
XML-based Management Framework
for CANopen Systems

Dr.-Ing. Martin Wollschlaeger

Web-based management solutions for fieldbus systems have become state of the art.
A framework based on descriptions in XML (eXtensible Markup Language) allows an
easy mapping of a device's management functionality to web pages used as man-
agement front-ends. In most cases, the XML representation can be used directly in the
browser. Another way is an off-line generation of HTML-pages by means of scripts
and style sheets.

The management framework supports several design scenarios. It is possible to gen-
erate XML descriptions from a functional decomposition of a device, or on top of ap-
plication profiles and device descriptions. Using an extensively linked set of XML
files, hierarchical descriptions describe the spectrum from single device up to com-
plete systems.

Examples of a practical realization prove the feasibility of the concepts. Interfaces to
the common software design process are pointed out. Problems and benefits are dis-
cussed, and further trends are highlighted.

1. Introduction

During the last years, web-based manage-
ment solutions for fieldbus systems have
been introduced. They allow to combine
management tasks from different stages
of the systems' life cycles within an unique
environment, a framework [1], [2]. The
framework uses web-browsers as well-
known, widely accepted user-interfaces.
The web-browsers act as containers
hosting specialized software components,
which implement the management
functionality dedicated to a specific field-
bus component. The principle structure of
such a web-based framework is shown in
Fig. 1 [1].

Hypertext-
document

as front-end

fieldbus

fieldbus
interface

software
component

libraries

project &
real-time
database

integrating
instance,
project
management

Web-server
Web-browser

Fig. 1. Web-based management
framework

In order to implement this kind of
framework, different problems have to be
solved. The first one is the design of a
data exchange method between the
fieldbus interface and the web-server as
an integrating instance. Since PC-based
technology has been widely adopted,
concepts like OPC (OLE for Process
Control) [3], based on the Component
Object Model (COM) [4], can be used.
Other concepts are based on Java tech-
nology.

Another implementation problem is the
design of the front-end for the manage-
ment functions. In web-based manage-
ment systems, hypertext documents are
used. They can host heterogeneous in-
formation, like graphics, forms, documen-
tation, database front-ends, multimedia
files, and so on. This allows web-based
solutions to be used for presenting
heterogeneous management information.
In addition, there is an increasing number
of management software for web-sites
available, that also can be used in this
framework.

Finally, the management software com-
ponents themselves have to be developed
and implemented. While the implemen-
tation of the components into websites can
easily be done by systems' integrators or

users, the development of management
components is usually performed by the
vendor.

Since all these tasks require an excessive
exchange of data between each other,
software interfaces and file structures
have been defined. These interfaces are
mostly bus-system or vendor specific.
Especially in heterogeneous system de-
signs, the lack of an unique data ex-
change interface forces a problem for the
seamless integration of tools from differ-
ent vendors and different systems into a
generic management framework.

2. XML as a general-purpose
description language

A suitable solution for the problem de-
scribed above would be the introduction of
a general-purpose description. The de-
scription should have easy to access
interfaces for electronic data exchange
between different environments. Since this
is not a new requirement in general,
possible solutions already exist. They are
frequently used in the description of hete-
rogeneous documents, that can be found
everywhere on the Internet. HTML has
become a well-known and widely accepted
method for description of heterogeneous,
distributed and linked documents. How-
ever, HTML has some limitations and is
not fully suitable for general-purpose
descriptions.

The eXtensible Markup Language XML [5]
expands the description language HTML
with user-defined tags, data types and

structures. Furthermore, it addresses one
of the limitations in HTML – it introduces a
clear separation between the data de-
scriptions, the data themselves, and their
representation in a browser (Fig. 2). In
addition, declaring syntactical and seman-
tical information in a separate file (Docu-
ment Type Definition, DTD), allows re-
using the description structure in different
contexts. This provides a number of bene-
fits when using the same XML description
file for different tasks. Different views can
be implemented on top of the same data.
The description can be hierarchically or-
ganized. Depending on the functions to
perform, the XML data can be filtered and
associated to software components (con-
trols, Java beans, etc.). The selection of
the necessary information and the defini-
tion of their presentation details can be
performed by means of style sheets [6].
The style sheets are part of the develop-
ment of XML. In most cases, they are im-
plemented using the extensible Style Lan-
guage (XSL). By using different style
sheets, context sensitive access to the
XML data can be implemented. Another
method for accessing XML files uses an
object-oriented view of the XML tree. The
Document Object Model (DOM) [7] pro-
vides platform-independent access to ob-
jects, that host dedicated parts of the XML
tree. These objects implement methods
and attributes for use in high-level pro-
gramming languages, as well as in scripts
(Fig. 3).

<root>
<element>

<child_element attribute=“attr-value“>
</child_element>
<child_element>

<next_generation>
Value

</next_generation>
</child_element>

</element>
<element>

<child_element>
</child_element>

</element>
</root>

<root>
<element>

<child_element attribute=“attr-value“>
</child_element>
<child_element>

<next_generation>
Value

</next_generation>
</child_element>

</element>
<element>

<child_element>
</child_element>

</element>
</root>

Style-Sheet

(formatting
instructions)

Document Type
Definition - DTD

(syntax, semantics)

XML-Datei

(Beschrei-
bungsinhalt)

XML-Datei

(Beschrei-
bungsinhalt)

XML-file

(description
content)

AusgabedateiAusgabedateioutput files

Style-Sheet

(formatting
instructions)

Style-Sheet

(formatting
instructions)

Document Type
Definition - DTD

(syntax, semantics)

XML-Datei

(Beschrei-
bungsinhalt)

XML-Datei

(Beschrei-
bungsinhalt)

XML-file

(description
content)

XML-Datei

(Beschrei-
bungsinhalt)

XML-Datei

(Beschrei-
bungsinhalt)

XML-file

(description
content)

AusgabedateiAusgabedateioutput files
AusgabedateiAusgabedateioutput files

Fig. 2. Structure of an XML file (left) and XML environment with DTD and style sheet (right)

Script
(JavaScript,
Visual Basic,

...)

XML file

text
file

new
XML
file

binary file

XML
DOM

Fig. 3. An XML file and its tree representation in the Document Object Model (DOM)

3. XML-description of fieldbus
components and systems

Different scenarios have to be considered
in fieldbus management. They are charac-
terized by a different focus and viewpoint,
different environment, different stages of
the systems' life cycles and so on. Typical
scenarios are a topological view focusing
on a system's and devices' topologies, or
a functional view focusing on the auto-
mation and control application of the
complete system. These different scena-
rios lead to different parameters that have
to be managed, depending on the scena-
rio. In other words, these parameters and
the associated management functions are
context-depending. It is very important,
that the descriptions of fieldbus compo-
nents and systems consider the context-
depending parameters. Currently used
electronic device descriptions normally do
not recognize the context-depending cha-
racter of the described information in a
sufficient manner.

Using the concepts explained above, an
XML description of a fieldbus component
consists of different parts. First of all, ap-
propriate fieldbus-related syntax and se-
mantics have to be defined. This includes
tags and attributes, their sequence, data
types, and so on. By defining these, a
dedicated content model for fieldbus-
related descriptions is created. It contains
a set of document type definitions, sche-
mas, data type descriptions, templates,
linking definitions, and transformation

rules. By combining this information, a
namespace for fieldbus related descrip-
tions is set up (Fig. 4). In order to achieve
a generic, fieldbus-independent content
model, the user organizations are re-
quested to provide XML descriptions of
the fieldbus systems they are represent-
ing. Currently, there are first XML related
activities defining generic concepts like
[8], or creating XML representations and
filters for bus-specific device description
languages [9]. Furthermore, projects like
NOAH [10] provide a good starting point
for a harmonization of the descriptions.

An XML-based description consists of a
distributed set of files, which contain
specific parts of the description. They are
hosted by those elements, which are
described by the files. Typically, different
XML files are created, each of them
related to stages of the devices' and
systems' life cycles. In order to prevent
multiple definitions, the files are linked
together. This creates a consistent set of
descriptions. The users, as well as the
applications using the description, usually
don’t recognize the distributed character
of the description.

XML provides outstanding linking capa-
bilities, including on-line embedding of
ressources and fragments of files. In
addition, extended links support attributes,
that consider a context. This way context
depending links can be defined. The link
target as well as the behaviour of the link
differ depending on the context.

Content Model

XML
file

XML
file XML

file

XML
fileTransfor-

mation
rules

Interface
(DOM)

Interfaces
(style sheets)

Transfor-
mation
rules

Applications
(software tools, presentations, description generators, database software, ...)

context-depending access of description content

DTD SchemaDTD
Content Model

XML
file

XML
file XML

file

XML
fileTransfor-

mation
rules

Interface
(DOM)

Interfaces
(style sheets)

Transfor-
mation
rules

Applications
(software tools, presentations, description generators, database software, ...)

context-depending access of description content

DTD SchemaDTD

Fig. 4. A content model with structure and access methods

Although the linking principles and their
definition syntax proposed by the World
Wide Web Consortium (W3C) is quite
stable and will shortly become a standard
[11], there are currently only a few first
implementations in parsers and tools.
However, the focus on XML in the
Internet’s development lets expect really
useful implementations very soon.

After having designed the content model,
in a second step the XML files have to be
created. Although this can be done
manually, good tool support is desired to
generate XML files from existing descrip-
tions and specifications. Filters and trans-
lation software can be helpful here. In ad-
dition, there are some projects with an aim
of defining interfaces between general-
purpose modelling tools like the Unified
Modeling Language (UML) [12] and XML-
descriptions.

The third step is the design of filtering and
formatting rules in order to generate the
desired context-depending views to the
unique XML description. This is done by
scripting and declaring style sheets. While
style sheets can be used for presentation
tasks (generating output files in text,
HTML, RTF or PDF formats), they are
also suitable for transforming "input" XML

files to resulting XML files, which may
have different structures. So an infor-
mation exchange between different con-
texts can be achieved.

The formatting instructions and translation
specifications have to be developed once
for every context and then can be re-used
in combination with XML-files describing
other fieldbus components and devices.
Concerning web-based management con-
cepts, HTML files can be created contain-
ing context-related data read from the
XML files. This can be done off-line or "on
the fly". Since built-in support for XML in
browsers will be enhanced more and
more, the generation "on the fly" in the
client will be more promising. However, in
order to support generic environments, it
can be useful to create the HTML files at
the server. This requires computational
power at the server, which can be guar-
anteed in most application scenarios. So-
called “thin clients”, in an automation and
control context, can be small HMI devices
based on Windows CE or Java, that are
designed to perform specific tasks of man-
agement or diagnosis. Such clients will
benefit from a server-based scenario,
since they are limited in computational
power. As an opposite solution, a PC or

laptop with much more operating capacity
could use a client-based implementation.
Both scenarios are supported by the de-
scription concepts explained above.

4. Device descriptions in CANopen

In CANopen, devices and systems imple-
ment a unique communication profile. This
profile defines global and system-wide
information concerning application ser-
vices, synchronization, data types and
formats, the system’s behavior, and so on.
All CANopen devices and all software
tools have to consider these definitions.
Based on the communication profile, a
number of parameters can be configured.
These parameters are assigned to a man-
agement context focusing on topology and
bus system’s operation, but not on the
application function.

In order to access CANopen devices in a
convenient way, software tools require
more information than the parameters
from the communication profile. This addi-
tional information describes parameters,
that refer to the application functionality
and the behavior of the devices. Those
parameters can be described in device
profiles, or can be vendor-specific. Al-
though using device profiles is the pre-
ferred way, vendor-specific parameters
are often used in order to prevent opening
of particular know-how.

The additional parameters and those of
the communication profile, that are imple-
mented in the device, are described by
two different information stores. The first
one defines a certain type of devices. This
description is called the Electronic Data
Sheet (EDS), and is unique for all devices
of the same type. It can be used by soft-
ware tools to retrieve the capabilities of a
device type. EDS files can be used as
templates containing specific information
on the parameters, but usually not their
application-related values. The second
description is the Device Configuration
File (DCF), which describes a single in-
stance of a device. It is unique for every
device within the system. DCF files rely on
EDS files, but contain values for the pa-
rameters. These values depend on the
specific configuration of a device.

The software tools for management of
CANopen systems refer to both files in
order to read out the capabilities and re-
quired configuration parameters of a de-
vice, and to store device-specific pa-
rameters. Other file are necessary to store
information on the complete system’s de-
sign. They are stored in project files with a
specific data format.

The files mentioned above describe a
CANopen system from a topological or
device-centric viewpoint. No references to
functional views are included. For exam-
ple, function blocks according to
IEC 61499 [13] are not considered. These
function blocks are used in a functional
oriented management scenario. They can
be mapped to the appropriate devices.

Another information usually not consid-
ered in the descriptions, is that used for
their graphical representation in SCADA
systems or HMI devices. Of course, these
parts of the description do not only depend
on the devices, but also on the project.
However, the characteristics of the
devices have to be considered in order to
create user-friendly interfaces.

functional
representation

repre-
sentation
in a user
interface

topological
representation

communi-
cation

oriented
represen-

tation

Device
Descrip-
tion

context-
depending
access to the
description
via interfaces

functional
representation

repre-
sentation
in a user
interface

topological
representation

communi-
cation

oriented
represen-

tation

Device
Descrip-
tion

context-
depending
access to the
description
via interfaces

Fig. 5. Context-depending access to a
description

Combining the information applicable in
different contexts creates a description
suitable for use in frameworks. The ac-
cess to the context-specific representation
is performed via an interface (Fig. 5). This
interface encapsulates the internal struc-
ture of the information store, adds some
specific information from other sources,
and creates an appropriate view. Since
common device descriptions are not ca-

pable of implementing the interfaces with-
out having to write specific code, universal
description methods like XML come into
the focus of the description process [14].
The interfaces are implemented by means
of style sheets, scripts and specific soft-
ware tools as explained above.

5. XML-based management framework

Since XML allows hierarchically organized
descriptions, the basic concepts suitable
for describing a single device can also be
used to describe a complete systems. This
hierarchy shown in Fig. 6 can also be
found in the XML files. Within a general
namespace, XML files are used to define
several types of fieldbus devices. From an
object-oriented perspective, these files
describe classes of devices, with class-
specific data models and management
functions. They combine information from
EDS files with information from other
contexts.

The multiple instances of a device are
described by assigning an XML file to
each of them. This file contains the actual
parameters of the device – similar to DCF
files. Information concerning data types,
units, value limits, dependability of other
data etc. can be found in the class de-

scription, that is linked with the instance
description. Since the file is in the same
namespace, an identical semantic mean-
ing of the XML tags is ensured. However,
the information stored in the XML instance
files is different from the class description.
That's why the instance files have their
own structure and DTD or schema. These
files are automatically created from the
class description, when a device is instan-
ciated. Style sheet- and script-based
transformation methods are invoked to
create the instance-related XML files. The
transformation rules are part of the con-
tent model, as described above.

The fieldbus installation project is inter-
nally structured into groups, subgroups,
units and so on. Depending on the storage
capabilities of the devices, descriptions
may be implemented in a proxy object
anywhere in the framework, The relations
between the different files are expressed
by linking. As an opposite to the Internet,
in most cases a closed environment can
be found in automation and control
projects. This will help to reduce linking
problems that are known from the Internet.

DCF
files

EDS
file

XML file
(general

description)

XML file
(component
description)

XML file
(component
description)

XML file
(component
description)***

XML file
(project

description)
other files

of the project

Link

Data flow
software tools

creating
instances

of a component

software tools
creating
project

description

suite of
software tools

DCF
files

EDS
file

XML file
(general

description)

XML file
(component
description)

XML file
(component
description)

XML file
(component
description)***

XML file
(component
description)

XML file
(component
description)

XML file
(component
description)***

XML file
(project

description)
other files

of the project

XML file
(project

description)
other files

of the project

LinkLink

Data flow
software tools

creating
instances

of a component

software tools
creating
project

description

suite of
software tools

software tools
creating

instances
of a component

software tools
creating
project

description

suite of
software tools

Fig. 6. Hierarchical description of a fieldbus project using XML

6. XML support for the generation of
software components

The main idea of using XML descriptions
was to re-use a single definition for differ-
ent tasks with different scope and context.
A very interesting problem is the develop-
ment of software components, that map

the management related functionality of a
device to a user interface. Thus, the same
XML files shall be used for that tasks. This
requires filtering of the relevant data form
the XML document and specific formatting
of the results. From a methodological
view, this process does not distinguish

from the one used to create HTML files -
only data content and data format differ.
So it is recommended to use the same
methods as described above - style
sheets and scripts. An XML document can
be related to different style sheets, so that
only the XSL references in the XML file
has to be changed - according to the tasks
to perform and to the changing context for
using the XML description. This can easily
be done by a script.

Besides style sheets, DOM-based tools
can be used to generate resulting files.
Data can be extracted and formatted to
any output file format. This is especially
important for creating input files for the
software design process described above.
Web-based management frameworks for
fieldbusses use software components
(ActiveX-Controls or Java components) for
a mapping of the fieldbus related commu-
nication objects to web-pages. Such soft-
ware components have to be developed
for every specific device. Object descrip-
tions are used for the development. For
example, an ActiveX-control is based on a
COM object definition. This definition de-
scribes objects with specific interfaces,
properties and methods, defined using
Object Definition Language (ODL). ODL
files are text files with a specific structure
and syntax, that can be derived from an
appropriate XML file. The same approach
can be used for the creation of Java
source code, where a template can be
completed with data from XML files. Both
approaches use an unique (perhaps dis-
tributed, but consistent) XML description,
reducing inconsistencies and errors in the
software design process.

Since there are interfaces between XML
and other web-related technologies, great
new opportunities are possible for web-
based management solutions. For exam-
ple, databases can be easily accessed in
order to provide the data covered by XML
objects or data islands. Interactive docu-
ments can be created, containing plain
text with embedded XML elements speci-
fying input data for interactive compo-
nents.

7. Conclusion

The use of a general-purpose modeling
language like XML provides a number of

advantages for design and application of
fieldbus components. An XML-based de-
scription allows style sheets and scripts to
be used for filtering and formatting tasks.
This description method integrates exist-
ing solutions. It represents an upcoming
standard in universal description methods,
allowing platform- and vendor-independ-
ent access to data. Tools can be created
to support the automatic generation of
different types of output files. These files
are used for creating templates, header
files and object definitions for further use
in software development. While the tem-
plates are generated for every class of
devices, the template generator has to be
implemented only once. This is an impor-
tant advantage in software development.
Hierarchical descriptions with extensive
linking can be set up, so that object-ori-
ented views can be implemented at de-
scription level. Automatic test and certifi-
cation support can be derived from the
same XML data.

Specific context-related Document Type
Definitions (DTDs) can be introduced, that
contain special description rules for field-
bus related data, depending on the tasks
that have to be performed during the sys-
tems' life cycles. Combined with data type
information, fieldbus related namespaces
can be defined. These tasks should be
initiated by the fieldbus systems' user or-
ganizations. It can be expected, that simi-
lar concepts will be used for a modeling of
application functions. First steps can be
recognized using XML as a description
method and universal exchange format for
Function Blocks according to IEC 61499
[13]. This will enable a functional view to
distributed automation and control sys-
tems. In general, the errors introduced by
re-defining same objects within different
contexts, are reduced dramatically. For
the vendor, all this will help to reduce de-
sign costs. The user participates from this
cost reduction. In addition, software tools
can be created, that extensively use XML
descriptions. Although the acceptance of
XML will grow in accordance with the
growing acceptance of internet related
technology, the software tools will hide
XML from the user. He will be presented a
user interface, that partly or totally covers
XML, but without wasting its advantages.

Finally, the close relation between XML
and web-technologies offers a new quality
in web-based management solutions.

References

[1] Wollschlaeger, M.; Mapping of
Fieldbus Components to WWW
based Management Solutions.
FeT'99 Fieldbus Technology,
Magdeburg, 23.-24.09.1999.
Published in: Dietrich, D.;
Neumann, P.; Schweinzer, H.:
Fieldbus Technology. Springer Wien
New York, pp. 172-179

[2] Lainé, T.: Internet technologies and
fieldbuses, ISA TECH/1999,
Philadelphia, 05.-07.10.1999,
proceedings "Productivity and
Flexibility"

[3] n.n.: OPC Data Access Automation
Specification, Version 2.0. OPC
Foundation, October 14th 1998

[4] Brockschmidt, K.: Inside OLE.
Second Edition. Microsoft Press,
1997

[5] Bray, T.; Paoli, J.; Sperberg-
McQueen, C. M.: Extensible Markup
Language (XML) 1.0. 1998,
http://www.w3.org/TR/REC-xml

[6] Boumphrey, F.: Professional Style
Sheets for HTML and XML. Wrox
Press, 1998.

[7] n.n.: Document Object Model (DOM)
Level 1 Specification, Version 1.0
W3C Recommendation 1 October,
1998, http://www.w3.org/TR/
REC-DOM-Level-1

[8] Moss, W.H.: Report on ISO
TC184/SC5/WG5 Open Systems
Application Frameworks based on
ISO 11898, 5th International CAN
Conference (iCC’98), San Jose, 03-
05.11.1998, proceedings "Industrial
Automation" pp. 07-02 to 07-04

[9] Korsakas, J.V.; Moyne, J.R.: Moving
DeviceNet Data Representations to
XML, 6th Annual ODVA Meeting,
Tampa, 08.03.2000,
http://216.10.36.18/10_2/09_down/
XML%20Overview.ppt

[10] Döbrich, U.; Noury, P.: ESPRIT
Project NOAH - Introduction. FeT'99
Fieldbus Technology, Magdeburg,
23.-24.09.1999. Published in:
Dietrich, D.;
Neumann, P.; Schweinzer, H.:
Fieldbus Technology. Springer Wien
New York, pp. 414-422

[11] n.n.: XML Linking Language (XLink),
W3C Candidate Recommendation 3
July 2000,
http://www.w3.org/TR/2000/
CR-xlink-20000703

[12] Kimber, W.E.: Using UML To Define
XML Document Types,
http://www.drmacro.com/hyprlink/
uml-dtds.pdf

[13] n.n.: Committee Draft - Function
Blocks for industrial-process
measurement and control systems.
Part 2 - Engineering Task Support,
2nd Committee Draft,
ftp://ftp.cle.ab.com/stds/iec/tc65wg6/
document/pt2cd2.zip

[14] Wollschlaeger, M.: CANopen Device
Descriptions using general purpose
modelling languages,
6th International CAN Conference
(iCC'99) Turin (Italy),
02.-04.11.1999, proceedings
pp. 03-06 - 03-13

Dr.-Ing. Martin Wollschlaeger
Otto-von-Guericke-Universität Magdeburg
Institute for Electronics, Signal Processing
and Communications (IESK)
PO Box 4120, D-39016 Magdeburg,
Germany
Phone:+49 (391) 67-1 46 53
Fax: +49 (391) 5 61 63 58
e-mail: mw@iesk.et.uni-magdeburg.de
http://www-nt.et.uni-magdeburg.de/

