Flexible Time-Triggered Protocol for CAN — New
Scheduling and Dispatching Solutions

J. Fonseca, E. Martins, L. Almeida, P. Pedreiras, P. Neves

One of the possibilities to build robust communication systems with respect to their temporal behaviour is
to use autonomous control based on the time-triggered paradigm. The FTT-CAN - flexible time-triggered
protocol, relies on centralised scheduling but makes use of the CAN native distributed arbitration to reduce
communication overhead. There, a planning scheduler is used within a master node to reduce the scheduling
run-time overhead. On-line changes to the communication requirements can then be made under guaranteed
timeliness. In addition FTT-CAN also allows an efficient combination of both time-triggered and event-
triggered traffic with temporal isolation.

In this paper, recent evolutions of the initial protocol definition concerning transmission of synchronous
and asynchronous messages are presented. These consist in a time division of the elementary transmission
window which optimises the available bandwidth for asynchronous messages, keeping the timeliness of
synchronous messages without jeopardising their transmission jitter. A novel solution for the planning
scheduler is also presented. It consists in an FPGA-based coprocessor which implements the planning
scheduler technique without imposing overhead to the arbiter CPU. With it, it is possible to reduce strongly
the plan duration thus allowing on-line admission demanded by system elements and, also, to extend the

protocol application to high-speed networks.

1. Introduction

A main feature that distinguishes the recently
introduced FTT-CAN protocol (Flexible Time-
Triggered communication on CAN) [1,2] from other
proposals concerning time-triggered communication on
CAN [3], is that it supports dynamic communication
requirements by using centralised scheduling with on-
line admission control.

Centralised scheduling based on the planning approach
[4] makes it easier to perform on-line changes to the
communication requirements, while the CAN
distributed access arbitration allows the communication
overhead to be kept well below the levels typically
found in centralised access control systems [1].
FTT-CAN supports both time-triggered and event-
triggered traffic, with temporal isolation being achieved
by means of a double-phase elementary cycle concept.
The former type of traffic is handled in the synchronous
phase and the latter in the asynchronous one. The
distributed arbitration is also used to simplify the
handling of asynchronous communication requests,
resulting in reduced overhead and, consequently, in
shorter response times.

This paper describes current developments concerning
two aspects of the FTT-CAN protocol: the dispatching
of synchronous and asynchronous traffic, and the

scheduling implementation.

A study of the relative positioning of the synchronous
and asynchronous phases within the transmission
window, is presented in section 2. The emphasis here is
on the asynchronous messaging system. A discussion
concerning the support of the event and the time-
triggered paradigms in FTT-CAN, opens this section.
Next, in section 3, we present a preliminary
implementation of a hardware scheduling coprocessor
for FTT-CAN based in the planning technique. This
coprocessor aims at decreasing the response time to
changes in the system configuration or message
parameters, opening also the possibility of automatic
on-line changes requested by system nodes or human
operators, thus improving system reactivity.

Finally, section 4 concludes the paper.

2. Combining Synchronous and
Asynchronous Traffic in FTT-CAN

It is commonly accepted [3,5] that time-triggered
communication is well adapted to control applications
that typically require regular transmission of state data
with low, or bounded, jitter (e.g. motion control, engine
control, temperature control, position control). On the
other hand, event-triggered communication is well
adapted to the monitoring of alarm conditions that are

* DET / IEETA, Universidade de Aveiro, P-3810-193 Aveiro, Portugal
{jaf, evm, Ida}@det.ua.pt; pedreiras@alunos.det.ua.pt; pneves@ua.pt

supposed to occur sporadically and seldomly, and also
to support asynchronous non-real-time traffic e.g. for
global system management.

However, many applications do require simultaneous
support for cyclic transmission of state data, sporadic
transmission of alarms as well as of non-real-time data
for system management. Hence, a combination of both
paradigms in order to share their advantages seems
desirable, particularly if it is possible to enforce a
temporal isolation of both sorts of traffic. Otherwise,
the event-triggered traffic would spoil the properties of
the time-triggered one. With such combination it is then
possible to use a time-triggered approach to manage the
periodic real-time traffic with controlled jitter and with
high efficiency under worst-case requirements. Simulta-
neously, a portion of the network bandwidth is kept
available for sporadic event-triggered traffic, either
real-time (e.g. alarms) as well as non-real-time (e.g. on-
line management and reconfiguration).

A typical solution enforcing temporal isolation between
the two sorts of traffic, is to use the elementary cycle
concept, i.e. a fixed duration window composed of two
phases, one for each sort of traffic (e.g. discussed by
Raja and Noubir [6]). The bus time is slotted in
elementary cycles resulting in an alternate sequence of
time-triggered and event-triggered phases. The
maximum duration of each phase can be tailored to suit
the needs of a particular application. If each sort of
traffic is forced to remain within the respective phase
then, temporal isolation is guaranteed. This concept is
used, for example, in the WorldFIP fieldbus [7].
However, since this fieldbus uses a MAC protocol
based on centralised arbitration, the handling of event-
triggered (aperiodic) traffic is rather inefficient
requiring a considerable amount of bandwidth to allow
the master node (arbitrator) to become aware of
aperiodic requests. In the Foundation Fieldbus [8], one
of the 8 profiles of the new international fieldbus
standard, a somewhat similar scheme is used. Instead of
an elementary cycle, a particular node known as Link
Active Scheduler contains the schedule for the time-
triggered traffic. This node grants the other nodes, Link
Masters, the permission to control the bus and transmit
event-triggered messages during precise time windows,
only, that do not overlap with the time used by the time-
triggered messages. In many other fieldbus systems,

— Elementary Cycle (EC) ——
e T

EC Trigger Synchronous messages
Message

Trigger message data field
Byte 1 Byte 0
.00 00100000 00010110

bit13’ pita’ bit2” N bitt

Fig. 1. EC Trigger Message data contents.

that do not use the elementary cycle concept, it is still
possible to specify cyclic time-triggered data exchanges
but with no temporal isolation from the event-triggered
traffic, e.g. PROFIBUS [7], CAL [9], DeviceNet [10].

2.1- FTT-CAN Asynchronous Messaging System

In FTT-CAN a particular node, the master, generates a
periodic message used to synchronize all other nodes in
the network. The transmission of this message
represents the start of one elementary cycle (EC) and is
known as EC trigger message. The EC duration is fixed
and set at pre-run-time. Within each EC, the protocol
supports two types of traffic, synchronous and
asynchronous. The former one is time-triggered and its
temporal properties (i.e. period, deadline and relative
phasing) are represented as integer multiples of the EC
duration. The EC trigger message, in its data field,
conveys the identification of the synchronous messages
that must be transmitted by the producer nodes in that
EC. The nodes that identify themselves as producers by
scanning a local table containing the messages to be
produced / consumed, transmit the respective
synchronous messages in the synchronous phase of that
EC (fig. 1). Collisions on bus access are resolved by the
native distributed MAC protocol of CAN. The
synchronous traffic is transmitted autonomously by the
synchronous messaging system (SMS).

The FTT-CAN protocol also supports asynchronous
traffic for event-triggered communication with external
control. This sort of traffic is transmitted during the
periods of the EC not used by the synchronous
messages. However, depending on how the desired
temporal isolation between these two sorts of traffic is
enforced, the asynchronous messaging system (AMS)
can operate in one of two modes. In controlled mode
any asynchronous message is transmitted only if it is
guaranteed not to interfere with the timeliness of the EC
trigger message or of the synchronous messages. In this
mode each station that produces asynchronous
messages is allowed to transmit them only if there is
enough bus-time left within the asynchronous window.
This enforces a strict temporal isolation between
synchronous and asynchronous traffic. On the other
hand, two negative aspects can be identified, the
insertion of bus idle-time when asynchronous messages
do not fit in the respective window and the need to
force all the nodes in the system to follow the synchro-
nisation imposed by the EC trigger message in order to
determine the exact duration of each phase in each EC.
In uncontrolled mode, stations wishing to transmit
asynchronous messages can try to do it as soon as they
receive the respective requests from the application.
There is no need to synchronise with the EC trigger
message and thus, even stations not engaged in the
FTT-CAN protocol can coexist in the system and send
asynchronous messages. Although these messages may

E

I

<
‘ <

—[rul [o] fswaswtl bwd ama ave avic [a]Tm
l I J

CAN bus

Synchronous Asynchronous
Messages Messages

a) Sync phase scheduled as soon as possible

»

Sc. Window (fixed)
CAN bus -TM [7™] Ava -:| - --AMb AMc I: ™

Ec Tr|gger
Message

Synchronous
Messages

Asynchronous
Messages
b) Sync phase scheduled after fixed period of time
< E ,

Sc. Window (Dynamic)

E AMa AMb AMc -:I M-E ™

Ec Tngger
Message

CAN bus

Asynchronous
Messages

Synchronous
Messages

¢) Sync phase scheduled as late as possible

Fig. 2. Arrangement of sync/async phases within the EC.

now cause a certain blocking to the transmission of
synchronous ones, such blocking can be upper bounded
by using a proper choice of identifiers.

In FTT-CAN the message identifier range is divided in
two parts. Higher priority identifiers are assigned to
synchronous messages while lower priority identifiers
are assigned to the asynchronous ones. In particular, the
EC trigger message is assigned the highest priority
identifier. Therefore, each group of consecutive
synchronous messages, i.e., transmitted without relea-
sing the bus arbitration process, can suffer blocking by,
at most, one asynchronous message.

The advantages of this mode are twofold. Firstly, FTT-
CAN can be installed in an existing system while
keeping some of the legacy nodes not engaged in the
new protocol. Secondly, under uncontrolled mode there
is no inserted idle-time as in controlled mode, thus
allowing for higher bus utilisation.

The price to pay is a bounded degradation of the
synchronous and trigger message timings, i.e. increased
jitter. How much is this degradation depends strongly
on the particular bus controllers used. For example,
when Full-CAN controllers (with multiple transmission
buffers) are used, all the synchronous messages
scheduled for one EC are transmitted without any
intermediate blocking (at most one blocking in the
beginning). On the other hand, if Basic-CAN
controllers (with a single transmission buffer) are used,

then, each time a node produces more than one
synchronous message in the same EC there may be
extra blockings. In this case, the controlled mode might
be more appropriate. Tindel et al. [11] clearly show the
difference between these two types of controllers in
terms of real-time performance.

In this paper, either the use of Full-CAN controllers, or
Basic-CAN but with each node producing at most one
synchronous message, will be considered.

2.2- Arranging Sync/Async Phases in the EC

When implementing the FTT-CAN protocol, it is
important to define how the synchronous and
asynchronous phases will be combined within the EC.
In preliminary experimental work, two different options
have been considered: the synchronous phase starting
right after the EC trigger message and starting after a
fixed period of time called scanning window [1]. In this
section, these options, plus a third one considering that
synchronous messages are always transmitted at the end
of the EC, are analysed and compared. These three
situations are referred to as: synchronous phase
scheduled as soon as possible, scheduled after a fixed
period of time (scanning window), and scheduled as
late as possible.

Sync Phase Scheduled as Soon as Possible

In this situation, the synchronous messages are
produced as soon as they are identified by the
producers, i.e. in the beginning of the EC, right after the
trigger message (fig. 2-a). Notice, however, that before
starting the transmission of any synchronous message
all nodes require a certain time to scan their local tables
and identify themselves as producers in that EC
(appears as b in fig. 2-a). This time can be small
(relative to the transmission time of one message) when
using powerful microprocessors, or it can be larger
when low processing-power microcontrollers are used®.
In any case, all nodes engaged in the protocol release
the bus during this period of time b. If there were
asynchronous messages pending, at least one of them
could gain access to the bus and eventually delay the
start of transmission of the synchronous messages.
Moreover, the amount of time b varies with the relative
position of each synchronous message in the local table.
Hence, to enforce a strict temporal isolation between
both types of traffic, as desired in the asynchronous
controlled mode, asynchronous messages are released
for transmission only after the synchronous phase is
over. Notice that, in this case, the amount of bus-time b
is wasted, a situation that is particularly negative when

! In experiments with the 80C592 Philips controller (8051-
based with Basic-CAN controller) clocked at 11MHz, b was
close to the transmission time of a 4-data bytes message
(@125Kbit/s).

using low processing-power microcontrollers.
Furthermore, to strictly maintain the regularity of the
EC trigger message, a variable amount of idle-time a,
upper bounded by the time to transmit one message, is
inserted at the end of the asynchronous phase.

Sync Phase Scheduled After Fixed Period of Time

In an attempt to make the time spent in scanning the
local table (b) usable by asynchronous traffic even
under controlled mode, a scanning window of fixed
duration was defined between the end of the trigger
message and the start of the synchronous phase (fig. 2-
b). The asynchronous phase is now divided in two
parts, one corresponding to the scanning window and
another one corresponding to the time left after the
synchronous phase. In any of these parts, under
controlled mode, messages are transmitted only if they
can be guaranteed to fit in the respective windows.
Otherwise, they are delayed to the following ECs. This
corresponds to the insertion of idle-time (a), in each
part, to enforce the regularity of the trigger and
synchronous messages.

Sync Phase Scheduled as Late as Possible

This option, also referred to as dynamic scanning
window, has the major advantage over the previous
ones of maximising the time available to asynchronous
messages within one EC and keeping it all together (fig.
2-c). Therefore, insertion of idle-time (a) to enforce the
timeliness of the synchronous messages is required at
most once per EC, leading to a higher average capacity
to handle asynchronous messages. This arrangement of
the two phases can easily be accomplished by also
using the EC trigger message to convey the duration of
the asynchronous phase, e.g. using low order bits of the
message identifier. This can be carried out with
minimal extra run-time overhead.

Another interesting feature is that when a message
transmission request is aborted because it does not fit in
the current asynchronous window, it is delayed until the
next EC. However, the request is resubmitted during the
transmission of the trigger message of the next EC so
that it re-enters arbitration in the very beginning of the
next asynchronous window. This detail assures that
there will be no further priority inversions whenever an
asynchronous message is delayed from EC to EC until
it is transmitted.

Furthermore, since the most regular edge of the
synchronous phase, in terms of periodicity, is now the
ending edge (near the next EC trigger message), the
higher priority synchronous messages must be
transmitted later within the respective phase in order to
reduce jitter. This is achieved by assigning lower
priority identifiers to higher priority synchronous
messages (notice that the priority of the synchronous
messages and the respective identifiers are different
parameters [1]).

Choosing an Arrangement

The three situations referred above were analysed
concerning, particularly, their use under the asynchro-
nous controlled mode. In such mode, scheduling the
synchronous phase as late as possible seems to be more
advantageous leading to a more efficient bus utilisation.
This is particularly true when using low processing-
power microcontrollers.

With uncontrolled mode the differences between those
three situations are not so evident. In fact, in this case
possible blockings caused by asynchronous messages
are inevitable in any situation. Such blockings may
occur if an asynchronous message is still being
transmitted when the EC trigger message is released or
when the synchronous window starts.

However, a previous study [12] showed that a worst-
case response time analysis of the AMS is easier to
carry out, and is more precise, when the block of
synchronous and trigger messages is transmitted in a
row, i.e. without preemption. This is achieved, only,
when the synchronous phase is scheduled as late as
possible. Therefore, this arrangement, with the
asynchronous phase first, followed by the synchronous
one, will be preferably considered in future
developments of FTT-CAN.

3. Implementing the Planning Scheduler in
Hardware

As previously referred, scheduling of the time-triggered
traffic is performed in FTT-CAN in a centralized way.
The scheduler is an integral part of the SMS and runs in
the master node generating the periodic EC trigger
messages.

To meet the required level of operational flexibility,
low overhead and timeliness guarantees, software-based
schedulers are built following a dynamic table-based
approach known as the planning scheduler [2].

In this section we describe our first experience in
transferring this scheduling technique to a hardware
implementation. The resulting coprocessor is described
focusing on its functionality and interface with the
master node CPU. Its internal architecture is briefly
presented, together with some figures showing the
feasibility of the proposed architecture.

3.1- Scheduling
Scheduler

Message scheduling on a fieldbus can be done statically
or dynamically. Table driven and priority-based approa-
ches such as the ones in FIP and CAN respectively, fall
in the category of static scheduling while dynamic
scheduling can be done using planning based or best
effort approaches. Although dynamic planning-based
schedulers are not commonly found in current standard
fieldbuses, recent work on the subject [4], has shown

in FTT-CAN - The Planning

Bus traffic

Y Y O B A N B

Plan i1 Plan; . Plan s

|PI-Sched: [PI-Sched: |PI-Sched.

Building table Building table
of plan ;. of plan j+1.

a) operation

Y

ild cpdfopr Scheduler
2 Ms Table
N J— .
- Ec1:249 Ec1:125
Dispatcher Ya— gc,: 1567 Eca: --
EC trigger Ecy:238 Ecw: 13
message . .
plan (i) plan (i+1)

Bus
b) functional decomposition

Fig. 3. The planning scheduler.

they could become a good compromise between the
static and dynamic approaches.

The planning scheduler and an associated dispatcher
can be implemented in fieldbus-based systems
imposing an overhead compatible with the low-
processing power microprocessors or microcontrollers
used as typical nodes’ CPUs. Also, it presents some
degree of flexibility resulting from the possibility to
change, from plan to plan, the message’s set, adding or
deleting messages or changing their parameters. The
underlying concept is the reservation of resources into
the future. So, when a new message is accepted, the
additional bus bandwidth required is reserved. To do
this, the scheduler builds static schedules for
consecutive fixed duration periods of time called plans.
The static schedules are called plan tables. The creation
of a plan table is overlapped with the dispatching of the
previous. In figure 3 the operation of the planning
scheduler is illustrated. The dispatcher works with plan
i, while the scheduler builds plan i+1.

Each plan includes a fixed number of ECs. Messages’
periods are then restricted to an integer multiple of the
EC time. Transmission time of the longest message is
supposed to be less than the EC duration.

The simple mechanism of this scheduler reduces run-
time overhead mainly because it is invoked fewer
times. So, comparing with a dynamic scheduler, each
time it is invoked, instead of determining the next
message to be transmitted, only, it determines all the
bus activity, for all the messages, for a certain period of
time corresponding to the plan duration.

3.2- Scheduling with a Dedicated Coprocessor

Motivation

Experimental results [1] taken in a CAN-based system
where the planning scheduler was implemented showed
an exponential decrease of run-time overhead with the
plan duration. Results have shown also that, for a
typical EC duration of, say, 8.9ms, and 20-EC plans,
the response time to a request of change in the message
set is normally more than adequate when it comes from
a human operator. Also, the response time can be
reasonable for automatic changes during set-up or
upgrade of the system. However, if more dynamic
mechanisms are to be thought for the system operation,
e.g., changing messages’ periodicity to react to a bus
overload or to adapt the sampling period of a
distributed control system (operation following a QoS -
quality of service model), then the response time is
clearly insufficient. To overcome this limitation the
plan duration should be reduced. Adding to the
increased runtime overhead caused by the reduction of
the plan, the implementation of automatic procedures to
allow on-line changes in the communication parameters
will also require relevant processing power at the
arbiter node CPU.

Apart from the obvious solution of simply adopting a
much more powerful CPU to keep up with all this
processing needs, another interesting possibility is to
use dedicated hardware to offload the node CPU in the
scheduling task. The repetitive nature of the scheduling
process, the robustness required for the arbiter node and
the desire to reduce strongly the response time to
changes led to choose the hardware coprocessor as the
first solution to explore. This option was reinforced by
the fact that the planning technique makes very easy the
exchange of data between the coprocessor and the
arbiter CPU, even when the worst case execution time
of the scheduling process is not completely determined.
The output of the scheduler is, in this case, a list of
messages to be produced during several ECs. Although
other solutions such as a scheduling coprocessor based
in another CPU are yet to be studied in the future, the
use of dedicated hardware is presently a good and easy
option namely due to the availability of support tools
[13].

Related Work

While virtually nothing has been reported on
specialised hardware for message scheduling in
fieldbuses, some recent papers have surfaced describing
coprocessors aiming at improving the execution time
and predictability of operating system functions.

The Real Time Unit (RTU) reported in [14] is a
complete multitasking kernel implemented in an ASIC.
It consists of a number of units which handle most of
the time-critical functions of a typical real-time kernel.
Task scheduling is based on the rate monotonic

algorithm. The RTU can handle a maximum of 64 tasks
at 8 priority levels, and supports up to 3 application
processors. The prototype described was used in a
VME system with 3 CPU boards executing tasks. The
interaction between the processors and RTU is through
interrupts and registers which makes it easy to use the
RTU with different types of processors.

The Spring Scheduling CoProcessor (SSCoP) [15] is a
VLS| coprocessor dedicated only to the task of
scheduling. It was designed to work together with the
Spring kernel and supports also multiple processors.
The SSCoP can use different scheduling algorithms,
considering shared resource requirements and
precedence constraints. The operating system writes the
attributes of a set of tasks in the coprocessors registers.
Using these attributes SSCoP tries to build a complete
feasible schedule, which, if successfully created, can be
read back by the operating system.

Finally, [16] describes a universal scheduling
coprocessor for single processor systems. The
coprocessor is provided with the task parameters and
states, and gives back to the operating system the
identification of the task that has to be executed next.
The architecture approach is suited for the
implementation of nearly every scheduling algorithm
that is based on comparison of task parameters. The
coprocessor was implemented in FPGA technology and
its latest version uses the ELLF scheduling algorithm
and supports up to 32 tasks.

3.3- The Planning Scheduler CoProcessor (PSCoP)

The coprocessor currently under development differs
from the previous solutions because it directly follows
the planning paradigm. PSCoP has then a limited
amount of memory to store a scheduler plan i.e. the
identification of the messages that must be transmitted
each EC of the plan. PSCoP memory is divided in two
banks allowing the coprocessor to generate one
schedule plan while the CPU dispatches the other.
PSCoP is targeted to work specifically with FTT-CAN.
The architectural solution described next presents some
degree of scalability since the number of messages can
be adapted depending on the operational needs.

The Node CPU Interface

To start working, PSCoP needs to be initialised first
with the parameters of each variable to be scheduled.
These include the variable’s period (P), its initial
phasing (Ph) and associated transaction duration (C).
The parameters of each variable are written by the node
CPU in a three register slot within PSCoP’s interface.
There are as many register slots as the maximum
number of variables supported by the coprocessor.

In this experimental version there is no support for
explicit deadline or priority parameters. The deadline of
all variables is assumed to be the same as their period.

Relative priorities are dictated by the allocation of
register slots. These are numbered 1 to N and have
assigned decreasing priorities. The scheduling priority
of a given variable is thus set by mapping its parameters
to the appropriate register slot at initialisation time.
Clearly, priorities are always static.

The interface includes also an EC register which must
be initialised with the elementary cycle duration
parameter. A control/status register allows the CPU to
start or stop the coprocessor, and provides information
about the current state of the scheduling operation.
After instructed to begin PSCoP starts generating
schedules. The message schedule for each EC in the
plan is presented to the node CPU as an N-bit word
which identifies the transactions that must be carried
out during that EC. The coding scheme of this word is
the same as the one used in the FTT-CAN trigger
message data field (see again fig. 1), and it was adopted
in order to reduce the dispatching overhead.

Architecture Overview

In devising a hardware structure where the planning
scheduler functionality could be mapped, two separate
activities were identified within the scheduler
algorithm. One of them is performed in the context of
each variable and acts basically as a timer, keeping
track of the instants when the variable must be
produced. The other concerns the placing of
transactions in the respective ECs in the plan table. This
partitioning of activities inspired the architecture
depicted in figure 4. Here, the Variable’s Production
Timer (VPT) units are responsible for the first activity
while the Schedule Plan Builder (SPB) takes care of the
second activity.

Each variable to be scheduled is allocated to one VPT
unit which holds the variable’s period (P) and initial
phase (Ph) parameters. Global timing information
received from the SPB allows all VPTs to be
synchronised while keeping track of the EC schedule
currently being generated. When a VPT detects that the

* 1
—| SPB VPT, —> VPT, -———» VPT
" A4 A T A T
- j Y ¢ Y V»
SPM Cccu
A
v UC Interface Port

Fig.4. PSCoP architecture. SPB - Schedule Plan Builder;
VPT - Variable's Production Timer; SPM - Schedule Plan
Memory; CCU - Configuration Control Unit.

scheduling for a particular EC where its variable should
be produced has started, it signals the SPB requesting
the allocation of the associated transaction. Based on
the transactions’ duration (C) and on the remaining EC
time left, the SPB unit decides to allocate or reject the
transaction. If the transaction is accepted, further
requests for allocation in the same EC (from other
VPTSs) are received, otherwise the current EC schedule
is finished and a new one is started.

Because more than one VPT can request allocation in
the same EC, a mechanism must exist to help SPB to
select which request to serve first. A daisy chain
structure similar to the one commonly found in
microprocessor-based systems is used with this
purpose. The chain signal ripples through VPT,; down
to VPTy. When a VPT unit raises a request for
allocation its chain signal output is deactivated. After
this, the unit is allowed to communicate with SPB only
if its chain signal input is true, which means that, in a
contention situation, the leftmost VPT with a pending
request is always the only one with the chain signal
input set to true, and therefore the one which can
engage communication with SPB.

Besides the VPTs and SPB the PSCoP architecture
includes two other functional blocks, the Configuration
Control Unit (CCU) and the Schedule Plan Memory
(SPM). The former includes control and status registers
and provides access to the parameter registers in the
VPTs and SPB. The SPM unit is where SPB builds the
plans with the EC schedules it generates.

Preliminary Feasibility Assessment

The first prototype of PSCoP will be implemented on a
XC4010XL FPGA. 1t will have 64 VPTs and a
parameter resolution of 8-bits. The memory banks in
SPM will support 20-EC plans, or, in other words, will
be 20 x 64-bits FIFO memories. The prototype will be
tested on a CAN master node based on a XS40
development kit from XESS® Corporation [17].

At the time of writing the coprocessor is still in the
design entry stage, and so simulation results are not yet
available. Nevertheless, an accurate estimate of perfor-
mance was obtained by carrying out a step by step
analysis of the various phases of the coprocessor’s
internal operation, counting the number of clock cycles
required by each.

Each variable allocation takes 6 clock cycles. In the end
of each EC, another 3 clock cycles are needed to
transfer the schedule to the SPM unit and to begin the
next schedule. The time taken by PSCoP to build a
complete plan with W ECs, tgpeq, Can thus be expressed
(in clock cycles) as written below, where Nv(EC;) is the

w
[}
tsched =3W + 6a NV(EC|)
i=1
number of variables allocated in EC;.
To calculate a worst case scheduling time in our
prototype version, we shall assume a maximum number

of allocations in every EC of the plan. For this to occur
all messages must have the smallest possible length,
which, if we consider CAN2.0A format and a 1Mbit/s
data rate, corresponds to a minimum transmission time
of 44ns [18]. If we consider an EC duration of 1ms,
then we can have at most 22 of these minimum length
messages per EC, in every EC. Using the expression
above, the scheduling time in this worst case scenario is
computed as 2700 clock cycles. Since the FPGA in the
development board is clocked at 12MHz, this translates
to 0.22ms, or 1.1% of the time taken by the CPU to
dispatch an entire plan.

4. Conclusion

This paper focuses on the FTT-CAN protocol, which
was designed primarily to support time-triggered
communication on CAN in a flexible way. Two current
developments of the protocol are presented, namely the
allocation of the synchronous and asynchronous phases
within the elementary cycle, and a coprocessor for
scheduling of synchronous traffic in the master node.
The paper discusses first the event and time triggered
paradigms in fieldbus communication systems, and the
advantages that may arise from a combination of both
in a way that enforces temporal isolation between the
two types of traffic. This combination results in the
synchronous messaging system (SMS) and the
asynchronous messaging system (AMS), which co-exist
both in FTT-CAN.

Allocating the synchronous phase as late as possible in
the EC seems to be the solution that best promotes a
more efficient bus utilisation, and at the same time
facilitates the response time analysis, particularly when
the AMS is used in the uncontrolled mode.

The second FTT-CAN development is PSCoP, a
scheduling coprocessor that works according to the
planning scheduler principle. The main goal here was
simply to design a working coprocessor which could fit
in a medium-sized FPGA, and be used as an initial
testbed to obtain insight on the real performance gains
and problems of the architecture.

A first implementation of PSCoP will be available
shortly. As shown with the rough performance estimate
given for this initial version working at a modest clock
rate, PSCoP can easily create a plan table in a small
fraction of an EC in a field-bus running at 1Mbit/s. This
result is quite encouraging in the development of the
coprocessor because it suggests that some of the
performance room may be sacrificed in favour of a few
design improvements and additional functionality.

At this point it is clear that one of these improvements
must concern the static arbitration method used to
resolve the contention between several VPTs. We are
considering the adoption of a scheme relying on
dynamic priority vectors in order to allow the
implementation of various scheduling policies, like

RM, DM or priorities-based, between which the
coprocessor can be switched dynamically.

References

[1] Almeida, L., J.A. Fonseca, P. Fonseca. A Flexible Time-
Triggered Communication System Based on the
Controller Area Network: Experimental Results. Proc. of
FeT’99 (Int. Conf. on Fieldbus Technology). Magdeburg,
Germany. September 1999.

[2] Almeida, L. “Flexibility and Timeliness in Fieldbus-based
Real-Time Systems”. PhD Thesis, University of Aveiro,
Portugal. November 1999.

[3] Peraldi, M.A. and J.D. Decotignie. Combining Real-Time
Features of Local Area Networks FIP and CAN. Proc. of
ICC’95 (2" Int. CAN Conference). CiA — CAN in
Automation, 1995.

[4] Almeida, L., R. Pasadas and J.A. Fonseca. Using a
planning scheduler to improve the flexibility in real-time
fieldbus networks. IFAC Control Engineering Practice, 7:
101-108, February 1999.

[5] Thomesse, J.-P, M. Leon Chavez. Main Paradigms as a
Basis for Current Fieldbus Concepts. Proc. of FeT’99 (Int.
Conf. on Fieldbus Technology). Magdeburg, Germany.
September 1999.

[6] Raja, P. and G. Noubir. Static and Dynamic Polling
Mechanisms for Fieldbus Networks. ACM Operating
Systems Review, 27(3), 1993.

[7] European standard EN 50170. General Purpose Fieldbus:
Vol.1: P-Net; Vol.2: PROFIBUS; Vol.3: WorldFIP.
CENELEC, European Committee for Electrotechnical
Standardisation, 1996.

[8] IEC Draft Standard 61158-3,4: Fieldbus standard for use
in industrial control systems — part 3: Datalink service
specification; - part 4: Data link protocol specification.
IEC, Int. Electrotechnical Committee, 1998. This
specification became profile 1 of the 61158 standard after
January 2000.

[9] CiA DS 201-207. CAN Application Layer for Industrial
Applications. CiA, CAN in Automation International
Users and Manufacturers Group, 1994.

[10] DeviceNet Specification — release 2.0, Vol. | and II.
ODVA - Open DeviceNet Vendor Association, Inc.,
USA, 1997.

[11] Tindell K., H. Hansson and J. Wellings. Analysing Real-
Time Communication: Controller Area Network (CAN).
Proc. of RTSS’94 (15th IEEE Real-Time Systems
Symposium), 1994,

[12] P. Pedreiras, L. Almeida; “Combining Event-Triggered
and Time-Triggered Traffic in FTT-CAN: Analysis of the
Asynchronous Messaging System”; Proc. 3" IEEE Intl.
Workshop on Factory Communication Systems, Porto,
Portugal, Sept. 2000.

[13] Valery Sklyarov et. al.; “Development System for
FPGA-Based Digital Circuits”, Proc. FCCM’99: IEEE
Symp. Field-Prog. Custom Computing Machines, USA,
April de 1999.

[14] J. Adomat et. al.; “Real-Time Kernel in Hardware RTU:
A Step Towards Deterministic and High-Performance
Real-Time Systems”; Proc. of Euromicro RTS ’96,
L’Aquila, Italy, 1996, pp.164-168.

[15] D. Niehaus et. al.; “The Spring Scheduling Coprocessor:
Design, Use, and Performance”; Proc. of the 14th IEEE
Real-Time Systems Symposium, USA, 1993, pp.106-111.

[16] J. Hildebrandt, F. Golatowski D. Timmermann;
“Scheduling Coprocessor for Enhanced Least-Laxity-First
Scheduling in Hard Real-Time Systems”; Proc. 11lth
Euromicro Conf. on Real-Time Systems, England, June,
1999, pp.208-215.

[17] XESS Corporation, URL: http://www.xess.com.

[18] K. Tindell, A. Burns, and A. Wellings; “Calculating
Controller Area Network Message Response Times”;
Proc. IFAC Workshop on Distributed Computer Control
Systems, Toledo, Spain, Sept. 1994.

