-
tion – as implemented in popular CAN con-
trollers – a ‘1’ is a recessive bit and a ’0’ is
a dominant bit (Fig. 1-B). Whenever differ-
ent bit-values are put on the bus by differ-
ent nodes simultaneously, the logical AND
function of them is observed by all nodes.
In the rest of the paper, the wired-AND
connection is assumed.

2.2 Mechanisms in the data link layer

Error and Overload frames.

The Error Frame and the Overload Frame
have identical structures. They both consist
of six dominant bits without bit stuffing.
Thus, they can be only distinguished by the
time when they are transmitted. An error
frame may be started only within a data or
RTR frame, in order to interrupt the current
transmission and signalize an error. An
overload frame, however, may be started
only immediately after the successful
transmission of a data or RTR frame in or-
der to indicate that a node is temporarily
not able to accept further data frames due
to an internal overload condition.

Error signaling.

Whenever a CAN node detects an error, it
switches to the error signaling mode, and
transmits an error frame. This violates ei-
ther the bit stuffing rule or the frame format,
and ensures that all other CAN nodes de-
tect an error, too. After sending an error
frame, a CAN node waits for all other nodes

B) Equivalent Logic Diagram

CC CC CC

CC ... Communication Controller

CAN-High

CAN-Low

A) CAN - Physical Connection

Tx Rx

CC

VCC

Transceiver GND

Tx Rx

CC

VCC

Transceiver GND

Tx Rx

CC

VCC

Transceiver GND

Fig. 1: CAN bus connection (wired-AND)

to finish their error frames (i.e. until it de-
tects a recessive bit). A new data or RTR
frame may start 11 bit-times after the bus
level becomes recessive.

2.3 Inconsistency in CAN

Although CAN applies several techniques
at the physical and data link layer to ensure
reliable and consistent data transfer, incon-
sistencies among different CAN nodes are
still possible.
The lowest level of inconsistency that is
observable in a CAN bus, is the incon-
sistent view of a bit. Depending on when
and why an inconsistency at the bit level
happens, it is either repaired by error detec-
tion and error signaling mechanisms, or it
grows to an inconsistency at the frame lev-
el, i.e. an inconsistent view of the frame
status among different CAN nodes.
Table 1 shows the possible causes and
effects of bit level errors in CAN. A detailed
analysis is given in [10].

2.4 Anonymous error signaling constituting

a weak-point

The data collected in Table 1 show clearly,
that a frame-level inconsistency is caused
whenever an error is detected at the end of
a frame, and the CAN nodes are not able to
achieve consensus on whether to discard
the frame, or to accept it.

The reason of this lack of consensus is that
it is not possible to indicate an error of the
last bit of a frame – the error indication
would seem to be an overload frame.
Hence receivers are forced to ignore an
error of the last bit of a frame.
However, if some but not all of the receiv-
ers detect an error in the last but one bit of
a frame, they will discard the frame, and
start an error signal immediately after the
error detection, i.e. at the last bit of the
frame. Every other receiver will then detect
an error in the last bit. Those receivers will
accept the frame, and inconsistency at the
frame level occurs. In order to recover from
this inconsistency, the CAN protocol speci-
fies that a sender retransmits the frame
upon the detection of an error in the last bit
of a frame [14].
If the retransmission of a faulty frame could
be guaranteed, the frame-level inconsisten-
cy would be repaired by detecting and dis-
carding duplicate frames, and achieving
consensus on the delivery order [12]. But if
the sender crashes before a successful
retransmission, then the frame is not re-
transmitted, resulting in inconsistent deliv-
ery.
In the following theorem it is shown that a
frame-level consistency cannot be guaran-
teed by the CAN protocol itself.

Theorem 1. By using the error handling
mechanisms of the CAN protocol, CAN

Table 1. Effects of errors in CAN depending on their detection time and place
(EOF is the last bit of the frame, and EOF–1 is the last but one bit)

Error cause Detection time and

place
Effects of the error Retransmission

time
Frame level
inconsistency

Any cause Before EOF – 1 Error frame, all receivers drop the frame Any time No
Any cause EOF – 1 by all nodes Error frame, all receivers drop the frame Any time No
Faulty sender EOF – 1 by sender Error frame, all receivers accept the data Any time < ∞ No (duplicate)
Faulty sender EOF – 1 by sender Error frame, all receivers accept the data Never (crash) No
Faulty sender EOF – 1 by all receivers Error frame, all receivers drop the frame Any time No
Faulty channel,
faulty receiver

EOF – 1 by some but
not all receivers

Error frame, some receivers drop the
frame, some receivers accept it

Immediately
after error frame

No (duplicate
at some rec.)

Faulty channel,
faulty receiver

EOF – 1 by some but
not all receivers

Error frame, some receivers drop the
frame, some receivers accept it

Interfered by
other frames

Ambiguous
ordering

Faulty channel,
faulty receiver

EOF – 1 by some but
not all receivers

Error frame, some receivers drop the
frame, some receivers accept it

Never (due to
sender crash)

Inconsistent
delivery

Any cause EOF; also by sender Receivers accept data, sender retrans-
mits

Any time < ∞ No (duplicate)

Any cause EOF; also by sender Receivers accept data, sender retrans-
mits

Never (crash) No

Any cause EOF; not by sender No effect, no retransmission --- No

nodes cannot always achieve consensus
on accepting or rejecting a frame.

Proof. The proof is based on the following
facts:
i. For each frame, there must be a time

where the frame is accepted, if it is not
corrupted until then, and it is discarded,
if an error was detected earlier. Let’s call
it the validation point. In CAN, the valida-
tion point is the beginning of the last bit
of the frame.

ii. When a node decides to send an error
frame, other nodes observe the error
frame not before the following bit-time.

Due to these facts, if a subset of nodes
detect an error at the last bit before the val-
idation point, they must discard the frame.
Although they immediately initiate an error
frame, this error frame will be observed by
other nodes after the validation point, thus
they will accept the frame. Of course, those
nodes will observe an error frame immedi-
ately after the validation point, but they may
not discard the frame in this case. This is
because those nodes cannot be sure that
they are observing an error frame and not,
for instance, a burst of dominant bits
caused by physical faults.
If a node discards a frame due to the ob-
servation of an ‘error frame’ immediately
after the validation point, and this ‘error
frame’ is actually a burst error, it is possible
that some other nodes in the system will
observe this burst one bit later. Hence,
those nodes would accept the frame and
the result would be again a frame-level in-
consistency. □
The inconsistency noticed above, is a fun-
damental problem whenever diffusing sim-
ple signals (e.g. 6 dominant bits) without
authentication, to broadcast information
(e.g. detection of an error). Since such sig-
nals are not authentic and can be produced
by a faulty component (or a noisy channel),
they cannot reliably lead to a consensus
among all observers.

3 Consistent Broadcast Delivery by High

Level Protocols

Consistent delivery of broadcast messages
means that every message is either deliv-
ered correctly to all operational receivers at
the protocol termination time, or to none of

them at all. In order to decide on the deliv-
ery of a message at the protocol termina-
tion time, either all operational receivers
must have received the message, or global
agreement must be achieved, that at least
one receiver has not received it. Reliable
message transmission to all operational
receivers can be ensured under anticipated
fault conditions by appropriate retransmis-
sion mechanisms and resource adequacy
[5] [6] [9] [13] [17]. A global agreement on
the fact that at least one receiver failed to
receive a message, however, needs at
least a phase of individual acknowledg-
ments and a phase of commitment, result-
ing in a two-phased commit protocol [1] [2]
[3] [15] [20].
In the following, some approaches are de-
scribed, which aim at achieving consistent
broadcast delivery in the CAN bus.

3.1 The EDCAN protocol

The EDCAN (CAN Eager-Diffusion) proto-
col [17] is based on a multiple transmission
policy similar to [6]. It has been developed
to cope with the frame-level inconsistency
of CAN and immediate sender crash. Ac-
cording to the EDCAN protocol, every node
attached to the CAN bus keeps track of the
bus traffic, and attempts to retransmit every
frame that it receives. The protocol recog-
nizes duplicates of the frames, and if a
node observes a certain number of dupli-
cates of a frame (Rufino et al named this
number the inconsistent omission degree),
it does not retransmit the frame any more.
The EDCAN protocol ensures the con-
sistent delivery at the cost of a considerable
portion of the bus bandwidth. E.g. in the
simplest scenario with an "inconsistent
omission degree" of 1, every receiver of a
frame attempts to retransmit the frame until
it receives a duplicate of it. Thus every
frame is retransmitted at least by one re-
ceiver. However, after receiving the dupli-
cate at a receiver, the protocol takes more
than a few µ-seconds to decide on cancel-
ing the retransmission in the CAN control-
ler. Since a transmission request can be
cancelled only within 3 bit-times from the
beginning of the bus-idle period, at high bus
rates the frames are often retransmitted
twice, resulting in an additional communica-
tion overhead of 200%.

3.2 The RELCAN protocol

Rufino et al. have also proposed a more
efficient protocol called RELCAN [17],
which uses the EDCAN protocol only when
the receivers assume that the original
sender has crashed. According to this pro-
tocol the sender first transmits the data
frame, and immediately thereafter it trans-
mits a short confirm frame without data. If a
receiver receives the confirm frame within a
given time period, it delivers the data to the
application. Otherwise, it starts the eager
diffusion of the data frame. Due to this "lazy
diffusion" policy, the protocol needs less
than 100% additional overhead in fault-free
situations.
A problem related to the above approach-
es, is that the frames are retransmitted by
ordinary nodes running application soft-
ware. Thus a faulty application software on
a node may manipulate the contents of re-
ceived messages, before they are retrans-
mitted by that node. This results in the Byz-
antine agreement problem. In order to ob-
tain consistent data at the receiver sites,
several retransmissions by different nodes
may be necessary [1], or the communica-
tion subsystem of the nodes must be im-
plemented as an independent hard-
ware/software module with a well-defined
data interface to the host, e.g. a FIFO dual-
ported memory in each direction [16]. While
the first solution consumes at least 80% of
the restricted bus bandwidth, the second
one demands for at least an additional mi-
croprocessor and a dual-ported RAM com-
ponent at each node, resulting in high addi-
tional hardware costs.

4 Fault-tolerant Broadcast Using Shadow

Retransmitters

As we can see in Table 1, CAN ensures
reliable frame transmission (sometimes with
duplicates or ambiguous ordering) unless a
sender crashes after an inconsistent trans-
mission of a frame, and before its success-
ful retransmission. In this case a permanent
frame-level inconsistency is caused.
The approach presented in this paper,
solves the problem of the crashed sender
by dedicated nodes, which act as ‘Shadow
Retransmitters’ (SHARE’s). These nodes

detect the situations where an inconsistent
frame transmission is possible, and re-
transmit the frame simultaneously with the
original sender. Since the sender and all
SHARE’s retransmit identical frames simul-
taneously, these frames are transmitted as
a single physical frame. Hence the network
components will detect no conflicts, and the
redundancy is not visible to them.
A frame is retransmitted by a SHARE only
in situations where a retransmission by the
original sender may be required, too. Thus,
in real-time systems adequate bus re-
sources must be provided for such re-
transmissions even when no SHARE’s are
used. Unlike other fault-tolerant broadcast
protocols, the SHARE approach causes no
additional communication overhead in fault-
free situations.
This results in a transparent reliability im-
provement in the sense that the SHARE
mechanism can be applied in an arbitrary
CAN bus to achieve consistent broadcast-
ing, without having to change the system
components and scheduling. Existing CAN
solutions may add an appropriate number
of SHARE’s to the bus in order to ensure
consistent frame delivery even in the case
of an inconsistent frame transmission fol-
lowed by immediate sender crash.
The detection of a possible frame-level in-
consistency is based on a simple fact: a
frame-level inconsistency is possible if at
least one non-faulty node starts an error
frame in the last bit of a data frame (let's
call it bit EOF). In this case, the sender is
expected to retransmit the frame immedi-
ately. Thus SHARE’s should also immedi-
ately retransmit a frame, whenever they
observe an error frame starting at bit EOF.
To tolerate the crash of the SHARE com-
ponents, several SHARE’s can be added to
the bus.

4.1 Analysis of different error scenarios

Since SHARE's retransmit CAN frames
whenever they detect a sequence of 6
dominant bits starting at bit EOF, the re-
transmission is performed only if a frame-
level inconsistency is likely. Following is a
discussion on the possible scenarios of
error detection, which shows that SHARE's
perform the retransmission whenever a
frame-level inconsistency is possible:

1. No node detects an error before EOF
but at least one node detects a dominant
bit sequence starting at EOF: in this
case, all receivers will accept the frame.
If any SHARE detects this bit sequence,
and the sequence is at least 6 bits long,
then the SHARE will retransmit the
frame. This sequence is very likely to be
an error frame. In this case, the original
sender will detect it and retransmit the
frame unless it crashes.
If the original sender does not detect the
bit sequence at EOF, it won't retransmit
it. In overload situations, it is possible
that the retransmission by the SHARE is
delayed until the original sender at-
tempts to send a new frame with the
same identifier. This could cause multi-
ple collisions between the old and the
new frame, and eventually the sender
and SHARE could switch to bus-off
state. In order to prevent this serious
failure, SHARE's cancel the currently re-
transmitted frame upon transmission er-
ror detection. Thus only one single colli-
sion is possible between the retransmis-
sion of old data and the transmission of
the new data. But this also means that
SHARE's do not always perform the
necessary retransmission.
However, under the assumption of a bit
error rate of 10–5, a node MTTF of 104
hours, a message length of 100 bits, and
permanent bus overload, the mean time
to permanent frame-level inconsistency
will be as high as 3.98 x 1011 hours,
which is acceptable for safety-critical
applications.

2. No node detects an error before EOF–1
but at least one node detects an error in
EOF–1: in this case, those nodes will
start an error frame at EOF, which is ob-
served by all non-faulty nodes including
SHARE's. The first group will discard the
frame, and the second group will accept
it. To tolerate an immediate sender
crash after this error, the frame must be
retransmitted by SHARE's. In order to
guarantee that SHARE's receive and re-
transmit the frame in this situation, the
GAL component of the SHARE locks the
bus input on the recessive level during
EOF–1 (see the signals RxD1, locked-
RxD, and bus-in in Fig. 2). This means,

that in this scenario all non-faulty
SHARE's will retransmit the frame.

3. At least one node detects an error be-
fore bit EOF–1: in this case, those nodes
will start an error frame before EOF,
which is observed by all non-faulty
nodes. Thus, all non-faulty nodes will
discard the frame, and the frame deliv-
ery status is consistent. If the error frame
starts at EOF–1, and some SHARE's did
not detect the error before EOF–1, then
those SHARE's will accept and retrans-
mit the frame simultaneously with the
sender. Otherwise, either the sender re-
transmits the frame, or it crashes, but in
any case the frame status at all receiv-
ers is consistent.

4.2 Transparency and effectiveness of the

SHARE approach

The main advantage of dedicated shadow
retransmitters is their transparency. In order
to perform the frame retransmission trans-
parently, SHARE's must start the retrans-
mission simultaneously with the sender.
Thus after detecting an error frame begin-
ning at the last bit of a frame, a SHARE
must become ready to start its retransmis-
sion within 10 bit-times. At the maximum
bit-rate of 1Mbit/s, a SHARE has no more
than 10 µ-seconds to initiate the retrans-
mission of a frame.

Embedded CAN
Controller
(81C92)

Peripheral
Event

Controller

16-bit µ-Controller
(C167CR)Interrupt

Handler

CC8 .. CC10

20 MHz

CAN_RxDCAN_TxD

Transceiver
(82C250)

Inconsistency
Detector

(GAL-22v10)

CAN Bus

TxD RxD

INT

bus-in

8 x Bit-rate

CANH, CANL

RxD1

Locked-RxD

Clr_int

Fig. 2: The structure of a SHARE

The main component of a SHARE is a
C167CR micro-controller [18], which has an
embedded CAN controller and a Peripheral
Event Control (PEC) unit for fast interrupt
handling. PEC is a feature that enables
transferring a word or byte from a source
address to a destination address upon an
interrupt. SHARE uses 3 PEC transfer
channels to:
1) convert the CAN buffer of the last re-

ceived frame to an output buffer,
2) initiate its transmission, and
3) enable the next free buffer for receiving

the next frame.
Using PEC channels, the whole procedure
is completed in less than 3 µs at a proces-
sor clock rate of 20MHz, so the SHARE’s
are fast enough for operating at the highest
bit-rate of 1Mbit/s. After the PEC transfers,
a software interrupt handler prepares the
PEC channels for the next activation.
The error detector is realized by a 22v10
Gate-Array Logic (GAL) which detects a
sequence of a Zero, 7 One’s, and 6 Zeros.
This sequence appears on a CAN bus only
in the following cases: 1) an error frame or
a burst of at least 6 dominant bits starts at
the bit EOF of a data frame, 2) an error
frame or a burst of at least 6 dominant bits
starts at the bit EOF of a RTR frame, or 3) a
burst of at least 6 dominant bits is caused
by a fault, 7 bit-times after the end of an
error frame or overload frame. In the first
case, SHARE has received a valid data
frame, which is then retransmitted. In the
second and third case, SHARE will transmit
the original content of the receive buffer,
which is an empty message with the lowest
possible priority (ID= 229-1). Although this
value is not a valid CAN ID, C167CR is able
to transmit a message with this ID, which is
not used by any correct CAN application.
Of course, this situation is detected by the
software interrupt handler, and the trans-
mission is cancelled as soon as possible.

5 Conclusion

The paper addresses the fault scenarios
where a frame-level inconsistency can arise
in CAN. A transparent solution (the SHARE
approach) which enforces the frame-level
consistency in presence of faults, is pro-
posed. In fault-free situations, SHARE's are
passive components, and upon detection of

a situation where a frame-level inconsisten-
cy is possible, SHARE's retransmit the
frame simultaneously with the original
sender in the same physical frame. Since
SHARE components do not retransmit any
frames that are not expected to be re-
transmitted by the original senders, adding
SHARE components to a CAN bus does
not affect the schedulability of the existing
system.
The SHARE approach relies on the proper-
ties of the CAN protocol and provides relia-
ble and consistent broadcast delivery.
SHARE's can be added to arbitrary applica-
tion systems with static [19] or dynamic [11]
bus scheduling mechanisms.
The paper does not discuss the problem of
consistent ordering of the frames. An ap-
proach to achieve total ordering of CAN
frames, which relies on the frame-level
consistency and timely message transmis-
sion, is proposed in [12]. Other approaches
to achieve consistent ordering of messages
in CAN are found in [17] and [21].

References

[1] Ö. Babaoglu and R. Drummond:
"Streets of Byzantium: Network
Architectures for Fast Reliable
Broadcasts", IEEE Tr. Software Eng.
11(6)546-554.

[2] K.P. Birman and T.A. Joseph:
"Reliable Communication in the
Presence of Failures", ACM Tr.
Computer Systems, 5(1):47-76, Feb.
1987.

[3] J.M. Chang and N.F. Maxemchuk:
„Reliable broadcast protocols“, ACM
Trans. on Computer Systems, 2(3),
Aug. 1984, pp. 251-273.

[4] CiA Draft Standards 201..207: „CAN
Application Layer (CAL) for Industrial
Applications“, may 1993.

[5] F. Cristian et. al.: „Atomic Broadcast:
From Simple Message Diffusion to
Byzantine Agreement“, IEEE 15th Int'l
Symposium on Fault-Tolerant
Computing Systems, Ann Arbor,
Michigan, 1985.

[6] F. Cristian: „Synchronous Atomic
Broadcast for Redundant Broadcast
Channels“, The Journal of Real-Time
Systems, Vol. 2, pp. 195-212, 1990.

[7] DeviceNet Specification 2.0 Vol. 1,
Published by ODVA, 8222 Wiles
Road - Suite 287 - Coral Springs, FL
33067 USA.

[8] L.B. Fredriksson: „A CAN Kingdom
(Rev. 3.01)“, Published by KVASER
AB, Box 4076,
S-51104 Kinnahult, Sweden, 1996.

[9] H. Kopetz and G. Grünsteidl: „TTP - A
Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems“, Res.
Report 12/92, Inst. f. Techn.
Informatik, Tech. Univ. of Vienna,
1992.

[10] M.A. Livani: „SHARE: A Transparent
Mechanism for Reliable Broadcast
Delivery in CAN“, Research Report
98-14, University of Ulm, Faculty of
Computer Science, Dec. 1998.

[11] M.A. Livani, J. Kaiser, W. Jia:
„Scheduling Hard and Soft Real-Time
Communication in the Controller Area
Network (CAN)“, 23rd IFAC/IFIP
Workshop on Real Time
Programming, Shantou, China, June
1998.

[12] M.A. Livani and J. Kaiser: "A Total
Ordering Scheme for Real-Time
Multicasts in CAN", 24th IFAC/IFIP
Workshop on Real Time
Programming, Schloß Dagstuhl,
Germany, May 1999.

[13] P. Ramanathan and K.G. Shin:
"Delivery of Time-Critical Messages
Using a Multiple Copy Approach",
ACM Tr. Computer Systems,
10(2):144-166, May 1992.

[14] ROBERT BOSCH GmbH: „CAN
Specification Version 2.0“, Sep. 1991.

[15] L. Rodrigues and P. Veríssimo:
„xAMP: a Multi-primitive Group
Communication Service“, IEEE Proc.
11th Symposium on Reliable
Distributed Systems, Houston TX,
Oct. 1992.

[16] J. Rufino, N. Pedrosa, J. Monteiro, P.
Veríssimo, G. Arroz: "Hardware
Support for CAN Fault-Tolerant
Communication", Proceedings of the
IEEE 5th Int'l Conference on
Electronics, Circuits and Systems,
Lisbon, Portugal, Sep. 1998.

[17] J. Rufino, P. Veríssimo, C. Almeida,
L. Rodrigues: „Fault-Tolerant
Broadcasts in CAN“, Proc. FTCS-28,
Munich, Germany, June 1998.

[18] Siemens AG: „C167 User’s Manual
03.96“, Published by Siemens AG,
Bereich Halbleiter, Marketing-
Kommunikation, 1996.

[19] K. Tindell and A. Burns: „Guaranteed
Message Latencies for Distributed
Safety-Critical Hard Real-Time
Control Networks“, Report YCS229,
Department of Computer Science,
University of York, May 1994.

[20] P.J. Veríssimo, L. Rodrigues, M.
Baptista: "AMp: A Highly Parallel
Atomic Broadcast Protocol",
SIGCOMM'89 Symposium on
Communications Architectures &
Protocols, Austin, Texas, Sep. 1989..

[21] K. M. Zuberi and K. G. Shin: „A
Causal Message Ordering Scheme
for Distributed Embedded Real-Time
Systems“, Proc. Symp. on Reliable
and Distributed Systems, Oct 1996.

University of Ulm
Department of Computer Structures
James-Franck Ring O27
89081 Ulm, Germany
Phone: +49 (731) 502 4177
Fax: +49 (731) 502 4182
Email: mohammad@informatik.uni-ulm.de
http://www.informatik.uni-ulm.de

