
Generic Fieldbus Application Program Interface

for Windows

Dipl.-Ing. Martin Rostan, Beckhoff Industrie Elektronik, Nürnberg
Dipl.-Ing. Gerd Hoppe, Beckhoff Automation LLC, Minneapolis

The choice of the appropriate fieldbus system for a specific application is not always
driven by technical features, cost and availability considerations. System Integrators
are often forced to use several fieldbus systems, as many customers demand to pro-
vide their favourite bus.

Microsoft Windows operating systems are accepted world wide, and thus provide a
common base independent of the underlying fieldbus system. However, there is no
common upper interface for the various bus solutions. Each bus requires specific
tools and a change of the bus system leads to significant adaptations in the user and
control programs. These efforts can be reduced by using a generic fieldbus applica-
tion program interface for Windows.

The generic Field-
bus Application Pro-
gram Interface pro-
vides an interface
with the purpose of
data exchange in
real-time or non real-
time between Win-
dows applications
and between those
applications and any
connected I/O device
for Microsoft´s Win-
dows operating sys-
tems.

The fieldbus API
extends the Win-
dows system to sup-
port cyclic and acyclic (packet based)
communication to fieldbus devices. While
the acyclic communication is very similar
to standard network communication, the
cyclic part differs: cyclic fieldbus commu-
nication is process image based. The ap-
plications work in a cyclic loop and read
their input process image, calculate their
output process image and write it back to
the fieldbus.

If several applications share one fieldbus
or one application uses more than one
fieldbus at the same time or both, a map-
ping algorithm is needed. This mapping

engine. The fieldbus engine provides a
private process image for each application
and for each fieldbus. This structure allows
to develop simple applications and simple
fieldbus drivers while using them in com-
plex systems.

Applications who need to communicate to
fieldbus devices in an acyclic way (up-
load/download of parameters etc.) use the
ADS (Automation Device Specification)
protocol. This protocol enables a wide
range of communications and enables
remote access from anywhere. At configu-
ration time an ADS address is assigned to
any fieldbus device with acyclic communi-

IPC

Fieldbus Systems

ADAPTATION LAYER
(hardware dependent)

USER
TASK 1

F
ie

ld
bu

s
E

ng
in

e
In Out

MAPPING AND SYNCHRONISATION

In Out In Out In Out
System
Config

PARAMETER
CONFIGURATION

SYMBOLICS FAL FAL FAL
FIELDBUS APPLICATION LAYER FOR PROCESS IMAGE

Physical Proccess Image

USER
TASK 2

USER
TASK 3 (RT)

IPC

Fieldbus Systems

ADAPTATION LAYER
(hardware dependent)

USER
TASK 1

F
ie

ld
bu

s
E

ng
in

e
In Out

MAPPING AND SYNCHRONISATION

In Out In Out In Out
System
Config

PARAMETER
CONFIGURATION

SYMBOLICS FAL FAL FAL
FIELDBUS APPLICATION LAYER FOR PROCESS IMAGE

Physical Proccess Image

USER
TASK 2

USER
TASK 3 (RT)

cation support. This address is used by
the application to identify a specific device.

Features

The fieldbus engine handles two generic
types of communications:

• cyclic data exchange

• acyclic data exchange

The cyclic data exchange for real-time
access of IO data is usually triggered cy-
clic due to the nature of most common
Fieldbus Systems, however, the data ex-
change may be triggered event-driven as
well. Internal and external trigger sources
may be applied to start the data exchange
sequence.

The acyclic data exchange uses TCP/IP
for networked connections and shared
memory for local communications. There-
fore it may be executed locally or re-
motely.

The management of the communication
and data exchange relations as well as
fieldbus network configurations, is handled
through a GUI configuration tool, the Sys-
tem Manager, with Drag & Drop features
for system setup and maintenance, and a
central database holding related informa-
tion for all connected networks. The sys-
tem is extended by providing an OPC
server as integral part to use OPC within
its limitations as IO interface, but more to
make the central tag database available to
software applications to achieve cross-
connectivity. The tag database architec-
ture supports to use distributed databases.

Components

• Fieldbus Engine

• Application Interface

• ADS (Automation Device Specification)

• Configuration Tool

Fieldbus Engine

The fieldbus application program interface
provides an abstraction layer to individual
I/O networks and allows to establish com-
munication to most different implementa-
tions by the use of abstraction and a
modular driver model. It provides access
in real-time to

• one application to one or several
Fieldbus Systems at the same time

• one or several applications to one
fieldbus at the same time

• or both of the above

• application to application real-time data
exchange and messaging services

Real-time data exchange is guaranteed by
a process image based communication
system - the fieldbus cyclic services - with
capabilities to map data between applica-
tions and IO systems, operated by the
fieldbus engine. This real-time data ex-
change may be utilized between software
components or from software component
to IO subsystems, either networked,
memory mapped, or otherwise accessible.

FAPI provides acyclic communication
support, and a protocol superset (ADS)
abstracts between the application interface
and individual protocol implementations,
guaranteeing the interoperability of appli-
cation-to-device and application-to-
application configurations.

Process Images and Fieldbus Cyclic Services

Process images keep a "snapshot" of sig-
nal status of a complete device or IO net-
work in a buffer, usually separated for in-
put and output signals. Real-time tasks
operate either cyclic or event driven and -
at start - read the status of the input sig-
nals, then execute logic statements (the
program) and terminate after writing re-
sults for outputs into the output process
image buffer. The size of process images
is usually in the range of a few hundred
bytes to a few kilobytes, adding a very
small amount to the system footprint.
Other than in streamed data applications,
e.g. video, process images keep track of
the status of few signals in real-time,
overwriting obsolete old information within
a quite small data buffer with no further
need to store the history of this data.

To maintain consistent data exchange in a
multi-application to multi-network environ-
ment, buffered process images are kept
and data exchange by the fieldbus engine
- the fieldbus cyclic services - is executed
at the priorities given by the underlying
real-time subsystem (RTSS). The fieldbus

images, handles them consistently buff-
ered, interacts in real-time and determinis-
tically.

To abstract the data entity handled be-
tween two related process images (task to
task or task to IO device) completely from
implementations, the Fieldbus engine
copies data entities from a single bit to
complex structures. Data annotation con-
versions, e.g. Intel - Motorola are sup-
ported internally, giving convenience to
users.

Process Images and Mappings

The fieldbus engine is the central mapping
machine executing all cyclic communica-
tion. Each participant of cyclic communi-
cation (user applications, fieldbus cards) is
represented in the fieldbus engine with a
process image. These participants have
access to the fieldbus engine through their
assigned process image. The duty of the
fieldbus engine is the mapping of data
between these process image in the cor-
rect timing, consistency and priority.

The fieldbus engine holds a process im-
age object for each participant of cyclic
communication. It also holds mapping ob-
jects, instantiated for each relation be-
tween process images. If one participant
exchanges data (inputs or outputs) with
another participant; one mapping object
represents the relationship between their
two process images. A process image
object may have several related mapping
objects, each to generate a data exchange
to another process image.

Both objects (process image and mapping
objects) are allocated in advance to meet
real-time performance requirements.

Process Image Types

There are two different kinds of process
image objects: Master process images
and slave process images.

Master process images are used for par-
ticipants, which act on their own thread,
e.g. user applications like a PLC running in
a cycle loop and exchanging their inputs
and outputs at the beginning and the end
of their cycle.

Slave process images are used for partici-
pants, which are triggered by other
threads (represented by a master process
image), e.g. fieldbus card drivers. Slave
process images are triggered synchro-
nously in the context of a master thread.
This enables for example a PLC to start a
fieldbus cycle synchronously with it's own
cycle.

Mapping Types

There are two different kinds of mapping
objects: Asynchronous mappings and syn-
chronous mappings:

Asynchronous mappings are used be-
tween two master process images. Master
process images are acting on their own
thread and cannot be synchronized. To
guarantee consistent data exchange with-
out blocking of one thread, the asynchro-
nous mapping uses a three buffer mecha-
nism.

Synchronous mappings are used between
a master process image and a slave proc-
ess image. The mapping does not use any
buffers because the master process image
can access the slave process image syn-
chronously. In this context the slave cycle
can be started by the slave application or
by the corresponding fieldbus card driver.

Real-time Issues

Real-time access to I/O devices should be
carried out with no further delay through
protocol layers or context switches. Usu-
ally, a real-time subsystem is driving a set
of tasks with real-time handling purpose at
certain cycle or response-to-event times.
The FCS process images are objects to
those tasks, administered in a sophisti-
cated way to avoid context switches to
offer direct access to I/O information within
the task context. The fieldbus engine is

In Out In Out In Out

In Out In Out

Logical PI

Physical PI

Synchronisation

Loopback

In Out In Out In Out

In Out In Out

Logical PI

Physical PI

Synchronisation

Loopback

algorithm from the local task images into
the physical card process image buffers.
As process images have usually small
data sizes of some kilobytes, the execu-
tion time of the fieldbus engine adds only a
few percent to the task runtime, perform-
ing a duty otherwise executed by the real-
time task itself directly. The fieldbus en-
gine works deterministically for a given
configuration, the described concept has
proven applicability down to cycle times of
50 µs in critical industrial applications on
Pentium II class computers.

Interface to User Applications

User applications that want to participate
in the cyclic data exchange need an inter-
face to the fieldbus engine. The fieldbus
engine implements some function calls
through that a user application can access
its process image object in the engine. In
these calls, the fieldbus engine copies the
inputs and outputs to their destination
process images (through the related map-
ping objects) and starts related update
cycles, if existing.

Application Interface

The approach provides a software appli-
cation to software application interface,
providing a set of control and data items
as an interface superset to existing imple-
mentations. Together with the cyclic serv-
ices it offers an abstracted, deterministic
software component interface for synchro-
nous and asynchronous communication.
Software components may work local or
distributed over network without any
change, interact in real-time or non real-
time or in mixed mode.

Depending on their physical location (lo-
cally in real-time; networked at the speed
of the utilized network) software compo-
nents may directly access FCS in real-time
or cross-connect to FCS over ADS and
have remote - non real-time - data ex-
change. A basic set of control and data
access methods is included as a superset
to define software to software applications.

If an ADS application requests data from
another ADS application on the same
computer, then the ADS router transfers
the data directly through shared memory.
Each ADS port has it’s own message
queue in a memory mapped object, so that
ADS can efficiently copy the data from one
message queue to the other.

Automation Device Specification - ADS

Other than real-time communication to
Input / Output devices; many existing de-
vices support parameterization or up/
download of programs, web pages or
other information. ADS handles this
streamed data through asynchronous
communication support.

ADS is similar to
TCP/IP, and addresses
all devices through IP-
type addresses. For
future application-to-
device and application-
to-application communi-
cation, raw ADS proto-
col builds an efficient
standard.

ADS allows to asyn-
chronously access
process image informa-

tion of the FCS system through asynchro-
nous slave process images: this opens
efficiently remotely networked access at
the transmission capabilities of the under-
lying network. ADS provides timestamps
for messages for synchronization.

ADS Communication Principles

ADS Communication is basically an asyn-
chronous message transfer between a
client application and a server application.
The communication is connectionless; the
communication endpoints are identified
through an IP-type address and an ADS
port. The IP-type-address can be resolved

HEADER FILE
EXPORT

typedef struct {

unsigned char bSignalIn0 : 1;

unsigned char bSignalIn1 : 1;

unsigned char bSignalIn2 : 1;

unsigned char bSignalIn3 : 1;

unsigned char IoDeviceState;

} Task10ms_Inputs, *PTask10ms_Inputs;

typedef struct {

unsigned char bSignalOut0 : 1;

} Task10ms_Outputs, *PTask10ms_Outputs;

Task10ms.h

HEADER FILE
EXPORT

typedef struct {

unsigned char bSignalIn0 : 1;

unsigned char bSignalIn1 : 1;

unsigned char bSignalIn2 : 1;

unsigned char bSignalIn3 : 1;

unsigned char IoDeviceState;

} Task10ms_Inputs, *PTask10ms_Inputs;

typedef struct {

unsigned char bSignalOut0 : 1;

} Task10ms_Outputs, *PTask10ms_Outputs;

Task10ms.h

All communications are handled through a
simple routing mechanism. The ADS API
provides methods, which are used for
acyclic data transfer and server configura-
tion. Most of the methods need a response
through the server for a valid communica-
tion sequence, however, an unconfirmed
notification message to the client applica-
tion is supported for servers as well.
Within ADS, two possible communication
paths are available:

• Communication between two applica-
tions on a local system. In this case all
requests are marshaled through the
ADS router with use of shared memory
objects fast and efficiently to the de-
mands of real-time applications.

• Communication between remote part-
ner applications. In this case, a TCP/IP
type connection to the remote system
has to be established by the local ADS
router and the ADS packet will be send
to the remote ADS router. On the re-
mote system the server application is
called on the same way as in the local
case. In a typical communication se-
quence, the client initiates a ADS re-
quest and the server calls the re-
sponse asynchronously.

text

User Interface

Visual C++
Program

ADS DLL

ADS

PLC
Control

ADS

System
Manager

ADS

TwinCAT ADS Message Router

PLC
Server

ADS

NC
Server

ADS

I/O Mapper

ADS

I/O Level

Communication methods between ADS
Clients and Servers are

• synchronous read / write

• asynchronous read / write

• notification on change (with minimum
cycle)

For optimization purposes, a ADS client
has the ability to register a notification at
the server, those notifications can be con-
figured to be sent by the server in case of
data change (Notify on change) or in a
cyclic way. This optimization can be used
to save bandwidth in a network environ-
ment.

For simple data access, an application can
call the read, write or read/write methods.
The data is addressed through a pair of
indices; “Index Group” and “Index Offset”.
These indices are server/device depend-
ent, standard/generic device profiles for
devices like drives and I/O-modules may
be defined, e.g. by OPC, OMAC, PLC-
open, or other industry-wide operating
interest groups. The data is transferred in
a raw byte stream in Little Endian format.

Configuration

Configuration is important before operating
Fieldbus Systems: these have no self-
configuring features, some even do not
allow configuration while operating. Field-
bus interfaces and devices need quite
complex configuration data: these include
general, fieldbus dependent and device
specific information. Also, the flexibility of
the fieldbus engine requires application
specific configuration data.

Two major configuration issues may be
addressed: The first issue is the configu-
ration of the fieldbus engine and the re-
lated process image and mapping objects.
The second issue is the configuration of
the fieldbus interfaces and fieldbus de-
vices. While the first part is a private con-
figuration of the fieldbus API, the second
part is very device- and vendor specific.

Configuration of the Fieldbus Engine

The configuration of the fieldbus engine is
variable based: all relations between the
participants of the cyclic data exchange
are expressed via variables, not by origin
inside a memory. Each participant defines
its process image through variables. As an
example, an application like a PLC defines
virtual input and output variables. These
variables are used in the internal program
to access external data. Fieldbus systems

puts as variables in their logical process
images. These variables may be linked
together, assigning a virtual variable of an
application to a physical variable of a
fieldbus.

The relationship between variables of two
different process images (done at configu-
ration time) defines a mapping object, de-
scribing all relations between variables of
the process images. A process image
shares exact one mapping object with
every other process image in which linked

variables exists. As on a local machine,
mapping objects are located in shared
memory, to use an efficient data exchange
method for time critical applications.

Normally the size and data type of two
linked variables has to be unique; how-
ever, the configuration tool allows the
linking of differently sized variables. If the
size of these two variables differs, the user
has to specify the necessary shift opera-
tions to match the divider of both sizes.

Variable Types

The fieldbus API supports basic variable
types such as signed and unsigned 8, 16,
32, and 64 bit integers, 32 and 64 bit
floating point values. Arrays and user de-

fined data types (structures) of the basic
types are supported, but subject to cer-
tain limits. A single bit value is also sup-
ported due to the special needs in field-
bus environments.

Configuration of Fieldbus Interfaces and
Devices

Fieldbus interface cards and fieldbus
devices need more configuration pa-
rameters than network interface card in

general. A fieldbus master device to con-
figure its own interface cards and the ex-
ternal fieldbus devices, which are con-
nected via the fieldbus. The complexity of
this configuration depends on the capabili-
ties and features of the external devices.

The major configuration parameters of
fieldbus interfaces relate to timing and
memory size and offset issues. Also, many
interfaces provide notification services for
special events or configurations for special
modes of fieldbus operation. The configu-
ration functions are accessed through the
configuration tool and carried out by the
individual driver.

Fieldbus devices connect IO signals to
their internal process image, with variation
in size, refresh rate, supported services,
access method, etc. The configuration of a
fieldbus card holds a garbage collection of
all connected devices and their features.
To support multi-vendor applications,
some fieldbus standards have established
electronic datasheets to describe devices;
however, these are fieldbus - proprietary
and do not abstract from a certain fieldbus
implementation. Examples are DeviceNet
and CANopen EDS files or Profibus GSD.
The system manager tool identifies
Profibus and DeviceNet devices by their
GSD or EDS files and identifies compo-
nent features.

IN OUT

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 0

IN OUT

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

IN OUT

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Actual Value(Motorola Format)

Actual Value (Intel Format) EMCY OFF Byte Over Temp. Byte

N
ot-

A
us

Ü
be

rt
em

p.

Task1: Control Task2: Monitoring

IN OUT

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 0

IN OUT

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 0

IN OUT

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

Actual Value(Motorola Format)

Actual Value (Intel Format) EMCY OFF Byte Over Temp. Byte

N
ot-

A
us

Ü
be

rt
em

p.

Task1: Control Task2: Monitoring

The CANopen Node and PDO configura-
tion of the Beckhoff FC510x CANopen
cards can be done manually – this allows
to connect devices that do not have Elec-
tronic Data Sheets (eds) Files available.
Alternatively eds based configuration is
possible as soon as CiA-WD306 is in
place.

The generic fieldbus application program
interface concept has proven its benefits:
It is implemented within the TwinCAT
automation software package and is used
in several thousand applications world-
wide.

Beckhoff Industrie Elektronik
Eiserstr. 5
D-33415 Verl
Germany
Phone +49 5246 963-0
Fax +49 5246 963-149
Web : www.beckhoff.com

