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Software tools can be helpful in understanding the behaviour of complex technical systems. Quite
often, however, present-day tools have to be accepted by the user on an “as is” basis without an
easy way to customize the tool. New ideas and techniques of modern software technology promise a
much higher degree of adaptability of software systems and, in particular, of graphical user interfaces
(GUIs). This paper presents an architecture and a prototypical realization of an experimental tool
designed along the lines of these novel ideas. The tool is based on a hierarchy of model layers for
analyzing the temporal behaviour of CAN-systems. The underlying mathematical key ideas include:
worst case analysis of response times, probabilistic error model, and quality measure of timeliness.
The architecture allows to easily extend the system and to exchange, among other things, the basic
equations, the algorithms, and the probability distributions involved without affecting other parts of

the system.

1 Introduction

During the last years many new ideas have
evolved in software technology. Typically
and most often, these are applied to prob-
lems close to software technology itself, e.g.
data structures, algorithms, compiler con-
struction, etc. Therefore, it seems worth-
while to see whether these ideas could also
be of benefit to other areas, e.g. technical
computer science and whether they could be
an alternative to methods of ad-hoc program-
ming still common to many technically ori-
ented areas.

One example where some of these new
conceptions can be applied successfully ap-
pears to be the design and implementation of
a tool for analyzing the temporal behaviour
of CAN systems. This paper presents an ar-
chitecture and a prototypical realization of an
experimental tool designed along the lines of
some novel ideas of software technology. The
tool is based on a hierarchy of layers each
of which models some specific aspects of the
temporal behaviour of CAN-systems. The
paper is organized as follows: Section 2 gives
a brief account of the notion of software ex-
tensibility with special emphasis on the ideas
developed by the group of Niklaus Wirth and

Jiirg Gutknecht at the Swiss Federal Institute
for Technology (ETH) Ziirich, in the Oberon
project. Section 3 describes these layers in-
formally and Section 4 introduces the design
of the large scale program structure and dis-
cusses some details of the hierarchy includ-
ing the basic structure (Layer 0) and the key
ideas such as worst case analysis of response
times (Layer 1), probabilistic error model
(Layer 2), and quality measure of timeliness
(Layer 3). The following Section 5 presents
our realization of essentially two tool vari-
ants, based on the languages Oberon (Section
5.1) and Java (Section 5.2), which have been
implemented so far or are—at the time of
writing in the state of being implemented.
Finally, Section 6 concludes the paper with
a summary and some perspectives on future
work.

2 Software Extensibility

Extending a software system means to add
functionality to an existing system. The ob-
vious and naive way is, of course, to edit
the source—if it is available—and extend it
by paste-and-copy techniques. One problem
with this procedure is that it is very likely
to re-introduce bugs into a program which
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might have been well designed and tested and
to destroy its structure. Nowadays, there ex-
ists a wide variety of techniques to re-use ex-
isting software components without changing
or even recompiling the source code.

The Oberon project was one such ap-
proach that resulted in a system of “exem-
plary lucidity, efficiency, and compactness”
(Reiser in [Rei91]). A technically detailed re-
port is [WG92], the first user guide and pro-
grammer’s manual of the Oberon system in
its original form is given in [Rei91], and an
introduction of the Oberon language may be
found in [RW92]. One of the main guidelines
in the project was to achieve extensibility,
which soon got some specific meaning and po-
tential in both the operating system and the
language Oberon. Writes Gutknecht [Gut96]:
“Perhaps to our own surprise, we soon recog-
nize that the new construct of type extension
in combination with the old concept of proce-
dure variable provides an absolutely sufficient
language framework for the creation of amaz-
ingly rich and flexible object-oriented scener-
ies ...."” FExtensibility has been discussed in
various contexts, see [Fra94, Szy96]; a review
may also be found in [Rii96]. Another evo-
lutionary step is the Oberon System 3 with
its gadgets [Gut94, Gut96, FM98], which has
been chosen as a design and implementation
basis for the work presented on this paper.

3 The Model Layers

During the last decade several models have
been proposed which have proven to be help-
ful in analyzing and evaluating the temporal
behaviour of CAN systems. In a couple of
papers by Wang et al. [WLHS92] and Tin-
dell et al. [TBW94, TB94, THW94, TBW95]
a formalism for analyzing the worst case be-
haviour of response times has been described.

It has been claimed that this model gives
an adequate description of periodic as well as
sporadic CAN messages. The basic underly-
ing assumption is that “a given message m
cannot be generated more than once every
T, time units” (assumption 1 in [Law97, p.
254]). Although this is certainly a useful ap-
proximation in many situations, one has to

keep in mind, that, on the one hand, a Pois-
son stream of messages does of course not
meet this assumption and, on the other hand,
any other distribution lacks the memoryless
property; so, if any such distribution would
be realistic, the process, which generates spo-
radic CAN messages, must have some inter-
nal memory to stick to the constraint of this
assumption. In this case, however, a sporadic
message can, in a worst case analysis, indeed
be treated like a periodic message, because
no more than once in a worst case scenario is
the same as exvactly once. Therefore, in the
present paper, this model simply is termed
“deterministic”.

Based on this model the stochastic error
model by Navet et al. [NS97, NSS99] intro-
duces a major new aspect; in their model the
realtime behaviour is governed by a proba-
bilistic law. The essential idea is that the
occurrence of a large number of errors will
always result in a violation of timing con-
straints. So, it is natural to determine, for
each CAN message class, the limiting maxi-
mal number of errors such that its deadline is
met. Based on some assumptions on stochas-
tic properties of error events this then allows
to determine the probabilities that the indi-
vidual deadlines will be met.

In [Rii98] this model is used to establish
a quality measure of timeliness in noisy en-
vironments: following an idea of traditional
queuing theory a cost function can be intro-
duced; if one of the CAN messages occasion-
ally misses its deadline there will be (ficti-
tious) costs resulting from this event. The
resulting average can be taken as a measure
of the system’s realtime quality.

All of these models require that some nu-
merical problems will be solved including a
fixed point problem and the calculation of
convolution powers. So, from a practitioner’s
point of view, the models would be useless
unless the algorithms involved will be imple-
mented in a tool.

A close examination of the structure of
the models described so far reveals a remark-
able property: the models form, in a natural
way, a hierarchy of layers with an internal
inheritance structure and, furthermore, this



structure can easily be put into an extensi-
ble form as described in Section 2. In the
following the model layers will be described
informally. Details and the formal machinery,
which will not be repeated here, can be found
in [Rii98] and the references given therein.

4 Design of the Module Sys-
tem and Inheritance Struc-
ture

Figure 1 depicts a skeleton of the module sys-
tem and the mapping of the layered struc-
ture as described in Section 3 onto the mod-
ule system. To keep the figure simple some
details including the modules related to the
gadgets of Oberon System 3 (see Section 5.1)
have been omitted. Figure 2 visualizes the
inheritance relations between the key struc-
tures CANConfiguration and CANMessage by
means of Venn-diagrams. A particularly flex-
ible implementation of structures as in Fig-
ure 1 and Figure 2 makes use of language con-
structs and /or library support including type
extension, dynamic types, messages and mes-
sage handlers, and up-calls or, alternatively,
methods of creating objects at run time of dy-
namically defined types. We shall not enter
into these details in the present paper.

We proceed with a description of the
structure of Layers 0 to 3; some more details
will be explained in Section 5.1.

4.1 Layer 0 — Basic Structure

The basic attributes describing a CAN con-
figuration and the corresponding CAN mes-
sage classes form part of Layer 0. A con-
figuration consists of a list of messages each
of which is characterized by its priority and
its name. Within this layer, a configuration
can be regarded as a structure with the sole
property of being a “container” of this kind.

4.2 Layer 1 — Deterministic Model
(Worst-Case-Analysis)

Layer 1 refines the description of Layer 0 by
adding to the CAN message descriptor other
typical fields such as: number of data bytes

s, period T, jitter .J, deadline D, queuing de-
lay (interference time) I, and response time
R. The configuration descriptor is extended
with the configuration’s bit time 7;; and a
flag indicating which of the variants standard
CAN or extended CAN is being used. These
quantities are coupled by a set of equations
which can be solved numerically. These equa-
tions also form part of Layer 1.

4.3 Layer 2 — Probabilistic Error
Model

Layer 2 models a situation where external
noise generates error messages on the CAN
bus. This situation has to be described by a
probabilistic error model. The configuration
descriptor remains unchanged; the CAN mes-
sage descriptor has to be extended with sev-
eral additional fields: the maximal number of
errors keeping the response time just below
the deadline D, the corresponding response
time R, 4., and the probability that the num-
ber of error messages is equal or below this
maximum. To calculate these one has to ac-
cept some specific distribution functions re-
lated to error events, such as the distribution
of “interarrival times” of error events, the na-
ture of errors (single errors or error bursts)
and in the case of error bursts of the burst
size. Mathematically, the problem consists
in calculating a convolution power; this re-
quires considerable computational efforts if
the exponent is large, i.e. if the number of
errors keeping the response time just below
the deadline is large. Obviously this is the
case if the bit time is small.

4.4 Layer 3 — Model Incorporating
a Quality Measure of Timeli-
ness

Finally, the model of Layer 3 introduces the
notion of a cost function: a CAN system
which forms a vital part of a larger system
might trigger an event disastrous to this sys-
tem if timing constraints are violated. The
resulting expected costs can be taken as a
quality measure of timeliness of the CAN sys-
tem with low costs representing good real-
time behaviour, of course. This approach



User Application

SolveCostModel

3 \

CostModel

ProbabilityDistribution

\

SolveProbModel

\

ProbabilisticModel

SolveDetModel

1 \

DeterministicModel

—

BasicStructure

Figure 1 Import relations of basic module structure

is particularly adequate in all situations in
which one has to deal with probabilities and
where consequently absolute thresholds can-
not be guaranteed. The field expected costs
forms another attribute of the configuration
descriptor; the user-defined cost related to
each of the message classes has to be added
to the message descriptors.

In [Rii98] some case studies based on
data previously published in the literature
have been discussed in detail (SAE and PSA
“benchmarks”). In particular, it has been
shown that the concept of a cost function
can be useful for comparisons of configura-
tions with different parametrizations. The
approach can as well be useful in studying
the behaviour of a system near the critical

bit time.

5 Implementation Aspects

5.1 Prototypical realization based
on Oberon

The essential feature of the CAN Tool pre-
sented in this paper is its extensibility. The
user can add new CAN model layers to the
tool without changing the existing code but
simply by extending the tool with new mod-
ules. The visualization of the program’s out-
put can be achieved by means of standard
gadgets which form part of the Oberon Sys-
tem 3. Since it is possible to build GUIs by
combining gadgets with a few point-and-click
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Figure 2 Inheritance structure of CANConfiguration (left part) and CANMessage

actions only, no programming is required in
general to visualize the data of a model layer.
Although a rich variety of gadgets exists in
the Oberon System 3 a pre-fabricated table
gadget specifically adapted to visualize out-
put data of the CAN Tool could simplify the
construction of a GUI. Therefore, we have de-
signed a new gadget which meets these re-
quirements.

This gadget displays the model layer data
in a table with lines representing the data of
different CAN messages in a CAN configura-
tion and columns representing the data of dif-
ferent attributes of the CAN messages. One
special feature of this table is its genericity.
No static elements such as the number of lines
or the number and the names of the columns
appear explicitly in the code. Instead, the
table obtains this information from the re-
spective model layer being used.

Before we proceed with an explanation of
the implementation of the table gadget we
shall take a look at the GUI in Figure 3. This
GUI contains different visual objects which
enables the user to communicate with the
underlying code. In Oberon these objects
are called wvisual gadgets. 1In the first row
there are three buttons for selecting one of
the given model layers. If the user wants to
add a new model layer he has to add a new
button and edit its properties; this can easily

be done with the Columbus tool which is part
of Oberon System 3. Below there are another
two buttons which allow the user to save and
load data of a CAN configuration, i.e. a set of
CAN messages with their proper attributes,
and a third button for activating the solu-
tion algorithms. All of these visual gadgets
are static components. The main part of the
GUI is reserved for the table gadget where
the CAN messages can be edited and the
calculated values are presented. The num-
ber of attributes in a CAN message depends
on the selected CAN model layer; therefore
the table gadget must be non-static. When
the user presses one of the top most buttons
the respective model layer is linked to the ta-
ble gadget, which adjusts itself appropriately,
i.e., the number and names of the columns
are set to the number and names of the at-
tributes, respectively.

The implementation is based on the con-
cept of visual-model-gadgets which is one of
the crucial ideas in Oberon System 3. Model
gadgets can be considered as a container
where different kinds of data are stored and
visual gadgets are objects which can visual-
ize this data. So, there has to be a link be-
tween the visual and the model gadget, but
this connection should be as general as possi-
ble. Then, for example, we can use a table for
displaying CAN messages or any other data
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Figure 3 Graphical user interface of CAN Tool

that can be represented in a table. This de-
pends on the model gadget which is linked to
the visual gadget and which, of course, does
not know that its data is written to a table.

In Oberon System 3 messages are used to
connect objects to each other.? Every gadget
is derived from the class Object which owns
a method named handler. This method inter-
prets the known messages and delegates the
task of interpreting unknown messages to an-
other handler, typically the handler of the su-
perclass. Many predefined messages for stan-
dard tasks exist, e.g., to transfer keyboard
input or to inform a visual gadget that it
should draw itself to the screen. Of course,
many of these messages are used in the table
gadget, but the only message relevant to the
user, who wants to add a new model layer, is
TableMsg.

As usual in the Oberon System 3 the vi-
sual gadgets take the active part of the com-
munication. They inform the model gadgets
that data has to be read or written. This
is the task of the TableMsg. When the user
enters data into the table, the table sends
a TableMsg to the model gadget; this mes-
sage contains the input data and the desti-
nation where the data shall be written to.
Similarly, when the table updates itself, the
message contains the address of the data to
To address a special destination
the lines of the table are numbered and the

be read.

2The collision of terms in “Oberon messages” and
ing we shall use these explicitly where required.

columns are represented by a unique name.
This, of course, reflects the use of the table
in the CAN Tool since the columns represent
the attributes of the CAN messages which are
identified by unique names. Reading these
names from the model gadget is another im-
portant function of the TableMsg.

More details of the (visual) table gadget
are not relevant to the user. If he wishes to
add a new model layer this has to be im-
plemented in an appropriate model gadget
which, among other things, has to react to
the TableMsg. First of all there exists a base
class for all model gadgets that should be dis-
played in the table gadget. Its name is Ta-
ble and it is implemented in a module named
TablelO. All table model gadgets must be ex-
tensions thereof.

Besides class Table another two classes ex-
ist that form a base for all model gadgets that
are to represent a CAN model layer. They
can be found in module BasicStructure. Their
names are CANConfiguration which is derived
from Table and CANMessage which is derived
from the base class of all model gadgets.
Since each model layer is implemented in sep-
arate modules, extensions of theses classes
can be named equally to ease readability of
the code. CANMessage manages the data for
one CAN message. Here, the user has to add
variables for new attributes and adjust the
handler. CANConfiguration manages a num-

“CAN messages” is unfortunate. To avoid a misunderstand-



ber of CANMessage objects and stores global
data of a configuration.

The kind of modification mentioned
above can easily be achieved by re-using code
of a given model layer. Only a few lines of
code have to be added or changed.

5.2 Prototypical realization based
on Java

At the time of writing this paper another
variant of the CAN Tool is being imple-
mented using the language Java. Although,
as discussed in previous sections, an Oberon-
based implementation of the CAN Tool has
many attractive features Java has gained an
enormous importance during the last few
years. One of the reasons is that Java-written
applications can be shared across the inter-
net. Therefore, we have decided to imple-
ment another variant of the tool using the
language Java. In passing it should be noted
that, inspite of the obvious syntactical sim-
ilarities between Java and C++, there are
several structural relationships and historical
connections between Java and Oberon, see
[Frag8] for a review.

In principle, the module structure of the
Oberon implementation can be transferred
to the Java version. Here, the modules are
represented by packages and the extensible
records are replaced by Java classes. Since
the tool does not have to fit into a gadget en-
vironment as in Oberon, no message handlers
are used.

Essentially, the addition of a new CAN
model requires a similar sequence of steps as
in the Oberon variant. However, there are
substantial differences between Oberon Sys-
tem 3 and Java in a standard environment
with respect to creating GUIs. In Java, the
user has to inform the applet about the CAN
model being used, which is identified by a
unique name and make the corresponding
code available. This information is handled
by parameters inside of the html code where
the applet is included.

From a user’s point of view, the GUIs
of the Java and the Oberon variants have

essentially the same components: there are
buttons for selecting a CAN model, a table
where the different CAN message data can
be entered and a button for activating the
appropriate solution method of the model.
Since reading and writing data to an external
medium (e.g. a hard disk) is a critical action
for an applet, we have not included store and
load buttons in the GUI in the present im-
plementation.

6 Conclusions

This paper presents two variants of an exper-
imental prototype of a tool supporting tim-
ing analyses of CAN systems. The architec-
ture of this tool relies on some novel ideas
of software technology as conceived and real-
ized during the past decade in a particularly
clear and simple way in the Oberon project.
One of the variants utilizes the gadgets of
the Oberon System 3, the other one is, at the
time of writing this contribution, being im-
plemented in the language Java.

Although, presently, there seems to be no
widespread industrial or commercial use nei-
ther of the language nor the operating system
Oberon the Oberon-based variant of the tool
might nevertheless be useful for practitioners
who do not wish to learn any details of han-
dling the Oberon system: at system startup
an application can be activated—similarly
to most other operating systems—without
knowing any Oberon commands. The real
advantage of Oberon is its extreme compact-
ness which is ideally suited for small comput-
ers: the compiled code consists of less than
3MB (a full-size Oberon System 3 including
the gadgets subsystem) although the func-
tionality is at least comparable to other
operating systems.?

Several methods exist to analyze the tim-
ing behaviour of CAN systems, for a detailed
summary see [Rii98]. It would be desirable
to extend the tool by adding some of these,
e. g. simulation methods and numerical treat-
ment of analytical solutions of priority queues
of queuing theory.

®A corresponding value of the original, also fully graphics-based Oberon system is mentioned by Reiser in his

book [Rei91, p. 13]: it is 150 kB!
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