
Testing CAN-based Safety-Critical Systems
using Fault Injection

Dr. Marcus Rimén, Dr. Jörgen Christmansson

Today, many Distributed Control Systems (DCS) communicate via a Controller
Area Network (CAN). A failure in a DCS controlling a safety-critical application,
e.g., an automotive brake system, can lead to significant economic losses or
even the loss of human lives. Therefore, such DCS are usually designed to
avoid failures in the service they provide to the user by including capabilities
to handle the faults that could cause a failure. However, the testing of a safety-
critical DCS' capability to handle faults is a complicated task. A common test
method is called fault injection. Using fault injection, realistic artificially
generated faults are inserted into the system under test while the performance
of the system’s fault-handling capabilities is measured. This paper presents
some conceptually simple fault injection techniques that makes it possible to
assess the handling of realistic node-level faults in a CAN-based distributed
control system.

1 Introduction

Today, many Distributed Control
Systems (DCS) communicate via a
Controller Area Network (CAN). Many
of these DCS are being built such that
manual intervention is no longer a
feasible backup measure in the event
of a system failure. The control of
vehicle dynamics in future
automobiles, for instance, will be
totally dependent on computers, as
these systems will be built without any
mechanical backup devices. A failure
in a computer system that controls
such an application can thus lead to
significant economic losses or even
the loss of human lives. Fault
tolerance techniques are therefore
deployed to obtain a dependable DCS.

Three fundamental terms in fault-
tolerant design are fault, error and
failure [1]. There is a cause-effect
relationship between these terms;
faults are the cause of errors, and
errors are the cause of failures. These
three terms can be described by the
three universe model.

The first universe is the Physical
universe. This is where faults occur. A
fault is a defect that occurs within

some hardware or software
component.

The second universe is the
Informational universe. This is where
errors occur. An error is the
manifestation of a fault in a unit of
information, such as the contents of a
memory location or a CPU register.

The third universe is the External
universe. This is where failures occur.
A failure is any deviation that occurs
from the desired or expected behavior
of a system.

One of the most crucial issues in the
development of a fault-tolerant
computer system is the verification
and validation (V&V) of its fault-
handling mechanisms [2][3]. These
mechanisms include those parts of the
system that perform such functions as
error detection, error masking,
recovery and system reconfiguration.
Ineffective or unintended operation of
these mechanisms can significantly
impair the dependability of the system.
Even a small reduction of, for instance,
the error detection coverage, i.e., the
probability that an error is detected
given that one has occurred, may
significantly degrade system
dependability.

Analytical dependability modeling and
formal design verification are important
tools for the verification and validation
of a fault-tolerant computer system.
However, when verifying and
validating a fault-handling mechanism
it is important to deal with both faults
and the propagation of errors in the
system. These aspects are very hard
to model analytically and therefore an
experimental technique to verifying
and validating the system is also
needed. The obvious way to
experimentally verify and validate a
fault-handling mechanism is to inject
faults into the system and study the
system’s response during fault
injection tests.

This paper is organized as follows.
Section 2 presents the main goals of
fault injection testing. A fault model
suitable for CAN-based DCS is
presented in section 3, and section 4
outlines how the faults are injected.
Section 5 concludes the paper.

2 Goals of Fault Injection tests

The main goals of most fault injection
tests are threefold:

• verification

• calibration, and

• validation.

First of all, as fault-handling
mechanisms are not exercised during
normal operation under fault-free
conditions, fault injection must be used
to verify that they are implemented
according to the design specification.
This is usually the simplest task of the
three.

Furthermore, many error detection
mechanisms make use of threshold
constants which must be carefully
calibrated using fault injection so that
the mechanisms always signal a
detected error when a fault has
occurred but never erroneously signal
a detected error during fault-free
operation. This task is more difficult

than it might seem, as there usually is
a trade-off to make between the
conflicting interests of high availability
and high safety in a system. High
availability needs low-sensitive error
detection mechanisms so that false
detection never occurs, while high
safety calls for high-sensitive
mechanisms so that an error is never
undetected. The problem is usually to
distinguish ordinary noise on sensor
signals from sensor faults.

Finally, it is important to validate the
efficiency of the specified fault-
handling mechanisms. The
mechanisms should be validated after
calibration by means of fault injection.
By efficiency we can here mean any of
the following non-exhaustive list of
things:

• detection coverage,

• detection latency, i.e., the length of
time between the occurrence of a
fault and its detection, and

• reconfiguration latency, i.e., the
length of time between the
detection of an error and the
resulting reconfiguration of the
system.

The validation activity aims at
validating that the system detects and
handles faults (e.g., by
reconfiguration) with the coverage and
latency specified in top-level
requirements. In many cases,
dependability requirements are
specified instead of coverage and
latency requirements. In that case, the
validation activity investigates if the
system meets the specified
dependability requirements, e.g., the
appropriate level of availability or
safety. This task is by far the most
difficult of the three.

The test cases will differ depending on
the goal of the test. A test case
describes what fault to inject when to
inject it, the use-case of the system at
the time of injection, what to measure,
etc.

When verification and calibration is the
goal, each test case is focused on
testing some well-defined part of the
system that is specified in the design
requirement specification, e.g., a fault-
handling mechanism. The fault to
inject must in this case be a fault that
the fault-handling mechanism is
intended to detect. There is no point in
injecting a fault that it cannot detect.

When validation is the goal, the test
cases are focused on injecting all
possible kinds of faults for all possible
use-cases of the system. This is done
to determine the probability that any
fault is detected and handled [4]. Let
us assume that a fault causes an error
that alters the value of a variable in the
system. In many cases the effect on
the system will be different depending
on when the variable was corrupted
and also on the amount of corruption,
e.g., did the variable increase by just 1
or by 1000? For such fault types,
exhaustive testing is intractable.
Therefore, statistical inference is often
employed to extract meaningful
information from the system, such as
point estimates of the detection
probability. To get a high statistical
confidence in the point estimate, vast
numbers of faults might have to be
injected. This fact contributes to the
difficulty in doing validation by testing.

Independent of the goal of the fault
injection test activity, a fault model is
always needed to limit and
unambiguously define the faults to
inject. The next section proposes a
fault model that is suitable for CAN-
based DCS.

3 Fault model

A general problem when injecting
faults is that most real faults are hard
or even impossible to inject artificially.
Instead, a set of ‘injectable’ faults must
be selected which are believed to
represent real faults in the sense that
they will cause errors that are similar
to those caused by real faults. The
fault selection procedure is, as

previously discussed, dependent on
the goals of the fault injection testing.
When, for instance, validation is the
goal, the selection procedure aims at a
large variation in the error patterns.

In practice, different faults are used
depending on the goal of the testing
(i.e., verification, calibration or
validation) and the ‘level’ of the error
detection capabilities of the system.
For example, when evaluating a DCS
that contains basic components such
as nodes and communication links,
node and communication link faults
are relevant. There are often tools
available that test the communication
links for electrical-level faults. Our
concern is therefore how to test for
node-level faults. To do this, we must
have a realistic node-level fault model.

To understand the node-level fault
model, we must go inside the node
and view it as a separate system that
may fail due to errors caused by faults.
The failure modes of the node will
become our node-level faults when
viewing a complete DCS.

An erroneous state in the CPU of a
node of a DCS can be caused by a
hardware fault or by a software fault.
Hardware faults are caused by, for
instance, cosmic particle intervention,
fluctuations in the power supply,
electromagnetic pulses and
manufacturing flaws. Examples of
software faults are missing
initialization, omitted logic, incorrect
timing and wrong algorithm. The
effects of these faults on a CPU can
be emulated by means of a technique
called SoftWare Implemented Fault
Injection (SWIFI). SWIFI mimics the
effect of a fault via the modification of
the information content of memory
locations or CPU registers [5]. That is,
SWIFI is actually a technique for
injecting errors into the node.

SWIFI can be used to verify and
calibrate fault-handling mechanisms in
a node. Furthermore, SWIFI can be
used to validate the dependability of

the node. Consequently, SWIFI is a
powerful node-testing tool. However,
the deployment of SWIFI requires a
detailed knowledge of the node and
the insertion of extra software in the
node. More specifically, the
modification of memory locations and
CPU-registers are carried out by
special purpose software that must be
downloaded to the node. This software
must be activated in a controlled way.
The activation is often done via
external interrupts, and hence impose
that extra wiring must be added to the
node. A complementary, less intrusive,
technique would thus be handy.

An erroneous state might propagate
from a component in the node to the
border of the node, e.g., to the CAN
bus. The node will in this case deliver
a service that deviates from the
expected service and such a deviation
is labeled node failure. The failure
occurred because the node was
erroneous. The adjudged or
hypothesized cause is a fault [6]. A
failure of a node in a distributed
system can be classified as one of the
following failure categories [7]:

• Crash failure. A crash failure
occurs when a node loses its
internal state or halts for more than
one cycle. The bus-level effect is
that the node stops sending
messages.

• Omission failure. An omission
failure occurs when a node omits
to send a message.

• Timing failure. A timing failure
occurs when a node's message is
functionally correct but untimely -
the message is sent outside the
specified real-time interval.

• Incorrect computation failure. An
incorrect computation failure
occurs when a node sends an
incorrect message.

• Byzantine failure. A Byzantine
failure occurs when the node
neighbors receive different
messages during a broadcast.

All of these failure categories can be
emulated via the modification of the
messages that are sent between the
nodes in a DCS. Such a modification
can be done without the connection of
additional wires to the nodes and
without the insertion of extra software
in the node.

By replacing the word ‘failure’ by ‘fault’
for each failure category above, we
have arrived at the node-level fault
model we propose to use for a DCS.
The next section describes how the
fault model can be implemented in a
CAN-based DCS.

4 CAN Fault Injection

Fault injection, which affect a CAN
frame, can be used to implement the
fault model proposed in the previous
section. We have developed a CAN
fault injection (CANFI) tool with the
product name VeriCan-Interactive.
Basically, the tool has two CAN ports
and it acts as a repeater for CAN
messages between the ports. One has
to partition the system under test's
CAN bus into two buses and insert the
tool between the buses (see Figure 1).
This result in a delay of the amount of
time it takes to receive one message.

This delay is typically small. Assuming
that the message is not repeated until
it has been completely received, the
delay depends on the message bit-
length and the communication bit rate.
For example, the delay is
approximately 0.5 ms when the bit rate
is 250kbit/s. For most systems the
message delay has no serious impact
on the system’s function and
performance.

Node B Node C Node D

Node A VeriCan-
Interactive

Out

In

Figure 1. Partitioning of the system under
test.

VeriCan-Interactive implements the
fault model by means of CANFI. More
specifically:

• A node-level crash fault in node A
is simulated by simply not
repeating frames sent from node
A.

• An omission fault is mimicked by
not repeating a specified frame
sent by node A.

• A timing fault is simulated by
delaying the repetition of a
specified frame sent by node A.

• An incorrect computation fault is
emulated via modification of the
content of a specified frame sent
by node A. Note that the modified
frame is always sent with the
correct low-level checksum
specified by the CAN protocol.

• A Byzantine fault is mimicked by
modifying the content of a
specified frame meant for node A.
Note that the node will receive a
frame with correct checksum.

A controlled fault injection test requires
that a particular fault can be injected
when a specific event occurs.
Examples of events that can trigger a
fault injection are:

• Arrival of a CAN frame with a
specific identity.

• A timer elapses.

• The value of a particular signal
goes above a threshold.

5 Summary

To summarize, we have in this paper
pointed out the need for using fault
injection techniques for verifying,
calibrating and validating safety-critical
distributed control systems.

All producers of safety-critical systems
should be potential users of fault
injection techniques. Examples of such
producers are found in the automotive,
medical equipment and machine
control industry.

Finally, we presented a fault model
containing a simple set of five practical
faults that can be used when
performing fault injection testing of a
CAN-based distributed control system.

6 References

[1] D. K. Pradhan, Fault-Tolerant
Computer System Design, Prentice
Hall PTR, 1996.

[2] J. Karlsson et al., “Using Heavy-Ion
Radiation to Validate Fault-Handling
Mechanisms”, IEEE Micro, pp. 8-23,
February 1994.

[3] R. Chillarege et al., “Understanding
Large System Failures - A Fault
Injection Experiment”, in Proc. FTCS-
19, Chicago, MI, pp. 356-363, June
1989.

[4] J. Arlat et al., "Fault Injection for
Dependability Validation: A
Methodology and Some
Applications", IEEE Transactions on
Software Engineering, Vol. 16, No. 2,
pp. 166-182, February 1990.

[5] J. Christmansson et al., “An
Experimental Comparison of Fault
and Error Injection”. in Proc. Ninth
IEEE Int. Symp. On Software
Reliability Engineering (ISSRE´98),
pp. 369-378, Paderborn, Germany,
November 1998.

[6] J.C.Laprie (ed.), Dependability: Basic
Concepts and Terminology,
Dependable Computing and Fault-
Tolerant Systems series, Vol.5,
Spring-Verlag, 1992.

[7] F. Cristian, "Understanding Fault-
Tolerant Distributed Systems",
Communications of ACM, Vol.34,
No.2, pp. 56-78, 1991.

Carlstedt Research & Technology AB
Stora Badhusgatan 18-20
S-411 21 Göteborg
Sweden

Phone +46 31 701 42 00
Fax +46 31 10 19 87

E-mail [rimen/joc]@crt.se
Web http://www.crt.se

