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The wide use of CAN-based distributed systems in embedded control
applications triggered the research on the problem of transmission network
induced jitter in control variables. In this paper we introduce a variant of the
classical Genetic Algorithm, which we call Progressive Genetic Algorithm, and
show how it can be used to reduce jitter suffered by periodic messages by
imposing them initial phasing and/or changing this parameter on-line. The
approach can be applied when there is synchronisation between nodes (e.g.
using time-triggered communication on CAN) or when a centralised
dispatching scheme such as the one of FTT-CAN [1] is in use. The algorithm
was tested with two well-known sets of messages, the PSA [2] and the SAE [3].
It is shown that it is possible to completely eliminate jitter if the adequate
transmission rate is available and, if not, a satisfactory reduced jitter can be
obtained.

1. Introduction

The distributed control system approach
is gaining wider use in some activities
such as industrial control and automotive
industry. In traditional systems, control
tasks such as data acquisition, control
algorithm execution and actuation are
carried out independently by each one of
the system’s nodes. On a distributed
system each of these tasks can be done
on a different node. This means that
control variables must be communicated
across control units. This communication
is usually supported by a real-time
communication network which can be
based on CAN [4], [5].
Control variables are typically periodic,
with the actual period being specified by
design requirements and control
specifications. In a stand-alone system, it
is usually possible to conform exactly to
these requirements, because all the
necessary resources are available to the
node. However, in distributed systems,
the network is a limited resource which
needs to be shared by all the nodes. One
consequence of this is that it may be
impossible to ensure a constant time
interval between successive instances of
a message carrying a control variable.
This fluctuations of the period are

designated by jitter, and can be
represented by:

   ji,k = tsi,k – (k * Ti + Φi) (1)

Where ji,k is the jitter for the k-th instance
of variable/message i in a set of M
periodic messages (variables), tsi,k is the
actual time of transmission for that
instance, Ti  is the period of variable i
and Φi is the time of the beginning of
transmission of instance 0, also known
as initial phase.
It is possible to measure the overall
message jitter by integrating the
individual jitter for each message over a
time interval with the length of the
system’s macro-cycle. The interval of
interest (I) for observing jitter is the
macro-cycle, the least common multiple
(LCM) of the individual messages’
period. Overall system jitter (OSJ) can
thus be calculated as:
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Several problems related to transmission
jitter have already been analysed and
reported. In [6], Hong explores some
problems caused by jitter-induced period
variation. Specifically, if the instanta-



neous period becomes too high or too
low it may fall out of the admissible data
input rate for the receiver. Additional
studies by Stothert et al. [7] show the
degradation in the performance of
feedback-loop controllers due to jitter in
sampling and actuation variables. In [8],
G. Juanole shows that transmission jitter
in a CAN network affects the phase
margin of a control loop.
In this paper, a novel technique for jitter
reduction based on genetic algorithms is
present. First, the concept of network
jitter and associated problems are
discussed. Next, genetic algorithms are
introduced and briefly explained,
following an example of a simple
application to this problem. An enhanced
genetic algorithm variant is then
presented, and the paper is finished by
exposing and discussing the results
achieved.

2. Jitter Minimisation

It is obvious from (1) and (2) that OSJ is
ultimately dependent of M, Ti and Φi (I is
directly dependent of Ti, and tsi,k can be
determined if M, I, Ti and Φi  are known).
M and Ti are application dependent
values that cannot be easily changed
without major impact on system’s design
and schedulability. The remaining free
variable is Φi, which will be used as
optimisation parameter. That is,
optimisation is achieved by finding an
adequate set of initial phasings Φi for
which OSJ is minimum.
This jitter minimisation technique is
application-independent, and can be
easily applied to any off-line scheduled
fieldbus. It is well suited for time-
triggered fieldbuses, such as FIP [9],
TTP [10] or the upcoming time-triggered
CAN (ISO TC22 / SC3 / WG1 / TF6). In
fact, all that is necessary is to find an
optimised phasing set for the initial
scheduling table (Figure 1).
It is also possible to use this technique
for on-line optimisation in a system that
supports dynamic changes to the
phasing set. One such system may be
FTT-CAN [1]. This would allow gradual
improvement of jitter over time, being a
good supplement to other capabilities

such as on-line admission of new
messages.
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Figure 1 – Applying jitter minimisation

3. Genetic Algorithms

Genetic algorithms (GA) are a class of
stochastic optimisation  mechanisms for
multidimensional and multi-modal search
spaces based on biological principles
such as natural selection and genetics
[11][12].
There is a great variety of methods which
may fall under this classification, but the
general algorithm may be described by
the following procedure:

Procedure GA
t=0;
Initialise P(t)
Evaluate P(t)
While stoping_criterion_false do

t=t+1
P’(t)=select_from P(t-1)
P’’(t)= use_op_modification P’(t)
Evaluate P’’(t);
P(t)=merge P’’(t), P(t-1)

End_do

The GA operates by iteratively replacing
a set of candidate solutions for the
problem with a new, eventually better
set. The algorithm stops when a
predefined condition (such as a given
number of iterations) is met. These sets
are usually referred to as the population,



and each candidate solution as an
individual.
Each individual is normally composed by
several smaller elements called genes,
which can hold different values or alleles.
The set of genes that each individual
contains is sometimes designated by
genome.
On start-up, the initial population is
usually (but not always) generated
randomly. A new set of individuals is
generated by applying some genetic
operators such as crossover and
mutation to selected individuals from the
previous population. The new population
results from the combination of the new
individuals  with the old population. This
combination can have different
proportions from each set. In a total
replacement GA the old population is
completely discarded, while in a steady-
state GA, only one or two individuals can
change across consecutive populations.
Selection of individuals for generating
new candidate solutions is usually based
on the fitness, which is a measure of the
quality of the solution one individual
represents. The best solutions are those
corresponding to individuals that have
higher fitness.
GA’s are successful at solving many
difficult problems due to their capability
of exploring and exploiting complex
search spaces efficiently.
For increased efficiency, domain-specific
knowledge is usually included in the
algorithm. This is reflected in the
selection of appropriate data structures
and by “tuning” the genetic operators
[13].

3.1 A Simple GA Approach for Jitter
Minimisation

Jitter minimisation can be achieved by
using a simple implementation of a
standard genetic algorithm. We will refer
to this implementation as the “simple GA”
(sGA).
The genome is a simple vector that holds
the values of Φi for all the messages.
Each allele is an integer within the range
[0, T i [ that represents the initial phase of
message i.
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Figure 2 - Phases representation.

The best solutions are those that
generate smaller OSJ, so the fitness of
each individual is computed as
1/(OSJ+1). OSJ is computed by
simulating network usage during a
macro-cycle (this simulation is described
in greater detail in a following section).
The genetic operators used are one-
point crossover and mutation. Crossover
mimics the sexual reproduction
mechanism as seen in nature and works
as follows: two individuals (the
progenitors) are randomly chosen from
the population with a weighted probability
proportional to their fitness. Then, the
genomes of both progenitors are split in
two portions at a random point. Finally,
two new individuals (the descendants)
are generated concatenating each
portion of the genome with the
complementary portion coming from the
other progenitor’s genome.
Crossover will be applied with 100%
probability. This means all descendants
are generated with crossover.
Mutation is a simpler operation where a
new genome is derived from the original
by inserting a random change in the
value of one of the genes. This operation
is performed after crossover with low
probability (3%).
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Figure 3-One-point  crossover.
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The initial population is generated
randomly. Then, at each iteration, two



descendants are generated using the
crossover operator (and eventually
mutation). Any descendant who is better
(fitter) than the worst individual currently
in the population, will replace it in the
next iterations population. So, at most
two individuals can enter or leave the
population in each iteration.
The algorithm ends when the population
is stable for a consecutive number of
iterations (200 iterations). This happens
when none of the descendants are better
than the worst individual during this
timespan.

3.2 OSJ Computation

In this problem, fitness evaluation is
made by running an event-driven
simulator that computes network usage
for during a macro-cycle. The duration of
this macro-cycle is equal to the LCM of
the messages’ periods.
This simulator holds the system’s current
state in two vectors: one holds the
elapsed transmission time of messages
and other holds the time for the next
release or end of transmission of each
message. This information allows the
simulator to make variable time
increments that are as large as possible.
These variable time increments allow the
simulator to scan the system’s state
along the macro-cycle efficiently.

Figure 5 - Simulation example

On start-up, the network is considered to
be free of use. This may not be accurate,
as some messages can “wrap-around”
the macro-cycle. To eliminate this effect,
simulation results are considered only
after a predetermined transient time as
elapsed.
The transient time is determined by
simulation of network usage for a worst
case of simultaneous release of
messages. The duration of the transient
state is equal to the time it takes for the
message with lower priority to end
transmission. From this point onward, the

system’s state can be determined
without knowledge of its previous state.

3.3 Progressive Genetic Algorithm
(proGA)

Although the sGA is functional and offers
satisfying results, it is rather inefficient
because fitness evaluation time is
dependent on the LCM of the periods of
all messages. This can be quite
significant for complex systems with a
large number of messages.
This fact has lead to the development of
a variant GA where the number of
messages simultaneously analysed is
reduced, with a correspondent decrease
in the LCM.
This variant, the progressive GA
(proGA), works by solving the problem
for consecutively bigger subsets of
messages of the original set until all the
messages are considered.
The overall algorithm is described
bellow:
û Solve the problem for the set of the

two messages with higher probability.
This is done using the sGA
previously described.

û Add the next message with the
highest priority to the previous set.
Initialise a new population with the
results for the previous set (+ a
random phase for the new message).
Solve the problem for this set of
messages using the sGA, using the
computed population as the initial
one.

û Repeat this process until the set of
messages includes all the messages
in the original system.

This algorithm is more efficient and
effective than the sGA, because part of
the solution is computed using only a
reduced number of tasks. All the results
presented here were obtained with the
proGA.
One additional advantage of the proGA
is the fast availability of a partial solution
for the messages with higher priority.
This feature can make this procedure
usable as part of an on-line scheduler
and, since the most of the bandwidth is
usually required for the messages with



lower period (the ones with higher priority
under Rate Monotonic), can lead to
partial solutions quite close to the actual
optimum solution.

4. Experimental Results

For assessing the quality of the
algorithm, several tests were conducted
with two message sets usually known as
the SAE (Society of Automotive
Engineering) [3] and PSA (Peugeot
Societé Automobile) [2], which define a
typical set of control variables for
automatically  guided vehicles and
automobiles, respectively. CAN networks
with transmission rates of 125 Kbit/s and
250 Kbit/s were considered for
determining the time values for the
transmission of each message. The
message set was scheduled with the
Rate Monotonic Scheduling policy.
No experiments were conducted on the
SAE benchmark at 125 Kbit/s because at
this speed the set of messages isn’t
schedulable (in the worst case scenario
of simultaneous release of messages).
Several experiments were conducted
using varying resolutions for the initial
phases’ specification. These resolutions
were set at 1 µs, 10µs and 100 µs.
Because of the large size (over 50
messages) of the SAE set, there is only
a presentation of the optimal phasing for
the messages of higher priority.
All times for initial phasing are presented
in µs and execution time average in s.
OSJ values obtained for best random
phase sets were selected after the
generation of 5000 random sets for each
situation.
In the tables below it can be seen that
the OSJ obtained with the genetic
minimisation is, in the worst case which
is the PSA at 125Kbps, one order of
magnitude below the OSJ of random
phase sets. When the bus is not so
loaded as in that case the improvement
in OSJ is much higher and it is possible
to obtain a complete elimination of jitter
as in the SAE set at 250Kbps, even with
a coarse timer resolution of 100µs.

Condition OSJ
Simultaneous release of messages 3679408

Best random phase set (1 µs resolution) 103613

Best random phase set (10 µs res.) 103524

Best random phase set (100 µs res.) 110900

Table 1. Jitter values for not optimized
systems (PSA at 125 Kbit/s).

Condition / Resol. 1µs 10µs 100µs
Lowest OSJ 12640 12640 22640
Average OSJ 13947 13364 14619
Worst OSJ 16256 15272 16304
Exec. Time Average 160 171 124
Nº of Experiences 20 20 20

Table 2. Summary of optimization results
for PSA benchmark at 125 Kbit/s.

Variable / Resol. 1µs 10µs 100µs
1-engine controller 0 0 0
2-wheel angle sens. 1200 3170 13200
4-AGB 6778 12740 1800
7-device x 1800 2720 11800
3-engine controller 5956 16320 15900
5-device x 15909 6060 4000
9-device y 8221 11970 14300
6-device x 18383 21900 5900
8-bodywork sensor 14072 14260 28200
11-AGB 3976 24280 8300
10-engine controller 24047 4190 18200
12-device x 12686 28640 22600

Table 3. Best phasing set for PSA
benchmark variables at 125 Kbit/s.

Condition OSJ
Simultaneous release of messages 1764704
Best random phase set (1 µs res.) 5962
Best random phase set (10 µs res.) 5544
Best random phase sets (100 µs res.) 5488

Table 4. Jitter values for not optimized
systems (PSA at 250Kbit/s).

Condition / Resol. 1µs 10µs 100µs
Lowest OSJ 0 0 0
Average OSJ 0 0 0
Worst OSJ 0 0 0
Exec. Time Averag 28 28 28
Nº of Experiences 20 20 20

Table 5. Summary of optimization results
for PSA benchmark at 250 Kbit/s.

Condition OSJ
Simultaneous release of messages 8435636
Best random phase set (1 µs res.) 156783
Best random phase set (10 µs res.) 163546
Best random phase set (100 µs res.) 143952

Table 6. Jitter values for not optimized
systems (SAE at 250 Kbit/s).



Condition/Resol. 1µs 10µs 100µs
Lowest OSJ 0 0 0
Average OSJ 68 178 545
Worst OSJ 230 1374 1964
Exec. Time Average 540 739 928
Nº of Experiences 20 20 20

Table 7. Summary of optimization results
for SAE benchmark at 250 Kbit/s.

Variable / Resol. 1µs 10µs 100µ
7-Accelerator Position 0 0 0
9-Brake Pressure, Line 3975 4740 3500
8-Brake Press., Master Cyl 1225 3910 4400
32-Clutch Press. Control 4382 4190 4100
49-Proc. Motor Speed 4745 2080 4700
42-Torque Command 633 3390 3800
43-Torque Measured 1477 4460 900
11-Tran. Clutch Line Press 954 1820 1200
29-High Contactor Control 6855 5420 7400
30-Low Contactor Control 8400 3120 300
14-Hi&Lo Cont. Op/Close 10358 8000 7100
25-12V Pwr Ack I/M Cont 11772 17730 600

… … … …

Table 8. Best phasing set for a sample of
SAE benchmark variables at 250 Kbit/s.

Additional experiments revealed that the
proGA is more efficient than the simple
GA. The proGA is more time-effective
and offers better results consistently [14].
The results also show that a timer
resolution of 100µs seems to be enough
to get good results out of this jitter
reduction technique. In fact, the best
results with that resolution were equal to
results obtained with the highest
resolutions in every test case.
Tables 2, 5 and 7 show that the speed of
the proGA algorithm is insufficient for
direct on-line full optimisation. However,
as the computational overhead increases
almost exponentially with the initial
number of messages considered [15],
the algorithm’s iterative approach opens
the possibility of implementing an on-line
optimiser. The successive partial results
of the messages with higher priority can
be supplied to a communications
dispatcher thus making the system
evolve to a near-optimal message
phasing. This may also prove to be
effective, because the optimisation of the
messages with higher priority just
occupies a small percentage of the total
execution time of the algorithm, and
those are the messages with most
impact on overall bandwidth occupation.

5. Conclusions

In this paper a technique based on
genetic algorithms is proposed to reduce
network induced jitter in periodic
message transmission in fieldbuses. This
technique requires that it is possible to
impose the release instant of the
different instances of the periodic
messages. It can then be applied in CAN
when a protocol such as FTT-CAN is
used or with a time-triggered solution like
the one under standardisation through
ISO (TC22 / SC3 / WG1 / TF6).
The experimental results show that jitter
can be strongly reduced or even
completely eliminated if the fieldbus is
not too loaded with the message
transmission.
Although the technique imposes a
relatively high computational overhead,
at least considering the usual processors
available in distributed embedded
systems, it is possible to apply it
incrementally using a variant of the
algorithm in which successive partial
solutions are obtained for the messages
with higher priority. This seams to make
feasible the development of an on-line
optimiser (in software or hardware) that
can operate with a communications
scheduler or dispatcher.
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