
Implementing the CAN Calibration Protocol (CCP) in an
SAE J1939 Application

William B. Vlcek

This paper presents the implementation of the CAN Calibration Protocol (CCP) on an
electronic control unit (ECU) using the Society of Automotive Engineers’ (SAE) Rec-
ommended Practice J1939 multiplex communications protocol. SAE J1939 uses a
CAN-based network protocol, to which we added CCP to support calibration and
measurement activities during the development and test of new application software.
The use of a commercially available PC-based tool for calibration and measurement
provided a cost-effective solution to support these capabilities for this development
program.

Introduction

The approach taken in this paper is to first
define the overall task with which we were
presented, then identify the options avail-
able to satisfy the specific challenge dis-
cussed here — providing a cost effective
means to calibrate and measure an ECU
in development. This will be followed by a
brief review of the communications proto-
cols used, before getting to the discussion
covering the implementation of our
selected solution. The basic task dis-
cussed in this paper is how we provided
the customer with a solution to their
requirement to calibrate the application
software in their ECU.

Task Definition

Our customer decided to develop their
next generation electronic control unit
(ECU). They chose to move from a
Motorola MC68HC11 microcontroller, with
application software in Assembly lan-
guage, to a Motorola MC68376 microcon-
troller with the software to be written in
"C". We were approached to develop the
software due to our familiarity with the
Motorola family of microcontrollers, and
experience with developing and maintain-
ing similar automotive software applica-
tions.

The ECU under development is targeted
to work on a variety of diesel engine appli-
cations, and requires flexibility in the num-
ber and type of the inputs and outputs to
be supported. The application contains a
large number of programmable parame-

ters, or calibrations. There is also a re-
quirement to provide the capability to set
and change these parameters using a
service tool. Since this ECU interacts with
other ECUs in heavy-duty truck applica-
tions, it must support the Society of Auto-
motive Engineers (SAE) specification
J1939 multiplex communications protocol.
Other requirements include: monitoring
internal operations of the ECU; repro-
gramming the ECU during its develop-
ment; and providing a way to change cali-
brations while operating the engine.

Available Options

In considering the alternatives that related
to calibration we identified two options: de-
velop a calibration system from scratch, or
find a commercially available solution.
The analysis of the first option showed the
cost to design a calibration strategy, to
develop the ECU’s calibration subsystem
and counterpart service tool system (PC-
based), then implement and test it, could
have easily exceeded the cost of devel-
oping the application software it would
support. The continued maintenance of
such a proprietary calibration tool could
have been substantial and was not in the
plans of this development program.

The second choice, to identify a commer-
cially available solution, was then
reviewed. To simplify the communications
capabilities of the ECU, the solution would
preferably work with an existing protocol
used by heavy-duty truck applications,
either SAE J1587 or SAE J1939. One
desire was to identify a CAN-based solu-

tion, which could be made to work with
J1939, and thus allow the ECU to support
only one communications protocol.

SAE J1939 Protocol Background

Before discussing the task in more detail,
let us review some background on the
technologies used. The industries which
use large diesel engines — heavy-duty
trucks, buses, construction equipment,
and agricultural equipment — participate
in the SAE’s Truck & Bus Electrical and
Electronics Committee. The Truck and
Bus Control and Communications Network
Subcommittee has developed a family of
specifications for serial data communica-
tion over multiplexed wiring. Commonly
known by the SAE specification number,
J1939, these specifications define the
complete ISO OSI seven-layer communi-
cations model. The J1939 network
environment operates with shielded,
twisted pair wire and uses the 29-bit ex-
tended format CAN data frame. The
J1939 family of specifications cover not
only the physical layer (Part 11) and data
link layer (Part 21). It also includes a
network layer specification (Part 31),
definition of all application messages and
their data content (Part 71), and definition
of all diagnostic messages, including
emissions-related diagnostics (Part 73).

The J1939/Part 21 specification presents
information on the data link layer. It
describes the message format used by
J1939, detailing each bit in the extended
format identifier (priority, source ID, etc.).
And it describes the transport protocol
used on a J1939 network, covering the
packetization and reassembly of mes-
sages containing more than 8 bytes of
data, and the management of the virtual
connections for transferring this large
message. The Part 31 specification
defines the services used on a multi-seg-
ment vehicle network. These segments
may operate with different physical media,
protocols or data rates. So this specifica-
tion describes the use of repeaters,
bridges, routers, and gateways to provide
the connections between segments.

The application layer defined by Part 71
supports both point to point and broadcast
communications. Message frames con-

tain 8 data bytes, of which some or all
may be defined. Data bits not currently
defined are to be transmitted as “1” and
received as “Don’t Care.” This is to sup-
port future definition without affecting
existing applications. The data bytes tend
to be grouped by function in the message
frames. For example, the message
“Electronic Engine Controller #1” (EEC1)
contains Status_EEC1 (Engine/retarder
torque mode), Driver’s demand engine –
percent torque, Actual engine – percent
torque, Engine speed, Source address of
controlling device for engine control
(which could be a device other than the
one transmitting this message), and 2 un-
defined bytes.

The diagnostic messages defined in Part
73 are recognizable to anyone familiar
with On-Board Diagnostics, Phase II (OBD
II) as implemented by SAE J1979, E/E
Diagnostic Test Modes (ISO 15031-5).

CCP Protocol Background

The CAN Calibration Protocol (CCP) is a
standard maintained by the ASAP task
force (Arbeitskreis zur Standardisierung
von Applikationssystemen; English trans-
lation of this is Standardization of Applica-
tion/Calibration Systems task force). The
ASAP task force is composed of vehicle
manufacturers, automation and test
equipment manufacturers, and ECU
manufacturers. The mission of ASAP, as
stated in the CCP standard “is to reach
mutual agreement and standardization in

• automation, modularization and com-
patibility of all equipment to do meas-
urement, calibration and diagnosis,
and

• manage the creation of a cost reason-
able and sensible tool supplier mar-
ket.”

In keeping with this mission statement,
CCP provides a CAN-based strategy for
the calibration of ECUs and the acquisition
of data from ECUs. The ASAP task force
describes a model involving three compo-
nents: Measurement, Calibration, and Di-
agnostics.

The communication strategy described for
CCP is to utilize two CAN data frame

identifiers, one for the Command Receive
Object (CRO) and one for the Data
Transmission Object (DTO). CCP uses
these two messages to operate in a mas-
ter-slave style of network communications.
The master device will be a measurement
system, calibration tool, or diagnostic tool,
and initiates communication with the slave
device.

A CRO is the message sent from a master
device (calibration tool in this case) to the
slave device (our ECU). The CRO mes-
sage contains a command code, com-
mand counter, and any command-related
parameters and data. Valid command
codes include writing calibrations, pro-
gramming the ECU, and requesting data.
A DTO is the message sent from the slave
device to the master device. The DTO will

contain the response to a command, an
event message reporting internal status of
the slave device, or the data supporting a
previous data acquisition request.

For this specific implementation of CCP,
we are using CAN message identifiers
reserved by the J1939 specification for
manufacturer proprietary functions. The
29-bit identifiers used are low priority and
contain the destination address for this
ECU.

Selected Solution Implementation

Following our ISO-9001 certified software
development process, we decomposed
the requirements specification provided by
our customer and produced a software
requirements specification. In the review
cycle for this software requirements speci-
fication with our customer, the decision to
support only J1939 CAN communications
was made.

At the same time, we were conducting a

trade study of commercially available
development tools for the Motorola
MC68376, real-time operating systems,
and calibration tools. A number of criteria

Figure 1 - Example CANape Screen

were considered when making our deci-
sion, including usability, suitability to task,
follow-on technical support, and cost.
After assessing the various options in the
area of calibration tools, CCP was
selected as the calibration methodology
for this ECU development program. To
work with CCP, a commercially available
calibration tool was selected. At present
we are using CANape from Vector Infor-
matik, an example of the user interface is
at Figure 1. However, by using CCP, the
option to use a different PC-based cali-
bration tool is possible.

Another goal desired by our customer was
to have the flexibility to move the applica-
tion software to a different microprocessor
in the future. Such a move could result
from cost considerations during produc-
tion, or application software growth after
adding new features. This goal fits well
with our modular software development
approach. A simple block diagram de-
picting the architecture of this application
is provided at Figure 2.

To provide the capability to port the appli-
cation to a new target processor, while
keeping software rework to a minimum,
we incorporated a hardware abstraction
layer into our design. This approach is
implemented as a series of functions
which handle hardware specific actions,
for example reading A/D registers, and

placing the resultant data into data objects
to be used by the application software.
When the application software needs to
perform a hardware action, it calls the
appropriate function in the hardware
abstraction layer, identifying the appropri-
ate data object. The hardware function
then performs the action, such as writing
to a register, or driving a serial port.
Within our communications subsystem,
initializing the CAN controller, interacting
with the receive and transmit buffers, and
servicing all CAN controller interrupts, are
similarly handled in the hardware abstrac-
tion layer. CAN message information be-
comes a data object handled by the com-
munications subsystem. In the Motorola
MC68376 microcontroller the on-chip CAN
controller is known as the TouCAN. This
CAN controller supports 16 transmit or
receive buffers with three receive accep-
tance filters, and performs internal trans-
mit arbitration to select the next message
to attempt to transmit on the CAN bus.
One aspect of using CCP affected the
development of our application software.
In order to have data values available
from the ECU for monitoring, and to pro-
vide the calibration flexibility required dur-
ing development test, it was necessary to
include in the detailed design widespread
use of global variables in the software. To
calibrate the software and support the
data acquisition process, the CCP tool
needs to know the memory address of
these data values. So the tool reads the
software memory map, and links the cali-
bration and data acquisition objects to the
address location of the appropriate global
variable. Even though this action may be
contrary to good design and programming
practices, it is necessary in order to use
CCP to satisfy development system
requirements.

The J1939 communications subsystem
software was designed and coded at As-
cent Technologies, so as a result we could
easily incorporate CCP into the structure.
A portion of the high-level design is
depicted in Figure 3. The path taken
when a CAN message is received is as
follows: the CAN message data object is
provided to the Manage_Data_Link_Layer
by the TouCAN-specific receive message

Figure 2 - Software Block Diagram

Hardware Abstraction Layer

A/D Serial I/O CAN
Controller

J1939 Part 21

P
ar

t 7
1

P
ar

t 7
3

C
C

P

Application
Software

function. The Manage_Data_Link_Layer
then performs the actions described in
J1939/Part 21, determining if the received
object is part of a multi-frame message,
and reassembling the complete message
if required. It then identifies where to send
the received object. If it is a CCP mes-
sage it is passed to Manage_CCP, if it is
an application message it goes to Man-
age_J1939_Part71, or if it is a diagnostic

message it will be sent to Man-
age_J1939_Part73.

Transmitting a message functions in the
same fashion, only in reverse. For appli-
cation layer messages, the application
software will call Manage_J1939_Part71
to transmit the message. For diagnostic
messages, Manage_J1939_Part73 will
respond to diagnostic requests, or direct a
diagnostic message to be transmitted
announcing currently active diagnostic

trouble codes (DTCs). And Manage_CCP
operates similar to Man-
age_J1939_Part73, responding to DTO
messages from the off-board tool, or
directing a CRO to be transmitted in
response to a previously scheduled data
acquisition request. Manage_CCP, Man-
age_J1939_Part71, Man-
age_J1939_Part73 provide the transmit
message data object to Man-

age_Data_Link_Layer. The process,
Manage_Data_Link_Layer, will determine
if the data object requires a multi-frame
message, preparing multiple CAN mes-
sage data frames if necessary. It will then
send the data object(s) to the transmit
message function handling the TouCAN
transmit buffers.

While the J1939 software was designed
and coded in-house, we have benefited
from the work at Vector Informatik with

Figure 3 - High-level Design Example

Serial Data Manage_Data
_Link_Layer

Serial Data

Serial Data

Serial Data

Manage_J1939
_Part73

Manage_J1939
_Part71

Manage_CCP

CAN_Message_Status

Check_Msg_Queues

Download_Blocks

Serial_Sensor_Data

Application_Data

Diagnostic_Data

CCP. They have generously made avail-
able to the public an example implemen-
tation of CCP on their Web site. We have
incorporated this example software into
our J1939 communications subsystem,
modifying it to work with our operating
system and adding the functionality which
was absent, such as FLASH programming
support for the FLASH memory part used
in this ECU.

Conclusion

Use of the CAN Calibration Protocol has
provided a cost-effective solution for cali-
bration and measurement in this ECU
development program. An off-the-shelf
tool solution, offering more flexibility and
capability than likely with a proprietary
development, was identified and satisfies
all the needs of the development and test
engineers. Potential customers for this
ECU application have indicated their
interest in our use of CCP, and the
opportunities it offers within their devel-
opment and test environment. The
approach to calibration and measurement
utilized by CCP makes this suitable for
any ECU with CAN as a communication
link and requiring calibration, measure-
ment, or both.

References:

1. ASAP Standard – CAN Calibration
Protocol (CCP), version 2.1

2. SAE J1939 – Recommended Practice
for a Serial Control and Communica-
tions Vehicle Network

3. CCP Driver, Implementation in Elec-
tronic Control Units, Vector Informatik
GmbH (version 1.01)

Acknowledgements

Many thanks to my colleagues at Ascent
Technologies and Jacobs Vehicle Sys-
tems, and for the assistance provided by
the folks at Vector CANtech and Vector
Informatik.

Ascent Technologies, Inc.
525 Avis Drive, Suite 15
Ann Arbor, MI 48108 USA
Phone 01-734-668-4035

FAX 01-734-668-2735
vlcek@asc-tech.com

