
Schedulability Analysis of CAN based Systems with
Precedence Constraints

C. Amaya, F. Díaz del Río, J. L. Sevillano, G. Jiménez, S. Vicente, A. Civit Balcells.
University of Seville.

We present a schedulability analysis of CAN based system. Existing analyses consider that the
worst-case occurs when all task (and messages) are released simultaneously (pessimistic
assumption). In this paper, a systematic approach to precedence analysis is presented,
considering the interference between task sequences instead of interference between single
tasks. We also apply this analysis to a DX bus (a CAN based commercially available wheelchair
controller), and we compare its predictions with those of a classical analysis. Results show
that we obtain more precise estimations (≈14%)

1. Introduction

Hard real-time systems need accurate
scheduling analysis in order to guarantee their
temporal behaviour. This analysis computes
the Worst-Case Response Time (WCRT) of
processes and then concludes that the system
is schedulable if all WCRTs are lower than
their associated deadlines. Distributed control
systems, which have recently gained great
importance, present some difficulties because
of the effects of communication between tasks.
The usual approach in the literature is to
directly apply single processor analysis,
considering all tasks running independently. As
a result, the worst-case occurs when all tasks,
including messages, are released
simultaneously. This approximation may
produce pessimistic assumptions with
important economic consequences.
A relatively simple way to improve the analysis
is to consider that tasks form sequences with
precedence constrains. This extension is
especially useful for end-to-end real-time
systems, with processes distributed along
several computation nodes. Synchronisation is
accomplished through tasks precedence
constrains. When several tasks belonging to
the same sequence run on the same node,
then precedence constrains prevent these
tasks to compete for the computational node
because they are not released at the same
time. This case is not unusual. For instance, a
typical task sequence include several
transmissions through the common channel
between nodes, and all these messages are
tasks of the "channel" node that belongs to the
same sequence. If the scheduling analysis is
able to include this effect predictions would
significantly improve.
Several works in the literature partially include
some of the effects of precedence constrains
but in a heuristic way and limited to specific

approach to precedence analysis, considering
the interference between sequences instead of
interference between single tasks. We first
describe the model, with some simple
examples, but avoiding formal proofs (a more
detailed treatment can be found in []). Then we
compare its predictions with those of a
classical analysis when applied to a DXBus
(CAN like) system. Finally, we briefly present
some conclusions.

2. System Model.

The computing model characterises dedicated
hard real time distributed systems widely used
in CAN control applications. It assumes a fixed
set of multitasking single processor nodes,
connected by one or more CAN
communication channels.
Every node uses pre-emptive scheduling to
select running task. The number of processing
nodes, task set and their priorities are fixed.
There is no special treatment of CAN
communication channel in the model, since it
can be described as a multitasking node using
pre-emptive scheduling of message
transmission [14]1. Tasks are arranged as
sequences. A sequence is a set of task
connected with precedence relationships. A
task precedes another task if the second task
is released (enters in runnable state)
immediately after the first task ends. The
model makes following assumptions on
sequences2:
• There is neither ramifications nor cycles in
chain of task executions: no more than one
task is released after any task ends. There is
only one starting task and only one (but not

1 The model and algorithm described in this work can be
directly used if communication system can be modelled in
this way. It includes point-to-point communications and
many field buses.
2
 Though the concept of sequence is widely used in end-

necessarily different) ending tasks in the
sequence.
• The release of any sequence is strictly
periodic. Non-periodic sequences can be
included in the model if there is a minimum
time between successive releases of fist task.
The term “period” means this time in non-
periodic sequences.
• The deadline of any sequence release is
always less or equal to its period.

Table I. Model parameters.

Description.
Si Refers to sequence number i.

Di Deadline of sequence i.

Pi Period or minimum time between successive
releases of sequence i.

Ri Estimation of the worst-case response time
(WCRT) of sequence i.

Ti,j Refers to j-th task of sequence Si.

Ei,j Maximum task execution time (maximum Ti,j

run time if no one task pre-empts it)
ei,j Minimum task execution time of Ti,j.

Ni,j Node number assigned to the processing
node where Ti,j runs.

Prii,j Execution priority of Ti,j.

Bi,j Blocking time of T i,j (maximum T i,j waiting time
for exclusive use of resources).

Ri,j Two meanings, depending on what method is
used to calculate sequence WCRT:
• WCRT of task Ti,j, or
• Response time of task T i,j when a release

of Si has worst response time.
{H(Ti,j)} Refers to set of tasks in node Ni,j with higher

priority than Ti,j.

Model assumptions and parameters (table I)
can be found, with changes in terminology, in
several works in the literature about end-to-end
systems schedulability [11][13][14]. This work
arranges model parameters as matrices,
changing the usual notation to show the matrix
structure (table I). Parameters on sequences
have just one sub-index, their sequence
number. They are arranged as m-elements
column vectors, where m is the number of
sequences in the system.
Parameters on tasks have two sub-indexes:
the first one is sequence numbering. The
second one is the task execution order in any
sequence release. These parameters are
arranged in mxn matrices, where m is the
number of sequences and n is the highest task
number in any sequence.
Matrix structure reflects in a simple and
compact way the sequences structure of the
system. Moreover, it easily allows comparing
different methods for WCRT in end-to-end
systems.

T2,1

Nodo 1

T4,1

T2,5

T2,3

Nodo 2

T1,1

T3,1

Nodo 3 (canal de comunicaciones)

T2,2

T2,4

Fig. 1. Simple end-to-end system, with just tree processing nodes
and four sequences.

3. Task WCRT in single processor systems.

Independent tasks in a single processor
system are modelled as single task
sequences. So, all parameters are arranged as
column vectors, as well as sequences/ tasks
WCRT. These can be computed directly
applying Rate Monotonic Analysis RMA. For a
given task, Ti,j, its WCRT is computed
analysing how system behaves when any task
releases reaches WCRT. We will name this
critical behaviour for Ti,j.
There are a huge number of different critical
behaviours for a given task, even for relatively
simple system. However task response is
identical in all of then. RMA uses this by
computing response time of the simplest
critical behaviour for every task. Fig. 2
illustrates the simplest critical behaviour for a
sample task. The sample task and all higher
priority tasks are released simultaneously and
they all run during their maximum execution
time. As any task release is periodic, some
higher priority tasks can be released several
times before the delayed task finishes (see T1,1

in Fig. 2)

E1,1 E2,1
tE3,1 E1,1

New release of T1,1

E1,1

E2,1

E3,1

+

Priority

–

Critical instant

Fig. 2. Critical behaviour for T3,1 in a single processor system
with 3 tasks/sequences.

Several works have analysed critical behaviour
in single processor systems, developing
methods to compute task WCRT [4][5][8].
A widely used one, by Audsley et al. [4], states
that task Ti,j WCRT can be computed using
equation:

{ }
ml

THT l

ji
jijiji E

P

R
EBR

jiml

,
)(

,
,,,

,,

�


�
�

�
�
�

�
++= (1)

where B and E contains delays inherent to

we can consider the summatory as the
interference with task Ti,j, Ini,j; that is, the
maximum delay in Ti,j from higher priority
tasks, during a time interval of length Ri,j.
Audsley et al demonstrate that equation (1)
can be solved iteratively [4].
We will name interference function any
function getting an estimation of the
interference with a given task during a given
time interval.
At n-th step of the iterative process associated
with equation (1), the interference function can
be denoted as:

() ml
THT ml

n
jin

ji
n

ji E
P

R
RInIn

jiml

,
)}({ ,

,
,,

,,

�


�
�

�
�
�

�
== (2)

Equation (1) is applied task by task to all tasks
in the system. Matrix organisation of
parameters allows equation (1) to be
expressed in matrix form, including all tasks:

()
EBR

REBR
+=

++=+

0

1 nn In
(3)

In(R) is now a vector function operating over
task WCRT vector. Elements in the resulting
vector are computed using equation (2).

4. Sequence WCRT in distributed systems.

Equation (3) can be used in end-to-end
systems replacing vectors with mxn matrices
(m is the number of sequences and n is the
maximum number of tasks in any sequence). If
we find a function In(R) satisfying the following
conditions:
C1. Rn converges to some matrix R after a

finite number of iterations in (3).
C2. Response time for any sequence Si is less

than or equal to the sum of i-row elements
in matrix R.

The resulting matrix, R, can be used to
estimate WCRT of any sequence Si just adding
the elements in row i.
Variations in estimation methods
fundamentally came from different ways to
deal with precedence constrains. Such
variations can be expressed in equation (3) as
different interference functions.
The easiest method to compute matrix In is
simply use equation (2) for every element.
This method is widely used in practical end-to-
end system analysis, because the interference
function is simple and the iterative process
satisfies conditions C1 and C2,
However, under certain conditions, sequence
WCRT can be overestimated since
precedence constrains are ignored.
Consider the example showed in Fig. 1. T4,1

has the highest priority and a much longer
period than any other tasks. In any release of

equation (2) is used as interference function,
interference of T4,1 is included twice in the
WCRT estimation for S2, since it is
independently added to WCRT of T2,1 and T2,5.
This method overestimates sequence WCRT
because critical behaviours always have lower
response time.
These effects appear when any sequence has
more than one task running in a processing
node. We will say then that the sequence has
recurrent tasks in this node. Sequences with
recurrent tasks are common in distributed
systems, mainly when there is shared
communication links, like CAN systems. As the
CAN bus is treated as a processing node,
there are recurrent tasks in a sequence when
there are two or more message transmissions
included in it.
A wide range of recurrence-associated effects
causes overestimation of sequence WCRTs.
Several works deal with some of them to
compute more accurate estimations than RMA
[13][12]. However, computations always use
heuristic methods to deal partially with
precedence constrain effects. There is no
systematic approach for the treatment of
precedence constrains. In fact, works revised
show correctness in case studies, but they
neither give nor reference demonstrations on
general correctness of results.
Next sections present the main features of a
new computing method, named MIBS
(Maximum Interference Between Sequences),
for estimating sequence WCRT. Correctness
demonstrations cannot be included it this work
due to space limitations, but they can be found
in [2], as well as detailed descriptions of
method and its algorithms.

5. The MIBS method.

The MIBS method computes function In(R)
taking into account task precedence
constrains, getting accurate estimations of
sequence WCRT. The mayor distinction from
other methods is that it studies critical
behaviour of sequences, instead of tasks.
There is also a significant change in the
meaning of matrix R elements. Now, Ri,j is the
response time of Ti,j for any release of Si

having WCRT. So, Ri,j can be shorter than
WCRT of Ti,j.

6. Computing interference matrix.

Function In(Rn) computes interference matrix
in every iteration of algorithm associated to
equation (3). Algorithm <ComputeIn> (see
Fig. 3) implements interference function, using
MIBS method, to get the interference matrix.
Interference matrix is computed row by row.
Row i stores the maximum interference of

computed using algorithm <SlinSi>. Given any

orderly pair of sequences, i.e. Sl y S i, <SlinSi>

adds in row i a vector with maximum
interference of Sl with Si. This vector contains

the delay due to Sl, distributed over tasks of Si,

when releases of Si respond with WCRT.
New In does not directly replace the
interference matrix computed in preceding
iteration. Before doing so, it is modified as
shown by line 7 in Fig. 3. This ensures
convergence of succession R1

i,j, R2
i,j, R3

i,j, …
for any element of R, so convergence of the
process associated to equation (3) is
guaranteed.

<ComputeIn>

Matrices contain system parameters:
E Maximum task executing times.
e Minimum task executing times.
B Maximum blocking times.
N Task processing node numbers.
Pri Task priorities inside their nodes.
P Sequence periods (column vector).
D Sequence deadlines (column vector).

Output:
In Interference matrix. Ini,j is interference
(delay) in Ti,j due to higher priority tasks when any
release of Si has WCRT.

 1. PreviousIn ß In
 2. <write 0 to In elements>
 3. FOR i ß 1: number of sequences
 4. FOR l ß 1: number of sequences
 5. IF l ≠ k
 6. <SlinSi>

 ENDIF
 ENDFOR
ENDFOR

 7. Ini,j ß max(PreviousIni,j, Ini,j),
 for elements Ini,j in In.
Fig. 3. This algorithm computes interference matrix using MIBS
methods (variables in bold-face are matrices).

7. Interference between sequences.

<SlinSi> (Fig. 10), computes the interference

of Sl with Si looking for a critical behaviour of

Sl on Si. To do so the concept of sequence

executions is introduced. A execution of Sl on

Si is any possible behaviour of both sequences
considering what tasks of Sl delays tasks in Si.

The algorithm analyses all possible executions
of Sl on Si that may have maximum

interference with Si: that is, it analyses all
possible executions that may be critical
behaviours.
If interference of all these executions is
computed, we just have to look for the

maximum to get the maximum interference
vector of Sl with Si.

Obviously, there are a huge number of
different executions Behaviour of any
execution depends on sequence release times,
interactions with other sequences, task
execution times in both sequences, etc. Given
any pair of sequences, it can be null-
interference executions (Fig. 4.A), or non-null
interference executions, with interference
taking place in different tasks and different
moments (Fig. 4.B and C)

0
time

T2,2T2,1

T2,2T2,1

T2,2

T1,1 T1,2 T1,3

B) T1,1 T1,2 T1,3

C)

A) T1,1 T1,2 T1,3

T2,1

Task running in node 1

Task running in node 2

Fig. 4. Sample executions of S1 on S2 in a system with two
processing nodes and two sequences. To simplify graphics, we
assumed all tasks in S1 having higher priority than tasks in S2.
Assuming both sequence periods much higher than WCRT saves
us from draw multiple cycle executions.

So, it is unfeasible to compute interference for
all possible executions except for very simple
sequences.
<SlinSi> considers some properties of

executions with critical behaviour to drastically
reduce the executions to analyse.
The execution with critical behaviour in Fig. 5
can be found applying the algorithm to
sequences in Fig. 4.

E2,2

E1,3E1,2

E2,1

R2

Task running in node 1

Task running in node 2

Fig. 5. Execution of S1 on S2 with maximum interference.

In this execution, the release of S2 has WCRT
because tasks in both sequences execute for
maximum time (Ei,j), and T1,2 is released just
before the end of T2,1. Next task in S2, T2,2, is
delayed again by a task in S1, T1,3.
This is one of the many possible executions of
S1 on S2 with maximum interference. They
differ in execution of T1,1, that does not affect
the delays of S1 in S2.

8. Conditional interference.

This section uses sequences in Fig. 5 to
illustrate how algorithm <SlinSi> works.

<SlinSi> processes S2 task by task. It looks for

some characteristics of execution of S1

interfering as much as possible with T2,1. Any
execution of S1 where T1,2 runs for E1,2

produces maximum delay to T2,1. There are
many executions behaving this way. Some of
then are shown in Fig. 6.

B)

E2,2E2,1

C)

A)

E2,2E2,1

E1,2

E2,2E2,1

E1,2

E1,2

t

Fig. 6. Executions of S1 producing maximum delay to T1,2.

In general we can always categorise any non-
null interference execution of Sl on Si attending

to:
• What is the first task in Sl interfering with

any other in Si.
• What is the fist task on Si interfered by that

task in Si.
We will define the concept of conditional
execution on <T l,k delays T i,j> as any execution
of Sl on Si satisfying condition <Tl,k is first task

in Sl delaying Si, and this delay starts in Ti,j>.

This concept allows us to group non-null
interference executions of Sl on Si into families

of conditional executions since there is one
condition for every task pair (Tl,k, Ti,j) running in
the same node with Tl,k having higher priority
than Ti,j.
We will define conditional interference on <Tl,k

delays Ti,j> as the maximum interference of
any conditional execution on <Tl,k delays Ti,j>.
Fig. 6 shows examples of conditional
executions on <T1,2 delays T2,1> depicted up to
the end of task T2,1. If we look for interference
until that time, all examples have maximum
interference in their family.
The importance of conditional interference
comes from the fact that executions of Sl on S i

with critical behaviour are conditional
executions, but it is a priori unknown what task
pair forms the condition. However, if we can
find all the different families of conditional
executions and their associated conditional
interference, the maximum interference of Sl

with Si will be the maximum value of this set.
All the executions in Fig. 6 delay to T1,2 in the

they do not have to be equivalent for tasks
following T1,2. In fact, in execution for Fig. 6.C,
T2,2 is delayed, while it is not in executions A
and B (T1,3 ends before T2,2 begins)
Effects of conditional executions in tasks
following T2,1 can not yet be established while
analysing T2,1. So, <SlinSi> saves information

about conditional executions that will be used
later, in tasks following T2,1 (Fig. 7).
This information is saved as elements of the
set {CondID}. They describe executions that
could have maximum interference.
As <SlinSi> processes S i task by task, starting

from the first on, given a task Ti,j, the
information available covers execution
behaviours up to this task. The elements of
{CondID} contain two kind of information:
• Interference vector. It stores conditional
interference from Ti,1 to Ti,j.
• Phase information. It includes what task of
Sl last delays Ti,j and what is the interval such

a Sl task ends, in any execution from the

described family (Fig. 7). This information will
be used later to find out executions of this
family that can interfere with tasks following Ti,j.

CONDID1:

E2,2E2,1

E2,2E2,1

E1,2

E1,2

phase

Interference vector:
[E1,2 0 0]

Fig. 7. Information for conditional executions on <T1,2 delays to
T2,1> contains interference until T2,1 and phase information.

For every task Ti,j of Si, the algorithm <SlinSi>:

P1. Creates a description of conditional
interference for the task of Sl that can delay

Ti,j.
P2. Analyses the elements in {CondID}
checking for execution that can interfere with
Ti,j.

Returning to our example, process P1 creates
only one description of conditional interference
for T2,1 (CONDID1). For T2,2, process P1
creates three new descriptions: CONDID2,
CONDID33 and CONDID4 (Fig. 8). Then,
<SlinSi> uses process P2 with elements of

{CondID} (in this case CONDID1).

3
 CONDID2 and CONDID3 are in family of conditional

executions on <T1,1 delays T2,2>. However, after T2,2 ends,
executions described by CONDID2 can behave in a completely
different way, than those described by CONDID3. For such

The result can be new elements containing
conditional interference descriptions of the
executions described by preceding elements
that can delay T2,2 (Fig. 9).
Every element of {CondID} has an interference
vector containing interference from Ti,1 up to
the task in process when the element was
created. After the last task of Si is analysed,
the algorithm adds to row i of interference
matrix the vector with maximum interference
(line 9 in Fig. 10).

E2,2

E1,1

E2,2E2,1

E2,2E2,1

E1,3

E1,1

E2,2E2,1

E1,3T1,2

E2,2

CONDID2: Includes delay due to S1 after end of T1,1 and T2,2

CONDID3: Includes delay due to S1 after end of T1,3 y T2,2

CONDID4
[0 E1,3 0]

[0 E1,1 0]

[0 E1,1+ E1,3 0].

Fig. 8. Conditional interference descriptions created for T2,1.

The element of {CondID} containing this vector
is a description of the executions of Sl on Si

with critical behaviour.

E2,2E2,1

E1,2

E2,2E2,1

E1,2 E1,3

Conditional execution
analysis

CONDID1

CONDID5

Interference vector: [0 E1,2 E1,3]

phase

Fig. 9. Process P2 analyses elements in {CondID} to generate
new elements if executions described can delay T2,2.

<SlenSi>
Inputs:
Sl Sequence source of delay.

Si Delayed sequence.

Output:
 Adds to row i of In maximum interference
of Sl with Si.

 1. {CondID} ß {∅}
 2. FOR j ß 1: last task in Si
 3. {NewsCondID} ß {∅}
 4. FOR every task Tl,k∈{H(Ti,j)}
 5. <P1:adds els. to {NewsCondID}>
 ENDFOR
 6. FOR every CondIDElement ∈ {CondID}
 7. <P2:analyses it, adding ressults
 to {NewsCondID}>

 ENDFOR
 8. {CondID} ß {CondID} ∪ {NewsCondID}
ENDFOR
 9. Ini ßIni + <interference vector in
 {CondID} containing maximum
 interference>

Fig. 10. Maximum interference of a sequence with other.

9. Sample application: DXBus based
wheelchair controller.

As sample application, we apply MIBS method
to a DXBus based wheelchair developed at the
University of Seville, which we call DXSIR (Fig.
11).

Control
unit

Power
Unit

Node 3

Node 2

User
interface EncodersBattery

Node 4 Node 5

Node 1

DXBus(CAN)
Node 0

Standard electric
wheelchair chassis

and motors

Fig. 11. DXSIR block diagram.

DXBus is a four wire communications system
(two power lines and two data lines, CANL and
CANH) with a maximum length of 15 meters
and a transmission rate of 2/19 Mbits/s.
Basically, DXBus uses CAN protocol with
some extensions, i. e. special voltage values
on the data lines are used for “emergency
stops” or power up.
CAN identifiers are assigned to modules and
not to messages. As a result, 1 byte in the
message data field must be used to indicate
the message type, and up to 7 bytes for
message data.
During normal operation, DX modules
communicate using Network Variables (NVs).
NVs are transmitted periodically (during time
slot), with period either 20ms (fast NV) or
200ms (slow NV).
A more detailed description of DXBus can be
obtained from [10]. In this paper, we focus on
the processes associated to DXSIR functions.
DXSIR is a wheelchair with two driver wheels

The DXSIR controller is made up of five nodes
connected through DXBus (Fig. 11).
In this simple prototype, the User interface is
reduced to a joystick and some buttons. We
are particularly concerned with people with
uncontrolled movements or tremor (Parkinson,
cerebral palsy). In slight cases, we simply filter
by software the joystick input eliminating
unintentional movements [1].
The Control Unit performs a closed-loop
automatic control that converts the joystick
command into linear and turning velocity. It
also monitors the system bus, battery, etc. and
implements several navigational aids including
fixed trajectories (straight ahead or back, 90
degrees turn) and play back of recorded
trajectories. The latter avoids the difficulties of
backwards driving, and may be very useful in
small areas like bathrooms. It has been
implemented by tracking the memorised path
following [7] which requires the accurate
determination of internal coordinates. DXSIR
gets them through two optical encoders at
each drive wheel that provides rotation angle
increments ∆θR and ∆θL. This information is
also needed as feedback for the closed-loop
control, but it only requires information about
the present state. On the other hand,
memorisation of the performed trajectory
needs information along a period of time.
Besides, accuracy is important because small
errors produce great trajectory deviations. As a
result, it is recovery of performed trajectories
what imposes the maximum period between
messages from the Encoders to the Control
Unit. Actually, bus load depends mainly on this
traffic.
Díaz [6] shows that for sampling error to be
negligible with trajectories of a few tens of
meters (the maximum reasonable trajectory
length), a new pair of encoders should be
saved when [(∆θR)2+(∆θL)

2] ≥ 800 e.u., where
e.u. means wheelchair encoders units (4000
e.u. are equivalent to 2π rad or 1 meter of
linear advance). Anyway, the maximum
frequency occurs with maximum (linear)

velocities, that is, 0èè LR >= && . If we assume

a maximum velocity of 1.5 ms-1 (probably too
high in practice), then the sample period would
be 5ms. This sample frequency is too high for
the DXBus, but we can use an incremental
codification of the encoders, so that encoder
increments are represented with 7 bits for each
wheel. Since the data field of DX packets is 7
bytes, we can send 4 pairs of encoder values
every 20ms (fast NVs).

Read joystick
& buttons

Read user
command

Generate con-
trolcommand

Read
encoders

Store
encoders

Apply control
command

Internal communication (no messages).

Read Battery
state

Process
state

Decide emer-
gencystop

Apply
emerg. stop

Show battery
state

Confirm
Stop

Filter
Tremor

Encoders (1)

User Int.(5)

User Int.(10)Battery (8)

Power U. (4)

Power U. (12)

Control U.(2)

Control U.(9)

Control U.(3)

Control U.(7)Control U.(6)

Control U.(13)Control U.(11)

Message

A)

B)

Fig. 12. Processes implementing DXSIR main functions.

Fig. 12 shows the DXSIR processes with the
tasks precedence constrains. When an
emergency stop occurs, a new process is
scheduled in parallel with both the process that
interprets (and filters) user commands and the
battery gauge process. Thus, in order to
include these ramifications in our model we
need to define the concept of “false replica” of
a task.
They exist only in the model and are included
to remove ramifications while maintaining
precedence constrains. If T’i,j is a false replica
of Tl,k then:
• B’i,j= Bl,k + El,k.
• It is executed in the same node and with
same priority than Tl,k. This allows Ri,j to be
computed using the same method as Rl,k.
• E’i,j = 0. T’ i,j does not really exist, it must
not interfere with lower priority tasks.

Read joystick
& buttons

Read user
command

Filter
Tremor

User Int.(5)

Power U. (12’)

Control U.(7)Control U.(6)

Control U.(13’)Control U.(11’)

B1)

Read Battery
state

Process
state

Show battery
state

User Int.(10)

Battery (8’) Control U.(9’)

Decide emer-
gencystop

Apply
emerg. stop

Confirm
Stop

Power U. (12) Control U.(13)Control U.(11)User Int.(5’) Control U.(6’)

Battery (8) Control U.(9)

B3)

B2)

B4)

Fig. 13. Sequences modelling the processes in Fig. 12.B.

Table II lists all DXSIR tasks and their
parameters. Task priorities have been
assigned using EDM (Effective-Deadline
Monotonic) technique [9].

Table II. DXSIR model parameters.

Tasks Pi &Di

(ms)
Ei,j

(ms)
ei,j

(ms)
Bi,j

(ms)
Node
& pri.

T1,1: Read encoders 20 1 0,5 0 5, 1

T 1,2: Encoder values 1.23 1.23 0.69 0, 1
T 1,3: Store encoders &
compute control cmd.

5 2 0 1, 1

T 1,4: Control command 0.69 0.69 0.69 0, 2
T 1,5: Apply control cmd. 1 0,5 0 2,1
T 2,1: Read user interface 20 4 1 0 4, 1
T 2,2: Interface values 0.69 0.69 0.69 0, 3
T 2,3: Read user cmd. 1 0,5 0 1, 2
T 2,4: Filter tremor 6 4 0 1, 3
T 3,1: Read batt. status 200 1 0,5 0 3, 1
T 3,2: Battery status 0.69 0.69 0.69 0, 6
T 3,3: Process status 2 1 0 1, 5
T 3,4: Processed status 0.69 0.69 0.69 0, 4
T 3,5: Show batt. status 1 0,5 0 4, 2
T 4,1: False replica of T2,1 200 0 1 4 4, 1
T 4,2: False replica of T2,2 0 0.69 1.38 0, 3
T 4,3: False replica of T2,3 0 0,5 1 1, 2
T 4,4: Decide emerg. stop 3 2 0 1, 4
T 4,5: Emergency stop 0.69 0.69 0.69 0, 4
T 4,6: Apply emerg. stop 5 2 0 2,2
T 4,7: Emerg. stop ACK 0.69 0.69 0.69 0, 5
T 4,8: Read ACK 6 2 0 1, 6
T 5,1: False replica of T3,1 200 0 0,5 1 3, 1
T 5,2: False replica of T3,2 0 0.69 1.38 0, 6
T 5,3: False replica of T3,3 0 1 2 1, 5
T 5,4: False replica of T4,4 0 2 3 1, 4
T 5,5: False replica of T4,5 0 0.69 1.38 0, 4
T 5,6: False replica of T4,6 0 2 5 4, 2
T 5,7: False replica of T4,7 0 0.69 1.38 0, 5
T 5,8: False replica of T4,8 0 2 6 1, 6

There are two possible message transmission
times (for tasks in node 0), 0.69 ms for 2 bytes
and 1.23 ms for 7 bytes of data (assuming
105.3 Kits/sec DXbus). In priority column,
lower numeric values mean higher priority
Tables III and IV summarise the sequence
WCRT estimations using both Rate Monotonic
Analysis based method and MIBS method.
We can see that both models are equivalent
for sequence 1, since it contains highest
priority tasks so they do not suffer from
interference. For the rest of sequences MIBS
estimations are more accurate. Note that
example S2 will be predicted as non-
schedulable if RMA is used to estimate WCRT.
However, MIBS estimates a WCRT lower than
its deadline as it detects that T1,2 and T1,4 have
precedence constrains, and they cannot
simultaneously interfere with T2,2, while RMA
includes interference from both tasks.

Table III. Sequence WCRT estimated with RMA method.
Response time: Task (msecs) Seqs.

Seq. 1 2 3 4 5 6 7 8 Ri

1 1 1,92 5 1,38 1 10,31
2 4 3,31 6 11 24,31
3 1 5,39 36 5,39 5 52,78
4 4 3,31 6 27 4 6 4 44 98,32
5 1 5,39 36 27 4 6 4 44 127,4

Table IV. Sequence WCRT estimated with MIBS method.

Response time: Task (msecs) Seqs.

Seq. 1 2 3 4 5 6 7 8 Ri

1 1 1,92 5 1,38 1 10,31
2 4 2,62 6 6 18,62
3 1 3,31 29 3,31 5 41,62
4 4 2,62 7 21 2,62 6 2,62 44 89,86
5 1 3,31 28 19 2,07 6 3,31 44 106,70

23,4

21,1

8,6

16,2

0

0 20 40

1

2

3

4

5

S
eq

ue
nc

e

Inprovement (%)

Fig. 14. Improvement of sequence WRCT estimations from
MIBS method over estimations from RMA method.

10. Conclusions.

In this paper, a systematic approach to
precedence analysis is presented. The MIBS
analysis considers the interference between
sequences instead of between single tasks.
When applied to a DXBus based wheelchair
controller, we show that predictions of the
WCRT significantly improve. The mean
improvement in MIBS estimations as
compared with RMA estimation is about 14%
(Fig. 14). When applied to other systems, the
mean improvement is 13-18% [2] although it is
higher for sequences with a high number of
tasks with relatively low priorities in their
nodes.

11. References.
[1] A. Civit-Balcells, M. A. Rodríguez, C. Amaya, F. Díaz

del Río, L. Miró, J.L. Sevillano: “A system for the analysis
and scanning of tremor on handicapped people”. In
Assistive Technology on the threshold of the new
millenium. Eds. C. Bühler and H. Knops. pp. 539-544. IOS
Press, Netherlands. 1999.

[2] Amaya Rodríguez, C. “Análisis y evaluación de la
planificación de sistemas distribuidos de tiempo real.
Aplicación a tecnologías de la rehabilitación”. PhD Thesis.
University of Sevilla. December, 1999. It is avaible in
http://icaro.fie.us.es/~claudio/tesis.html.

[3] Amaya, C., et al. “Análisis de un sistema de tiempo real
duro distribuido”. X Jornadas de Paralelismo, Murcia,
septiembre, 1999.

[4] Audsley, N. C., Burns, A., Richardson, M. F., Wellings,
A. J. “Hard Real_Time Scheduling: The Deadline
Monotonic Approach”. Proceedings 8th IEEE Workshop
on Real_Time Operating Systems and Software, May 1991

[5] Audsley, N. C., Burns, A., Richardson, M., Tindell, K.,
Wellings, A.. “Applying New Scheduling Theory to Static

[6] Díaz del Río, F. “Análisis y evaluación del control de
un robot móvil: aplicación a sillas de ruedas eléctricas”.
PhD Thesis. University of Sevilla. 1997.

[7] F. Díaz del Río, G. Jiménez, J. L. Sevillano, S. Vicente,
A. Civit-Balcells, “A Generalization of Path Following for
Mobile Robots”. Proc. IEEE Int. Conf. Robotics and
Autom, pp. 7-12. Detroit, MI (USA). 1999.

[8] Joseph, M., Pandya, P. “Finding Response Times in a
Real_Time System” BCS Computer Journal, Oct 86.

[9] Kao, B., García-Molina, H. “Deadline Assignement in a
Distributed Soft Real-Time System”. IEEE Transaction on
Parallel and Distributed Systems, Dec. 1997.

[10] Meade, M. “DX Key Technical Description. For DX
Key Application Designers”. Dynamic Controls Ltd. 1997.

[11] Sun, J. “Fixed Priority End-to-End Scheduling in
Distributed Real-Time Systems” . Ph.D Thesis in Computer
Science, University of Illinois, Urbana-Champaign, 1997.

[12] Sun, J., Gardner, M.K., Liu, J.W.S. “Bounding
Completion Times of Jobs with Arbitrary Release Times,
Variable Execution Times, and Resource Sharing”. IEEE
Transactions on Software Engineering, Oct. 1997.

[13] T.-Y. Yen, W. Wolf. “Performance estimation for
real-time distributed embedded systems”. IEEE
Transactions on Parallel and Distributed Systems, Nov
1998.

[14] Tindell, K., Clark, J. “Holistic schedulability analysis
for distributed hard real_time systems” Microprocessing
and Microprogramming, April 1994.

Company: Universidad de Sevilla. Development
group: Robotic and Computing for Assistive
Technologies.
Address: Facultad de Informatica. Avda. Reina
Mercedes, s/n. 41012 Sevilla (Spain).
Phone: +34 954 55 27 79 Fax +34 954 55 27 59
e-mail: claudio@atc.us.es web: icaro.fie.us.es.

