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Today, many Distributed Control Systems (DCS) communicate via a Controller 
Area Network (CAN). A failure in a DCS controlling a safety-critical application, 
e.g., an automotive brake system, can lead to significant economic losses or 
even the loss of human lives. Therefore, such DCS are usually designed to 
avoid failures in the service they provide to the user by including capabilities 
to handle the faults that could cause a failure. However, the testing of a safety-
critical DCS' capability to handle faults is a complicated task. A common test 
method is called fault injection. Using fault injection, realistic artificially 
generated faults are inserted into the system under test while the performance 
of the system’s fault-handling capabilities is measured. This paper presents 
some conceptually simple fault injection techniques that makes it possible to 
assess the handling of realistic node-level faults in a CAN-based distributed 
control system. 

1 Introduction 

Today, many Distributed Control 
Systems (DCS) communicate via a 
Controller Area Network (CAN). Many 
of these DCS are being built such that 
manual intervention is no longer a 
feasible backup measure in the event 
of a system failure. The control of 
vehicle dynamics in future 
automobiles, for instance, will be 
totally dependent on computers, as 
these systems will be built without any 
mechanical backup devices. A failure 
in a computer system that controls 
such an application can thus lead to 
significant economic losses or even 
the loss of human lives. Fault 
tolerance techniques are therefore 
deployed to obtain a dependable DCS. 

Three fundamental terms in fault-
tolerant design are fault, error and 
failure [1]. There is a cause-effect 
relationship between these terms; 
faults are the cause of errors, and 
errors are the cause of failures. These 
three terms can be described by the 
three universe model.  

The first universe is the Physical 
universe. This is where faults occur. A 
fault is a defect that occurs within 

some hardware or software 
component. 

The second universe is the 
Informational universe. This is where 
errors occur. An error is the 
manifestation of a fault in a unit of 
information, such as the contents of a 
memory location or a CPU register. 

The third universe is the External 
universe. This is where failures occur. 
A failure is any deviation that occurs 
from the desired or expected behavior 
of a system. 

One of the most crucial issues in the 
development of a fault-tolerant 
computer system is the verification 
and validation (V&V) of its fault-
handling mechanisms [2][3]. These 
mechanisms include those parts of the 
system that perform such functions as 
error detection, error masking, 
recovery and system reconfiguration. 
Ineffective or unintended operation of 
these mechanisms can significantly 
impair the dependability of the system. 
Even a small reduction of, for instance, 
the error detection coverage, i.e., the 
probability that an error is detected 
given that one has occurred, may 
significantly degrade system 
dependability. 



Analytical dependability modeling and 
formal design verification are important 
tools for the verification and validation 
of a fault-tolerant computer system. 
However, when verifying and 
validating a fault-handling mechanism 
it is important to deal with both faults 
and the propagation of errors in the 
system. These aspects are very hard 
to model analytically and therefore an 
experimental technique to verifying 
and validating the system is also 
needed. The obvious way to 
experimentally verify and validate a 
fault-handling mechanism is to inject 
faults into the system and study the 
system’s response during fault 
injection tests. 

This paper is organized as follows. 
Section 2 presents the main goals of 
fault injection testing. A fault model 
suitable for CAN-based DCS is 
presented in section 3, and section 4 
outlines how the faults are injected. 
Section 5 concludes the paper. 

2 Goals of Fault Injection tests 

The main goals of most fault injection 
tests are threefold: 

• verification 

• calibration, and 

• validation. 

First of all, as fault-handling 
mechanisms are not exercised during 
normal operation under fault-free 
conditions, fault injection must be used 
to verify that they are implemented 
according to the design specification. 
This is usually the simplest task of the 
three. 

Furthermore, many error detection 
mechanisms make use of threshold 
constants which must be carefully 
calibrated using fault injection so that 
the mechanisms always signal a 
detected error when a fault has 
occurred but never erroneously signal 
a detected error during fault-free 
operation. This task is more difficult 

than it might seem, as there usually is 
a trade-off to make between the 
conflicting interests of high availability 
and high safety in a system. High 
availability needs low-sensitive error 
detection mechanisms so that false 
detection never occurs, while high 
safety calls for high-sensitive 
mechanisms so that an error is never 
undetected. The problem is usually to 
distinguish ordinary noise on sensor 
signals from sensor faults. 

Finally, it is important to validate the 
efficiency of the specified fault-
handling mechanisms. The 
mechanisms should be validated after 
calibration by means of fault injection. 
By efficiency we can here mean any of 
the following non-exhaustive list of 
things:  

• detection coverage,  

• detection latency, i.e., the length of 
time between the occurrence of a 
fault and its detection, and  

• reconfiguration latency, i.e., the 
length of time between the 
detection of an error and the 
resulting reconfiguration of the 
system. 

The validation activity aims at 
validating that the system detects and 
handles faults (e.g., by 
reconfiguration) with the coverage and 
latency specified in top-level 
requirements. In many cases, 
dependability requirements are 
specified instead of coverage and 
latency requirements. In that case, the 
validation activity investigates if the 
system meets the specified 
dependability requirements, e.g., the 
appropriate level of availability or 
safety. This task is by far the most 
difficult of the three. 

The test cases will differ depending on 
the goal of the test. A test case 
describes what fault to inject when to 
inject it, the use-case of the system at 
the time of injection, what to measure, 
etc. 



When verification and calibration is the 
goal, each test case is focused on 
testing some well-defined part of the 
system that is specified in the design 
requirement specification, e.g., a fault-
handling mechanism. The fault to 
inject must in this case be a fault that 
the fault-handling mechanism is 
intended to detect. There is no point in 
injecting a fault that it cannot detect. 

When validation is the goal, the test 
cases are focused on injecting all 
possible kinds of faults for all possible 
use-cases of the system. This is done 
to determine the probability that any 
fault is detected and handled [4]. Let 
us assume that a fault causes an error 
that alters the value of a variable in the 
system. In many cases the effect on 
the system will be different depending 
on when the variable was corrupted 
and also on the amount of corruption, 
e.g., did the variable increase by just 1 
or by 1000? For such fault types, 
exhaustive testing is intractable. 
Therefore, statistical inference is often 
employed to extract meaningful 
information from the system, such as 
point estimates of the detection 
probability. To get a high statistical 
confidence in the point estimate, vast 
numbers of faults might have to be 
injected. This fact contributes to the 
difficulty in doing validation by testing.  

Independent of the goal of the fault 
injection test activity, a fault model is 
always needed to limit and 
unambiguously define the faults to 
inject. The next section proposes a 
fault model that is suitable for CAN-
based DCS. 

3 Fault model 

A general problem when injecting 
faults is that most real faults are hard 
or even impossible to inject artificially. 
Instead, a set of ‘injectable’ faults must 
be selected which are believed to 
represent real faults in the sense that 
they will cause errors that are similar 
to those caused by real faults. The 
fault selection procedure is, as 

previously discussed, dependent on 
the goals of the fault injection testing. 
When, for instance, validation is the 
goal, the selection procedure aims at a 
large variation in the error patterns.  

In practice, different faults are used 
depending on the goal of the testing 
(i.e., verification, calibration or 
validation) and the ‘level’ of the error 
detection capabilities of the system. 
For example, when evaluating a DCS 
that contains basic components such 
as nodes and communication links, 
node and communication link faults 
are relevant. There are often tools 
available that test the communication 
links for electrical-level faults. Our 
concern is therefore how to test for 
node-level faults. To do this, we must 
have a realistic node-level fault model.  

To understand the node-level fault 
model, we must go inside the node 
and view it as a separate system that 
may fail due to errors caused by faults. 
The failure modes of the node will 
become our node-level faults when 
viewing a complete DCS.   

An erroneous state in the CPU of a 
node of a DCS can be caused by a 
hardware fault or by a software fault. 
Hardware faults are caused by, for 
instance, cosmic particle intervention, 
fluctuations in the power supply, 
electromagnetic pulses and 
manufacturing flaws. Examples of 
software faults are missing 
initialization, omitted logic, incorrect 
timing and wrong algorithm. The 
effects of these faults on a CPU can 
be emulated by means of a technique 
called SoftWare Implemented Fault 
Injection (SWIFI). SWIFI mimics the 
effect of a fault via the modification of 
the information content of memory 
locations or CPU registers [5]. That is, 
SWIFI is actually a technique for 
injecting errors into the node. 

SWIFI can be used to verify and 
calibrate fault-handling mechanisms in 
a node. Furthermore, SWIFI can be 
used to validate the dependability of 



the node. Consequently, SWIFI is a 
powerful node-testing tool. However, 
the deployment of SWIFI requires a 
detailed knowledge of the node and 
the insertion of extra software in the 
node. More specifically, the 
modification of memory locations and 
CPU-registers are carried out by 
special purpose software that must be 
downloaded to the node. This software 
must be activated in a controlled way. 
The activation is often done via 
external interrupts, and hence impose 
that extra wiring must be added to the 
node. A complementary, less intrusive, 
technique would thus be handy. 

An erroneous state might propagate 
from a component in the node to the 
border of the node, e.g., to the CAN 
bus. The node will in this case deliver 
a service that deviates from the 
expected service and such a deviation 
is labeled node failure. The failure 
occurred because the node was 
erroneous. The adjudged or 
hypothesized cause is a fault [6]. A 
failure of a node in a distributed 
system can be classified as one of the 
following failure categories [7]: 

• Crash failure. A crash failure 
occurs when a node loses its 
internal state or halts for more than 
one cycle. The bus-level effect is 
that the node stops sending 
messages. 

• Omission failure. An omission 
failure occurs when a node omits 
to send a message. 

• Timing failure. A timing failure 
occurs when a node's message is 
functionally correct but untimely - 
the message is sent outside the 
specified real-time interval. 

• Incorrect computation failure. An 
incorrect computation failure 
occurs when a node sends an 
incorrect message. 

• Byzantine failure. A Byzantine 
failure occurs when the node 
neighbors receive different 
messages during a broadcast. 

All of these failure categories can be 
emulated via the modification of the 
messages that are sent between the 
nodes in a DCS. Such a modification 
can be done without the connection of 
additional wires to the nodes and 
without the insertion of extra software 
in the node.  

By replacing the word ‘failure’ by ‘fault’ 
for each failure category above, we 
have arrived at the node-level fault 
model we propose to use for a DCS. 
The next section describes how the 
fault model can be implemented in a 
CAN-based DCS. 

4 CAN Fault Injection 

Fault injection, which affect a CAN 
frame, can be used to implement the 
fault model proposed in the previous 
section. We have developed a CAN 
fault injection (CANFI) tool with the 
product name VeriCan-Interactive. 
Basically, the tool has two CAN ports 
and it acts as a repeater for CAN 
messages between the ports. One has 
to partition the system under test's 
CAN bus into two buses and insert the 
tool between the buses (see Figure 1). 
This result in a delay of the amount of 
time it takes to receive one message.  

This delay is typically small. Assuming 
that the message is not repeated until 
it has been completely received, the 
delay depends on the message bit-
length and the communication bit rate. 
For example, the delay is 
approximately 0.5 ms when the bit rate 
is 250kbit/s. For most systems the 
message delay has no serious impact 
on the system’s function and 
performance. 
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Figure 1. Partitioning of the system under 
test. 

VeriCan-Interactive implements the 
fault model by means of CANFI. More 
specifically: 

• A node-level crash fault in node A 
is simulated by simply not 
repeating frames sent from node 
A. 

• An omission fault is mimicked by 
not repeating a specified frame 
sent by node A. 

• A timing fault is simulated by 
delaying the repetition of a 
specified frame sent by node A. 

• An incorrect computation fault is 
emulated via modification of the 
content of a specified frame sent 
by node A. Note that the modified 
frame is always sent with the 
correct low-level checksum 
specified by the CAN protocol. 

• A Byzantine fault is mimicked by 
modifying the content of a 
specified frame meant for node A. 
Note that the node will receive a 
frame with correct checksum. 

A controlled fault injection test requires 
that a particular fault can be injected 
when a specific event occurs. 
Examples of events that can trigger a 
fault injection are:  

• Arrival of a CAN frame with a 
specific identity. 

• A timer elapses. 

• The value of a particular signal 
goes above a threshold. 

5 Summary 

To summarize, we have in this paper 
pointed out the need for using fault 
injection techniques for verifying, 
calibrating and validating safety-critical 
distributed control systems. 

All producers of safety-critical systems 
should be potential users of fault 
injection techniques. Examples of such 
producers are found in the automotive, 
medical equipment and machine 
control industry. 

Finally, we presented a fault model 
containing a simple set of five practical 
faults that can be used when 
performing fault injection testing of a 
CAN-based distributed control system.  
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