
Object Oriented Distributed Control
with CAN
Ir. E.H. van de Waal

Embedded Software Engineer
Intulogic bv.

A method for distribution of intelligence is presented in which the Object Oriented
Paradigm is used in software as well as in the communication protocol and appli-
cation level.
Practice has shown that an optimal distribution of functionality can reduce bus-
load, increase flexibility and improve the diagnostic capabilities. Some rules will
be presented in order to reach this optimum. The relationship between network-
management and application software will be addressed. It is also shown that ef-
forts (and costs) for developing and maintaining software can be reduced.
It will be explained why CAN is a suitable network for distributed intelligence.
Some problems facing distributed intelligence will be discussed and solutions will
be given. Furthermore some methods will be given to increase the availability (up-
time) of distributed systems by means of Smart CAN bridges and selective redun-
dancy.

Introduction
As hardware costs are decreasing, a trend
can be observed in the architecture of control
systems. When hardware was expensive, a
common approach was to concentrate all in-
telligence in a central processing unit, as
shown in figure 1. This approach had several
draw-backs:

° Wiring and testing costs were high
° Software was complex and thus difficult

to develop, verify and maintain.
° Extension or modification of an existing

installation was expensive

As hardware costs decreased, it became
possible to distribute intelligence, leading to
the advent of DCS.
On a smaller scale, a similar move towards
decentralisation is now under way. As hard-
ware costs are decreasing, intelligence is be-
ing moved from e.g. PLC’s towards individual
sensors and actuators. A common method is
to distribute the signal conditioning hardware
in a remote-IO architecture, shown in figure 2.

Figure 1, Centralised Control

Figure 2, Remote I/O

Through using this architecture, wiring costs
can be reduced significantly, but the other
issues mentioned above are not addressed.
There still is a considerable amount of cen-
tralised software, which is becoming increas-
ingly difficult to develop and maintain as
installations are subject to increasingly com-
plex demands in the area’s of product
quality, energy consumption, environmental
impact, reliability, etc.
An architecture which addresses all of these
issues, and thus minimises the combined
cost of control system design, implementa-
tion, maintenance and modification, is the
situation where both hardware and software
are distributed, as shown in figure 3.

Figure 3: Distributed Control

In this paper, a method for designing such a
distributed control system will be presented.

Object Oriented Distributed Control

Design Paradigm
When designing a control system, existing
engineering practice is to draw a PI&D sche-
matic of the installation, with all sensors, ac-
tuators and processing elements (e.g. PID’s
and SEM’s), connected using lines. In es-
sence, the designer is drawing an object ori-
ented design of the control system, in which
the processing elements could be called ‘con-
trol objects’.

As application designers look at installa-
tions in an object oriented way, the im-
plementation of the control system will be
more a reflection of the installation if ob-
ject orientation is used during the whole
design and implementation process (e.g.
Coad and Yourdon, 1993)
The designer requires an environment which
allows him/her to create objects representing
the objects used in the design, and intercon-
nect and configure them. There should be no
need for a paradigm shift on the side of the
designer as he implements the control sys-
tem.
Three elements are desired for this purpose:

° The control objects themselves
° Hardware modules on which the control

objects run, and which interface to sen-
sors and actuators.

° An computer aided environment for de-
sign, configuration and maintenance of
a system.

From a designers perspective, the control
objects are the most essential. The tools only
support the designer and user in handling
them, the hardware only gives them the facili-
ties they need to perform their function.
The control objects correspond to the ele-
ments used in the design of the control sys-
tem. With a surprisingly small number of
objects, control systems can be implemented
for a large variety of applications. The appli-
cation specific behaviour is defined by the
relation between objects but not in the objects
itself. Thus, once these control objects are
developed, they can be re-used without any
need for modification!
OODC is a straight-forward and intuitive
way to software re-use.
There is a clear analogy with the business
information technology. Whilst each company
has unique properties, many common proc-
esses can be recognised, like purchasing,
invoicing and inventory control. ERP suppli-
ers (e.g. SAP) utilises these common proc-
esses to minimise development and testing
efforts by making standardised configurable
software modules.

Such a combination of software-components,
hardware-modules en designer environment
is developed at Intulogic. It is meant to enable
applications engineers to create and maintain
there own control systems without needing to
have knowledge about software engineering
or network technology. It is called the ‘Linked
Objects Family’ (LOFtm)

Linkpoint Approach
Each control object is a self-contained unit,
which is fully responsible for reacting in an
appropriate manner to external events. An
object can accept information from other ob-
jects, and/or provide information to other ob-
jects, depending on its function. For each
object, several types of information can be
defined, which can be seen as connection
points for communication: linkpoints, as
shown in figure 4.

Figure 4:
Control object
with linkpoints

As each object is responsible for its own ac-
tions, but not for the actions of other objects,
it follows that the responsibility of an object
ends at the moment it provides its informa-
tion. Whether any other object uses that in-
formation, is not its responsibility, but that of
the application designer. This behaviour is
commonly called the producer / consumer
model. Information is broadcast by the pro-
ducer and can be used by any number of
other objects, the consumers.
Typically, a consumer does not acknowledge
reception of the message. As consumers (of-
ten associated with actuators) should be in-
trinsically safe, they should know how to
respond to error conditions (such as commu-
nication failure). Therefore, the consumer
should be responsible for checking the com-
munication with the producer. The producer
(often associated with a sensor) can not re-
spond to an error condition in a way which

would make the control system intrinsically
safe.
With the linkpoint concept, it is often not nec-
essary for a control object to have any ‘inter-
nal’ parameters. Most parameters, for
example the factors of a PID regulator, can
be implemented as linkpoints. This gives the
designer easy means to modify these, and
also makes it straight-forward to implement
for example a gain-scheduling scheme.

Hierarchical Structure
For correct communication, every object in a
control system must be identifiable. It is pos-
sible to give each object a unique number,
but such a number gives no information
which might help the user to interpret network
communication. A much more straight-
forward and intuitive approach is to relate the
identifier of the object to its type and location
in the control system. A location can then be
defined as an area which is so small that
there is at most one control object of each
type in it. Thus, each control object is
uniquely identified by its object type and loca-
tion. Objects of different types which are lo-
cated close to each other, can share the
same location number. For example, a PID
can have the same location number as the
servo it controls.
However, when building large installations, a
type and location number is not sufficient to
keep message interpretation intuitive. A third
number is needed, which holds information
on the area in which the object is located. An
area is defined as a part of the installation
which has an intuitive boundary, and which
preferably is repeated in the system. The
control systems for each area can then be
copies of each other, using different area
numbers. Using this scheme, not only soft-
ware components can be re-used, but com-
plete system designs!
It can be useful to address several objects at
the same time by using wild-cards. To use a
common example, in a fully automated
house, it might be useful to switch all ‘light’
objects in the ‘kitchen’ area on at the same
time. This could be done by using the wild-
card ‘all’ for location.

PID

880
10

0
100

Proces value850

2391
operational

none
none

Out
Status
Error
Warning

Setpoint
P =
I =
D =

In the perception of the designer there can be
a close relation between several objects of
different types and in different locations, e.g.
a complete control loop in a system. For this
purpose, the concept of a group can be intro-
duced. Each object can be said to belong to
one or more groups, which could span many
area’s and locations. A group can be defined
as any number of objects which have a com-
mon attribute, as perceived by the user. This
attribute might relate to the function or pur-
pose as required by the designer.
An example of such a group might be all the
lights which would need to be switched on in
case there is a power failure in a large build-
ing, and only limited power is available
through the back-up power system. All lights
would then be switched off, and only the
lights belonging to group ‘emergency’ would
be switched on, using only 2 messages which
need not be changed if the lighting system in
(part of) the building changes.
Wildcards can be used in any field:
Group, Area, Location, or Object. Thus, it
is possible to address any combination of
objects and synchronise them using a
single message.
 This not only simplifies system design but
also allows for extremely fast run time diag-
nostics, using commands like: “All Objects in
Group ‘pressure control’, do a self-test” or “All
Servo’s in Incinerator 1 what is your error
state?”.

Minimising network traffic
As network bandwidth is limited due to hard-
ware constraints, it is worthwhile to use a
structure which minimises network traffic.
First of all, network traffic can be minimised
by designing control objects which are
‘loosely coupled’, i.e. which do not depend on
other objects for their internal operations.
This is a consequence of proper object ori-
ented design, and also a pre-requisite for ob-
ject re-use (e.g. Carroll and Ellis, 1995).
Objects that are loosely connected require
few items of information to be communicated
in order to carry out a specific task.

An other effective way to minimise network
traffic is to filter all sensory data before it is
transmitted on the network, using an intelli-
gent software component. Rules can be built
into the software to determine when new
sensory information is relevant, and when it is
not.
Network traffic can be minimise further by
careful selection of the location of control ob-
jects. Consider the common control loop
shown in figure 5. It is assumed that for every
sensor reading, a PID output and an actuator
position are generated. With OODC, the loca-
tion of the PID can be chosen freely.

For objects which
module, the desi
broadcast the infor
to let the objects c
Then, by locating
used to drive the a
be reduced by a f
the situation wher
location, and by a
locating the PID w
mote-I/O systems
both sensor and
network traffic…

OODC Imp

Network
The network is a v
oriented distribute
work needs to sa
ments

° High reliabil
operation of

° Sufficient ba
° Support for

munication m
° Deterministic

Temp

°C
PID

PID
-

+

valve

Actual
Position

User
Setpoint
Figure 5: Minimising bus traffic

 are located on the same
gner can choose not to
mation on the network, but
ommunicate internally.
 the PID with the object
ctuator, network traffic can
actor three compared with
e the PID is in a separate
 factor two compared with
ith the sensor. In most re-

 the PID is separate from
actuator, thus maximising

lementation Issues

ital component of an object
d control system. The net-
tisfy the following require-

ity (network is essential to
control system).
ndwidth.
producer / consumer com-
odel.

CAN satisfies all these requirements and
more. Because CAN is used extensively in
the high-volume automotive industry, it also
has the following advantages:

° Supported by most popular micro-
controller families.

° Low cost.

This makes CAN well suited for use in dis-
tributed control systems.

OODC Implementation Using CAN
The primary need for an object-oriented dis-
tributed control system is to be able to pro-
duce a linkpoint value, to be consumed by an
other linkpoint. A protocol should be used
which supports the designer in configuring
these linkpoints. A large number of protocols
exist for CAN which are capable of doing this,
but most require specialist knowledge. There-
fore, a more straight-forward and intuitive pro-
tocol is used for LOF.
The LOF protocol can use the following for-
mat if implemented with a 11 bits ID frame:
Information message (7 data bytes)

Id rtr len 0 1 2 3 4 5 & 6
xx 0 7 group area location object linkpoint value

Here, the Id is related to the node and to the
priority. It does not contain any information on
the object. The scope of the id is limited to its
subnet and no longer relevant if the message
is transported across bridges or gateways.
The rest of the information is related to the
object. The Area.Location.Object combination
is unique in the whole installation.
Each node autonomously gets it id’s. It can
use the same id for all objects in it but also
use different id’s if it need to communicate on
several priority categories.
For any specific installation, a database
would exist which maps the numbers for
Group, Object, Area etc. to a text string. For
example, the user might see the following
message

id rtr len Group Area Location Type Linkpoint Value
514 0 7 All Filter Cyclone PID Output 12000

which would be the new value calculated by a
PID controller.

By omitting the value (resulting in a message
with 5 data bytes), a request can be posted
for the linkpoint to be produced. This mecha-
nism is similar to Remote Transmit Request
messages in CAN.
A draw back of this protocol is that it is not
sufficient that CAN controllers filter the rele-
vant identifiers in hardware. In this implemen-
tation additional software filtering is
necessary.

Network Management
The acceptance of industrial networks is not
as high as it could be in several application
area’s. The issues of network management is
sometimes considered a factor in this.
From the point of view of application engi-
neers, network configuration tools at the best
solve or simplify problems with would not
have been there in the first place if no net-
work were used at all.
CAN has proven to be an ideal network for
OODC since it is possible to use it without
any network considerations of application en-
gineers.
There is no master in CAN and there is no
need for giving nodes an address.
Although the nodeguarding mechanisms in
remote I/O systems are typically considered
network management tasks, it is not required
for OODC. In OODC the consuming object
can take appropriate action if vital information
is not available. This is an application related
issue, not a decision what can be made on a
system level.
However, for communication using a CAN
network, it must be guaranteed that no nodes
will ever try to transmit a message with the
same message ID.
For this purpose, Intulogic’s Autonomous
Identifier Distribution and Allocation algorithm
(AIDA) is used. Each hardware module
autonomously requests an CAN ID during
start-up, in different priority categories if nec-
essary.
This allows hot-swapping of defect modules
and extension of control systems during op-

eration by adding new modules, without hav-
ing to update a centralised control unit.

System Testing
Testing is an important part of control system
implementation. Software components need
to be tested exhaustively during develop-
ment, and installations need to be tested
thoroughly before commissioning to ascertain
that all modules are implemented correctly.
However, good testing is rapidly becoming
extremely difficult, as the number of possible
states increases exponentially with the num-
ber of inputs and outputs in a system. It is
imperative that a modern design method al-
lows for easy testing.
OODC greatly simplifies testing at all levels.
Software components are of small size, mak-
ing them relatively easy to test. Also, existing
software can be re-used without any modifi-
cations, and thus without need for re-testing
them in a new control system.
The linkpoint concept allows for easy testing
of an implemented control system. At any
point in the system, the user can inspect link-
point communication, thus verifying correct
behaviour of all components. Also, by simply
sending a message, any event can be simu-
lated, and behaviour observed.
As all messages are broadcast, logging of
system behaviour is straight-forward. With
OODC, it is not only possible to log sensor /
actuator data, but it is also possible to log all
information which would be ‘internal’ if the
software were not distributed. The source of
any problem can thus be traced quickly.

Trouble shooting
The characteristics of OODC which aid the
user in testing, are also of tremendous benefit
in trouble-shooting. By observing linkpoint
communication, and communicating with the
control objects, the cause of a problem can
be found very quickly. When the problem is
found, the user can decide whether to replace
defective hardware, or construct a work-
around. Through the flexibility of linkpoint
communication, a work-around is often quite
easy to implement, for example by disabling
certain parts of the control system, simulating

other parts of it, or overriding faulty meas-
urements during operation. Of course, it is up
to the service engineer to decide whether it is
safe to do so.

Tools for OODC
Due to the close relationship between the
original design and the actual control system,
it is not difficult to built tools which make the
conversion from design to implementation
almost trivial. A tool-set for OODC should
support the following facilities:
Creation of a control system through com-
puter aided design: the ability to create con-
trol objects, assign appropriate area and
locations and link them. An example is shown
in figure 6.

Configuration of a control system: the ability
to place control objects at hardware modules,
configure the linkpoints and set parameters.
An example is shown in figure 7.

Intulogic Application Builder - Incinirator Plant Rotterdam (NL).icv
File Edit View System Window Help

Offline

Filter2nd Incin1st Incin

Chamber:Temp

Temperature
sensor chamber

°C
Chamber:valve

Burner Gas
Flow

Afterburner:blowe
r

Secondairy
Airsupply

Afterburner:PID

 Oxygen Control

PID
-

+

Chamber:PID

Temperature Control

Desired
Temperature

PID
-

+Measured Value

afterburner:SEM

Ventilation
Sequencer

Button

Front:Userpanel

Userpanel 1

O =10%
T =835°

Measured
Value

Chimney:O2

Oxygen Sensor
Exhaust Gas

O2

Intulogic Configurator

Incinerator 1

Incinerator 2

Main Chamber

Secondary Chamber

Figure 6:
Creating a control system

Figure 7:
configurating objects

Maintenance of a control system: Supervise
a system, diagnose any problems, correct
them through changing the configuration (if
applicable) and determine which hardware
needs maintenance, repair or replacement.

An
example is
shown in
figure 8.
Figure 8:
Monitoring
the CAN
bus

Supervision tools
Supervision of installations can be done with
common available SCADA systems. How-
ever, since SCADA systems typically ar
e I/O or variable oriented however, there
would be a need for a paradigm swift.
OODC supervision tools could also use the
same databases as the developer did and
response directly to the CAN messages,
which is exceptional straightforward and intui-
tive. With very little effort it is possible to cre-
ate userpanels to present system status and
allow user interaction. Standard trending
software can also use the shared database
and allows users or application engineers to
investigate trends or relations. Some exam-
ples are shown in figure 9.

Figure 9, HMI and trending software use the
same database as the application builder.

OODC Hardware
The number of I/O points per unit needs to be
sufficient but not too large. In order to keep
complexity low, it is advantageous to have
about 2-4 objects per HW module. An exam-
ple is shown in figure 10.

Figure 10:

OODC module
with little I/O
and high CPU performance,

connecting directly to sensors and actuators

Interface to sensors / actuators
Several industrial standards exist which can
be used to connect OODC hardware to sen-
sors & actuators, e.g. 4-20mA current loop,
HART, RS-485, etc., which the OODC hard-
ware modules should be able to use. To
achieve maximum flexibility, these interfaces
could be implemented as add-on modules,
which are placed on a standard module with
basic I/O and CAN interface. The control ob-
jects linked to these sensors and actuators
should then be placed in the same module.
Currently, there are a large amount of sen-
sors and actuators available which connect
directly to a CAN network using one of the
popular protocols CANopen, DeviceNet or
SDS. It is possible to intermix these devices,
as all the mentioned protocols use the same
physical layer. It is possible for the linkpoints
of the control objects to be implemented in
such a way that the control objects communi-
cate directly with these sensors / actuators.
(e.g. A transmit PDO of a CANopen sensor
could be a linkpoint for a PID controller)

Intulogic LOF Tracer: Filter.All : All.All
Filter.Heatexchanger : Temp.MeasValue = 830
Filter.Stack : PID.SetPoint = 600
Filter.Pool : Pressure.MeasValue = 500
Filter.All : Pressure.Error = ?
Filter.Main Chamber : Pressure.Error = 0
Filter.Pool : Pressure.Error = 0
Filter.Scrubber : Pressure.Error = 0
Filter.Exhaust : Valve.Position = 50
Filter.Exhaust : Valve.SetPoint = 10

Ethernet

Controller Area

Gateway

Bridge Bridge

Controller Area Controller Area

Gateway
(optional)

Workstation Workstation

Data Logging

In order to avoid that all objects need to un-
derstand several protocols, protocol interpre-
tation should be done by the real time
operating system. Thus, the protocol being
used is transparent to the object.

Bridges & sub-networks
Due to limitations of the network used, it is
often necessary to sub-dived the network into
several sub-nets. When using location / area
addressing, it is often convenient to use a
single sub-net for a single area.

OODC Software
As with the hardware, OODC software should
be tailored to relieve the designer of as much
overhead as possible. Thus, OODC software
should be centred around the control objects,
and their communication through linkpoints.

Design of Control Objects
In the design of control objects, it is important
to manage the level of complexity such that
the objects correspond to the user’s intuitive
perception of the objects. It was found that
the short-term memory of a person can han-
dle 5 to 9 items (Miller, 1956). Thus, the user
should be present with at most 9 main ob-
jects, which can have at most 9 different
modes of operation and linkpoints. In this
way, the user is able to use the control ob-
jects intuitively, without constantly needing to
refer to manuals.
Also, objects should be designed to a com-
mon template. Every object should have an
error output for reporting fault conditions, and
an input with which it can be switched on and
off. Common names for linkpoints should ex-
press common functionality. Thus, complexity
is reduced further.
Because the object might need to be intrinsi-
cally safe, it must be able to monitor whether
all input signals behave as expected. All ob-
jects which provide information must have
intrinsically safe default values for these out-
puts.
The use of standard control objects instead of
tailor-made software, greatly simplifies the
development process. Each object can be

designed, implemented and tested individu-
ally. As complexity for each object is low, de-
velopment costs are low. The code for these
objects need not be changed during the life-
time of the product, but can be re-used con-
tinually. Objects designed for specific tasks
can be re-used in future projects.

OODC: Perspective for the Future

Ethernet and OODC
At this moment there is a lot of attention for
the use of Ethernet in control systems. The
large bandwidth and long distance of
Ethernet combines well with the high reliabil-
ity and deterministic performance of CAN. For
the purpose of supervision, remote operation
and data logging, Ethernet could replace
CAN on the upper end if real-time constraints
are not stringent. A likely mixed configuration
is shown in figure 11. Often real time com-
munication between several controller areas
is not required. Then, the CAN bridges could
be removed.
CAN and Ethernet combined can easily
cover al needs from the ERP top of the
CIM pyramid to the Actor/Sensor bottom
of it.

Incr
Ano
high
rela
buil
of fa
One
CAN
Figure 11: CAN combined with Ethernet
eased Availability
ther trend is an increased demand for
 availability systems. With OODC, it is
tively easy to increase availability trough
t-in redundancy, to prevent a single point
ilure from leading to system degradation.
 possibility is to implement a redundant
 network but this is expensive. A more

cost effective method is using a ‘smart-bridge’
as shown in figure 12.

smart
bridge

××××Failure

Status OK

Cion

Status OK

Cion

Status OK
Status OK

OODC
controller

Pressure 1 B

Figure 12: Redundancy through smart bridge
The bridge monitors both ends of the CAN
ring. If a difference occurs, e.g. as a result of
a cable failure, it will start repeating mes-
sages between the two remaining legs of the
CAN network, maintaining system integrity.
As network termination would no longer be
optimal, it might be necessary to switch to a
lower baud-rate.
Another measure is to have redundant sen-
sors / actuators. When a fault condition is
recognised, the actuator / sensor at fault is
disabled, and the back-up takes over.
Another technique is to have multiple control
strategies. When a sensor / actuator vital to
one control strategy fails, an alternative strat-
egy which does not depend on this device
can be selected, either automatically or by an
operator.

OODC: The Way To Go
It was demonstrated that through the use of
OODC, both the costs for the supplier, as for
the user are reduced compared with other
techniques. The LOF implementation of
OODC makes it straight-forward and intuitive
to:

° Design and implement a control system
° Test a control system
° Maintain a control system
° Diagnose and trouble-shoot problems
° Re-use existing software and even

complete control solutions

A protocol which makes full use of these ad-
vantages was presented. The protocol has
the following characteristics:

° No network management necessary
° Hot-swap of modules possible
° Messages are easy to interpret

However, there are also some drawbacks:

° CAN messages are longer than the ac-
tual process data.

° Additional filtering of messages in soft-
ware is necessary, causing CPU over-
head.

These drawbacks can easily be overcome by
modern micro-controllers.
This makes the LOF method useful for appli-
cation areas where systems should be avail-
able, adaptable and scalable.
The most implementations have been in
process-control applications. e.g. Incinerators
(since 1994), dairy product industry (since
1995), exhaust gas cleaning installations
(since 1996).
Other area’s where the LOF method can
make a difference are building automation
and logistic systems.

References
Coad and Yourdon (1993): Coad, P. and
Yourdon, E.: Object-oriented Analysis, 2nd
edition, Prentice-Hall, 1993.
Carroll and Ellis (1995): Carroll, M.D. and
Ellis, M.A.: Designing and Coding Reusable
C++, Addison-Wesley, 1995.
www.intulogic\aida www.intulogic\LOF
Miller, G.A. (1956). The Magical Number
Seven, Plus or Minus Two. Psychological
Review, 63, 81-97.

Intulogic bv.
Bisonspoor 1218
3605 KZ Maarssen
The Netherlands
Phone: +31-346-554411
Fax: +31-346-553711
E-mail: info@intulogic.nl
Web: www.intulogic.nl
‘LOF’ is a trade-mark of Intulogic bv.

http://www.intulogic/aida
http://www.intulogic/LOF/CAN2A
mailto:info@intulogic.nl
http://www.intulogic.nl/

