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ABSTRACT
With the increasing popularity of distributed and open frameworks, the trend of
connectivity has extended to real-time control systems such as CAN. A generic middleware
for CAN will facilitate the design, implementation and management of distributed
applications for CAN systems, instead of programmers having to build custom made
applications. This paper describes current approaches to tailoring existing middleware
frameworks to the specific features of embedded systems in general, and CAN in
particular.

INTRODUCTION
In response to advances in technology and the
increasing complexity of distributed systems and
applications, the concept of middleware was
created to hide the underlying networked
environmentÕs complexity by protecting
users/applications from explicit protocol handling,
disjoint memories, data replication, network faults
and parallelism [26].  In this context, middleware
systems consist of the software layer between
the operating system and the distributed
applications that interact via the underlying
network. In addition, middleware masks the
heterogeneity of computer architectures,
operating systems, programming languages, and
networking technologies to facilitate application
programming and management, thus resulting in
truly distributed platforms. Examples of
middleware include: OMGÕs CORBA, JINI, Java
RMI and MicrosoftÕs DCOM.

Originally designed for enterprise systems, the
middleware approach and the trend of
connectivity and internet-based applications is
now shifting to the world of real-time control
systems such as CAN. As such, various
attempts have been made to establish the
foundations for a middleware that can satisfy the
stringent features of embedded systems, and, at
the same time, maintain connectivity with existing
and future enterprise systems.  For example, the
need for open frameworks to connect household
wireless devices is motivated in [9]. This paper
motivates the need for a generic middleware
approach for real-time control systems in
general, and CAN in particular. Existing
approaches to such a middleware are described,
followed by a description of the approach to be
taken by the authors.

MIDDLEWARE FOR CAN: motivation
Figures 1 and 2 illustrate possible applications
involving CAN controllers in cars, other real-
time control systems and enterprise systems.
In Figure 1, the route of the aircraft can be
remotely controlled from a management
station, in case of emergency. In Figure 2,
internal communication between the
controllers in the car can aid the driver in
parking or reversing. Also in Figure 2, remotely
located dealers can be consulted via the
Internet to locate possible faults in the car, or
for remote licensing.

The challenge does not lie on the applications
themselves (in fact, some car manufacturers
have implemented similar applications), but in
creating a framework that supports the
modeling, implementation, deployment and
management of a variety of applications. This
framework will be the middle tier between
CAN network and internal/external
applications, thus referred to as middleware
(Figure 3). The main advantage of middleware
approach over custom designed applications
is that the former can free software designers
from developing custom communication layers
between processes. In addition, a middleware
should provide a generic and structured
approach to:

•  Intranet/Internet connectivity
•  Fault detection, isolation and recovery
•  Satisfy Quality of Service (QoS)
requirements, such as fault-tolerance and
real-time constraints.
•  Enable access to services under different
framework/architecture/implementation   
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The described features of a middleware cannot
be implemented without software support.
However, due to the stringent conditions of real-
time embedded systems, what is known as the
embedded software crisis, open distributed
frameworks cannot be employed as easily as in
enterprise systems. In other words, middleware
solutions such as CORBA [18] and Java RMI,
originally designed for enterprise systems,
cannot be directly integrated into embedded
systems due to the following reasons:

Figure 1 A sample application

•  Most of the current middleware
approaches assume a point-to-point,
connection-oriented, transport protocol,
whereas embedded systems are based on
group communication.

•  As opposed to enterprise systems,
embedded systems have reduced
resource footprint.

•  Real-time embedded systems require QoS
specification and enforcement, which are
not part of existing middleware solutions.
Predictability (real-time constraints) and
fault tolerance are examples of QoS
requirements.

     Figure 2 Ð Example of deploying a generic  
                      middleware for CAN

Another drawback of utilizing existing
middleware solutions is that they are not
interoperable, i.e., an application under a
CORBA framework cannot communicate with
an application under Java RMI or DCOM
framework, unless specific bridges/gateways
are deployed.
Existing middleware solutions must therefore
be tailored to satisfy the constrained world of
embedded systems. In addition, interoperability
with existing and future enterprise and
embedded systems must also be achieved. In
the next section, we survey existing
approaches to tailor OMGÕs CORBA to the
requirements of CAN and other real-time control
systems.

Tailoring CORBA to CAN Requirements
Distributed object computing has been a
promising approach to support the
implementation of complex distributed
applications. At the heart of contemporary
distributed object computing models are
Object Request Brokers (ORBs), which
facilitate communication between local and
remote objects. ORBs eliminate many tedious,
error-prone, and non-portable aspects of
creating and managing distributed applications.
One of the widely used ORB models is the
Common Object Request Broker Architecture
(CORBA) [18], which is standardized by the
Object Management Group (OMG).  

Since 1991, CORBA has been the de-facto
middleware used in building distributed
enterprise applications. Language, platform
and location independence enables the
communication between objects implemented
in different languages, running on different
platforms and on different hosts in a
transparent manner. To access a service
offered by a remote server, a client only has
to make a local method invocation and the ORB
will take care of locating the server,
transferring parameters and returning results.
If client and server are located in different
platforms, the ORB will also take care of any
required conversions. The interoperability
between ORBs from different vendors is
possible through the General Inter-ORB
Protocol (GIOP). A specific example of GIOP is
the Internet Inter-ORB Protocol (IIOP), that
includes a mapping to TCP/IP.
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CORBAÕs language independence is achieved
through the Interface Definition Language
(IDL). An IDL file contains the specification of
attributes and operations that can be invoked
by a client on a given server. The specification
also includes exception values, type
definitions, constants and operation
signatures. The IDL compiler generates client
stubs and server skeletons based on the
specified information. Stubs and skeletons
serve as the ÒglueÓ connecting remote
application processes, and can be generated
in various languages, including C, C++, Ada,
Smalltalk and Java. Figure 4 illustrates the main
components of a CORBA framework.

CORBA was developed for enterprise systems
that do not have the resource-constrained
environment of embedded systems. In addition,
group communication and real-time requirements
need to be addressed. Some of the work that
addresses these points are described below.

Figure 3 - Stubs, Skeletons, ORB, IDL and
IIOP

Group Communication - CORBA is based on the
connection-oriented transport model and an
object reference denotes only a single CORBA
object, thus resulting in a point-to-point
communication. Embedded systems such as
CAN offer a consistent broadcast mechanism in
a straightforward manner via a serial broadcast
medium and non-destructive priority-based bus
arbitration. It also supports the
producer/consumer model of data transmission,
which is often referred to as the
publisher/subscriber communication model [16].
In this context, a producer of a message is
totally unaware of its consumers and simply
broadcasts messages over the bus without
specifying their destinations. Consider, for
example, stopping a set of motors. When issuing

a stop command, it is not of interest to address a
specific motor, rather it must be ensured that all
relevant motors receive the command.  Similarly,
when reacting to a stop command, it is not of
interest which controller has issued that
command. On a more abstract level, a sensor
object triggered by the progression of time or the
occurrence of an event spontaneously
generates the respective information and
distributes it to the system.  It can thus be
considered as a producer. There have been
different approaches towards including group
communication and publisher/subscriber support
to CORBA. In [15], a  CAN-based transport
protocol is designed to support group
communication. This protocol makes use of the
CAN identifier structure to implement a subject-
based addressing scheme, which supports the
anonymous publisher/subscriber communication
model.  [15] also proposed an abstraction
scheme called invocation channel, which
denotes a virtual communication channel
connecting a group of communication ports and
a group of receivers.  A conjoiner object,
responsible for group management, dynamic
channel binding and address translation, is also
proposed. An invocation channel is uniquely
identified as a channel tag in an IDL program.
One of the main drawbacks of this approach is
that interoperability between different ORB
implementations is lost due to the elimination of
the connection-oriented point-to-point
communication services.

Another approach, combining broadcast and
filtering approaches, is proposed in [13]. The
underlying broadcast medium of CAN, along with
its non-destructive collision handling scheme
that allows for the support of real-time
properties, is used as an alternative to multiple
point-to-point messages. To make sure that a
subscriber does not receive more messages
than it has subscribed for, a filtering mechanism
is also proposed. This mechanism consists of
adding the subject of a message in the address
of the message rather than in the message
contents. The receiving CAN controllers are
configured to selectively receive messages
depending on the contents-related address. A
masking mechanism is also available to realize
ÒwildcardingÓ and recognize messages with
partially identical addresses as members of a
subject group. To solve the binding message
problem, i.e., how to find out which address the
system has to use when sending a particular
message, [13] proposes a dynamic binding
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mechanism that binds subjects to addresses at
run-time. This mechanism denoted as Event
Channel Broker [13] supports late binding and
local address resolution.

Finally, in [1] an Object Group Service (OGS)
aimed at facilitating the parallel processing of
CORBA operation calls is proposed. This
approach consists of defining a Master and
Worker IDL interfaces. The Master interface
contains one single operation receive(), which
gets information issued by a server (the worker)
registered to the OGS. The Worker interface
includes the operation send() which gets
information about the operation to be executed
as an argument. An interaction begins when the
master invokes operation send() on a particular
group of workers, thus transmitting the message
to be executed. The message is then
propagated from the group object to its
members, the workers. Finally, the workers will
inform the master of the result of their
computation by calling its operation receive(). In
this context, the dispatching of a call to all
members of a group is the responsibility of the
IDL interface Group.

Real-time support. The goal of real-time is
achieving predictability in the behavior of some
external attributes of a system, such as
response time to inputs [4]. Obtaining this
predictability (or ``end-to-end predictability'' of
the system) requires that all the components in
the system behave predictably. Thus, if CORBA
is to be used in real-time systems, its behavior
must be predictable. Making the CORBA
component of a real-time system predictable
means making the time of operations invoked on
CORBA objects predictable.

There have been different approaches towards
achieving predictability in CORBA and other
frameworks. In [12], a framework for invoking
real-time objects on a CAN bus is proposed. The
first byte of the arbitration field in a CAN
message is used to define three levels of priority
that can be assigned to any message: hard, soft
and no real-time constraint. Messages with hard
real-time constraints have deadline guaranteed
by reserving a time slot on the bus. The
transmitter enforces the reservation by
dynamically increasing the priority of the
message according to its laxity relative to the
reserved time slot. Soft real-time messages are
scheduled by the EDF (Early Deadline First)
strategy, and non real-time messages are

scheduled by assigning fixed priorities. By
employing such a scheduling mechanism, timely
transmission of hard real-time messages is
guaranteed since they always have higher
priorities than other messages, and secondly, a
hard real-time message gains the highest
possible priority at the beginning of its reserved
time slot. The optimal scheduling of soft real-time
messages is also guaranteed since their
priorities are higher than that of non real-time
messages, depending directly on the time
remaining until its deadline, thus realizing EDF
scheduling.

In [13] the use of asynchronous operations, as
opposed to the synchronous request-response
nature of CORBA and JAVA RMI is proposed.
The motivation being the fact that synchronous
operations result in blocking the caller until a
response is obtained from the receiver, thus not
resulting in a ``predictable'' behavior. An
asynchronous or event-driven paradigm would
not block the sender and would contribute in
maintaining an end-to-end predictability.

In [14] an API for real-time Distributed Object
Programming is proposed, which enables
deadline imposition for arrival of results from an
invoked object method, time-triggered actions
and non-blocking invocation of object methods.

An extended IDL enabling the specification of
timing constraints in a CORBA program, as well
as ``fast-track messages'' used for time critical
real-time traffic, are proposed in  [10]. The
``fast-track messages'' can bypass layers of
software and be sent to guarantee predictability.

Finally, we have OMGÕs Real-time CORBA [21],
with the goal of synchronizing the ORB
operations with those of the underlying Real-
time Operating systemÕs environment in order to
make operations predictable. Three main
aspects of achieving predictability are
presented:

§ Processor predictability - Processors are
used in a predictable manner by assigning
priorities that are mapped to the priorities of
RTOS tasks and threads, thus integrating with
non-CORBA parts of the system.

§ Memory predictability - A ``thread pool''
abstraction is used to control the number of
thread and their allocation to different parts of
the CORBA system. The amount of memory that

§ 
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§ each thread takes up can also be controlled
and the amount of memory reserved for the
queuing of CORBA requests can also be
configured.

§ Network resource predictability - Applications
can select between and configure the available
network protocols, and make choices about the
amount of sharing of connections that occurs.

The above features were added to CORBA as
extensions through new APIs and semantics.
For example, different RTOSs have different
priority models. Some have 0 as the highest
priority, and others have it as the lowest priority.
Real-Time CORBA defines a priority-mapping
scheme that allow priorities to be passed
between parts of a system that are running on
different RTOSs. This is possible through a
platform-independent priority model, called Real-
Time CORBA Priority, defined in IDL. The
priority is represented as a short integer,
ranging from 0 to 32767.

Other features of Real-Time CORBA include
``priority binding'': multiple connections between
client and server to handle requests at different
priorities.

Quality of Service - Existing work in QoS in
embedded system applications has been closely
linked to real-time issues. This is not surprising
since controlling the real-time behavior of a
system is one important dimension of the
delivered QoS. In this section,  we discuss two
of the existing work in the area.

[23] proposes extensions to Distributed Object
Computing (DOC) model that supports  the control
and measurement of, and adaptation to, changing
QoS requirements and conditions. The
assumption is that  as network and end system
performance continues to increase, so too does
the demand  for more control and manageability
of their resources through the middleware
interface.  In addition, next-generation systems
present real-time QoS requirements for shared
resources and workloads that can vary
significantly at run-time, which, in turn, increases
the demands on end-to-end system resource
management and control. The proposed
framework, Quality Objects (QuO), is a
distributed object computing framework designed
to develop distributed applications that can
specify (1) their QoS requirements, (2) the
system elements that must be monitored and

 controlled to measure and provide QoS, and (3)
the behavior for adapting to QoS variations that
occur at run-time [23]. To achieve these goals,
QuO provides middleware-centric policies and
mechanisms for developing DOC applications that
can perform the following operations in addition
to their functional behavior:

§ Specify level of desired performance or
resources, operating modes, and operating
regions (all can change dynamically)

§ Measure environmental and system
conditions using probes in their distributed
environment to measure resources,
characteristics, and behavior.

§ Adapt to changing conditions at all levels.
§ Use of contracts to encode service

requirements, describing the possible
states the system might be in, as well  as
which actions to perform when the state
changes.

§ Use of delegates that project the same
interfaces as the stub and the skeleton, but
support adaptive behavior upon method call
and return.

§ Instrumentation probes that can be inserted
throughout the remote method invocation
path. These probes can be used by the
QuO infrastructure to gather performance
statistics and validation information.

§ Quality Description Language (QDLs) and
Code Generators describe and
automatically output, respectively, the
components of QuO applications.

§ QuO Runtime Kernel and GUI Monitor
provides a runtime kernel that coordinates
contract evaluation and provides other
runtime QuO services.

§ QuO Gateway allows low-level
communication mechanisms and special-
purpose to be plugged into an application.

In [7] a real-time adaptive QoS management is
proposed for the Kokyu distributed framework.
The proposed approach consists of
encapsulating QoS management mechanisms
within the Kokyu middleware framework and
allowing flexible configuration of policies to shield
application developers from error-prone QoS
management details, and providing flexibility in
meeting diverse end-to-end QoS requirements.
The following QoS management  mechanisms are
included in the proposed framework:

§ QoS service configuration
§ admission control
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§ Qos exception propagation
§ QoS exception handling
§ pacing
§ shaping
§ classification

Fault Tolerance- Like Real-Time CORBA [21]
and Minimum CORBA [20], the Fault Tolerant
CORBA (FT-CORBA) [19] has been one of
OMG's recent extensions to  the CORBA
standard.  It is a specification that defines a
standard set of interfaces, policies, and services
that provide robust support for applications
requiring high reliability.

Fault tolerance for CORBA objects is achieved
via replication, fault detection, and recovery.
Replicas of a CORBA object are created and
managed as a "logical singleton" composite
object. This strategy allows greater flexibility in
configuration management of the replicas. The
main components of  FT-CORBA are:

-Interoperable Object Group Reference
(IOGR) - FT-CORBA standardizes the format of
interoperable object references(IOR) used for the
individual replicas. An IOR is a flexible addressing
mechanism that identifies a CORBA object
uniquely. IOGR is thus a composite of IOR
objects.

-Replication Manager - This component is
responsible for managing replicas.

-Fault detector and notifier- Fault detectors
are CORBA objects responsible for detecting
faults via either a  pull-based or a push-based
mechanism. A pull-based monitoring mechanism
periodically polls applications to determine if their
objects are "alive." FT-CORBA requires
application objects to implement a
PullMonitorable interface that exports an is alive
operation. A push-based monitoring mechanism
can also be implemented. In this scheme, which
is also known as a "heartbeat monitor,"
applications implement a PushMonitorable
interface and send periodic heartbeats to the
FaultDetector.

-Logging and recovery - For the application-
controlled consistency style, applications are
responsible for their own failure recovery. For
the infrastructure-controlled consistency style,
however, FT-CORBA defines a logging and
recovery mechanism. This mechanism is

responsible for intercepting and logging CORBA
GIOP messages from client objects to servers.

-Fault Tolerance Domains - Allow applications
to scale to arbitrary sizes. A single fault
tolerance domain consists of one or more hosts
and one or more object groups.

There have been various attempts to integrate
fault-tolerance into existing implementations of
CORBA in enterprise systems. Some are based
on the above specification.  There have not been,
however, equal attempts in the embedded level.
One related approach is found in  [11], a   fault-
tolerant extension to [15]. As mandated by the
OMG fault tolerant CORBA draft standard, object
replication is the basis
of the proposed method.  Two replication
strategies are used: passive replication and
active replication. Since the straightforward
application of these strategies leads to excessive
resource demands in embedded real-time
systems, a passive replication policy that does
not require message logging and object state
transfers is proposed.  

Reduced Resource Footprint - With the goal of
reducing the resource footprint of CORBA, OMG
has launched Minimum CORBA [20], primarily
intended for embedded systems. The approach
was to exclude dynamic aspects of standard
CORBA, that are not required for embedded
systems, e.g., the Dynamic Invocation Interface
and the Interface Repository that supports it.

In [15], a resource-conscious customization of
CORBA is proposed for CAN-based embedded
systems, by reducing the size of data
representation and by customizing GIOP with
simplified message types and reduced headers.

wireless applications
Previous sections motivated the need for a
CORBA-based open framework for
communications within embedded systems as
well as between embedded and enterprise
systems. We now describe two approaches
that explore the potential of wireless
communication on the level of technical tasks
within a vehicle and between a vehicle and its
surrounding area.

[24] explores the potential of Bluetooth in
automotive applications. The use of wireless
transmission is motivated in [24] by its  flexible
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 and reliable features. Flexibility in design and re-
design, ease of modification, extension
capability and  support  for decentralization are
some of the flexible features of wireless
communication.  Reliability results from the lack
of wiring in problematic areas, no need for
connectors, resistance to corrosion, robustness
against  mechanical vibrations and high
availability.

The focus in [24] is on control and monitoring
tasks inside a vehicle and in defined
surroundings of a vehicle. Three levels of
communications are proposed:

 -Local in-vehicle communication for
control and monitoring tasks - Involves
communication between control units, sensor
units, actuator units, lights and switches.
Flexible installation of customer specific devices
(plug and play) is also a possible application.
Using radio link for wireless communication
would increase the flexibility with respect to
packaging of electronic units and mechanical
design [24].
 
-Communication during production -
Involves the use of wireless communication
between the vehicle and the automation system
of thw production line [24]. This can enable the
exchange of data for testing or diagnosis from
the vehicle to the production line.
 
- Communication during service - Involves
the use of wireless communication between the
vehicle and a computer of the service station to
exchange status information and service specific
information.  During service all single units and
subsystems of the vehicle   are checked,
functions are adjusted, and new sets of
parameters or new versions of software are
downloaded to the vehicle if necessary [24].

The use of Bluetooth is proposed as the wireless
connection to the CAN bus. The motivation for
using Bluetooth comes from its success in the
enterprise-level wireless applications.  In
addition, there is a good match between the bit
rates between CAN and Bluetooth. 10k to 1M
bits/s on CAN and 1M bits/s on Bluetooth are the
raw bit rates, whereas the useful bit rates for
CAN vary from 2K to 581K (at 1Mbits/s), and
from 64K to 723K for Bluetooth.  There is,
however, a transmission and addressing
mismatch: CAN is a broadcast network using
message identifiers for addressing, whereas

Bluetooth is based on point-to-point
communication, using source and destination
addresses. A gateway that translates between
both addressing and transmission schemes will
be required. In addition, Bluetooth's support for
predictability, fault-tolerance and QoS still need to
be  evaluated.

      
In [3] remote connectivity to automotive
communication networks is proposed based on
BellSouth's Intelligent Wireless Network. A
prototype  end-to-end Telematic solution was
developed for test and measurement and fleet
management applications, resulting in applications
such as vehicle polling (to locate a vehicle's
geographic location), unauthorized movement
detector, automatic mileage monitor,  route
navigation, text messaging (capability for sending
in-vehicle hardware configuration commands,
remote diagnostics, remote vehicle functions
(door unlock, horn activation and light flash) and
vehicle performance/monitoring. As in  [24],
issues such as real-time, QoS and fault-tolerance
were not considered.

 
In summary, there is a huge potential for wireless
communication to CAN applications. However, as
with CORBA, requirements such  as
predictability, QoS and fault-tolerance need to be
further  investigated. In addition, the cost of
wireless communications and the need for a
standardized open solution also need to be
explored.

SUMMARY AND RESEARCH DIRECTIONS

This paper motivated the need for an open
framework for CAN applications. We
investigated ongoing research in integrating
CAN and CORBA as well as the use of
wireless technologies to build CAN
applications.
Due to the stringent nature of CAN,
predictability, fault-tolerance, QoS and reduced
resource footprint are some of the
requirements to be satisfied by any proposed
solution. Many of these have been addressed
by existing work. Some focus on CAN systems
in specific, whereas others address embedded
systems in general. The research on wireless
communications, on the other hand, has not
addressed these requirements as of yet.

An important point that has not been addressed
is the need for interoperability between CAN
and embedded systems in general and existing
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applications running under varying
frameworks, such as Java RMI, DCOM [22],
etc..  Despite the popularity of CORBA, it still
lacks interoperability with other distributed
frameworks.

An alternative approach that is becoming
increasingly popular is to explore the use of
XML [5, 8, 17] to achieve interoperability
between applications in heterogeneous
systems. The use of XML, however, introduces
the same questions as CORBA and other
technologies: how to achieve predictability,
fault tolerance and other requirements of real-
time control systems?

We thus propose the following approach:

ü Examine the Real-Time, Minimum and
Fault Tolerant CORBA - This will allow us
to determine the feasibility of using these
standards in our study. It will also aid in
determining what additional extensions
should be implemented to address the
specific case of CAN .

ü Support for distributed network
management - There has not been much
work in supporting remote and distributed
management of CAN systems. The
following are possible directions:
ü Investigate the use of wireless

middleware for remote  monitoring and
diagnosis.

ü Specify the operations and attributes
required to manage generic CAN
controllers/sensors/actuators.

ü Specify the types of analysis
required to efficiently avoid failures.

ü Verify the need and possible
overhead (if any) of a distributed
management framework as opposed
to the current centralized version
[2,6].

ü How and where can monitored
information be stored or retrieved?

ü Investigate the use of embedded
browsers along with WML and HTTP in
remote access to the Internet or  remote
network management.

ü Compare CORBA and XML based
approaches in terms of performance,
resource consumption, specification and
enforcement of QoS requirements
(including fault-tolerance and
predictability)

REFERENCES

[1] Axel M. A., ÒDesign and Implementation of a CORBA-
based Object Group Service Supporting Different Data
Dispatching StrategiesÓ,
http://citeseer.nj.nec.com/335099.html

[2] CAN in Automation (CiA), ÒCAN Application Layer for
Industrial ApplicationsÓ, DS 201-201 Version 1.1, 1996

[3] Courtright G.,  Zachos  M., Tsui L.,"A Case Study in
Remote Connectivity to Automotive Communication
NetworksÓ, Society of Automotive Engineers, 2001, pp 57 -
61

[4] Currey J., ÒReal-time CORBA Theory and Practice: A
Standards-based Approach of Distributed Real-time
SystemsÓ, Embedded Systems Conference Ð San Jose,
2000

[5] DevelopMentor, IBM, Lotus Development Corporation,
Microsoft, UserLand Software, ÒSOAP: Simple Object
Access ProtocolÓ, http://www.w3.org/TR/SOAP

[6] Etschberger I. K., ÒCAN-based Higher Layer protocols and
profilesÓ,
http://www.ixxat.de/english/knowhow/artikel/hlp.shtml

[7] Gill C. D., Levine D., Schmidt D. C., ÒTowards Real-time
Adaptive QoS Management in Middleware for Embedded
Computing SystemsÓ, Fourth Annual Workshop on High
Performance Embedded Computing, MIT Lincoln
Laboratory, 2000, http://www.ll.mit.edu/HPEC/

[8] Gu X., Nahrtedt K., Yuan W. Wichadakul D. Xu D., ÒAn
XML-based Quality of Service Enabling Language for the
WebÓ, Journal of Visual Language and Computing, special
issue on multimedia languages for the Web. Dec. 2001

[9] Hong S., ÒCoping with Embedded Software Crisis using
Real-time Operating Systems and Embedded
MiddlewareÓ, Invited for presentation at IEEE Asian Pacific
ASIC (AP-ASIC) Conference, Korea,  2000

[10] Jeon G., Kim T. H., Hong S., ÒSeamless Integration of
Real-time Communications into CAN-CORBA with
Extended IDL and Fast-Track MessagesÓ, Proceedings of
IFAC Workshop on Distributed Computer Control Systems
(DCCS), Australia , 2000

[11] Jeon G., Kim T. H., Hong S., Kim S., ÒA Fault Tolerance
Extension  to the Embedded CORBA for the CAN Bus
SystemsÓ, Lecture Notes in Computer Sciences, 2000

[12] Kaiser J., Livani M., ÒInvocation of real-time objects in a
CAN bus-systemÓ, IEEE International Symposium on
Object-oriented Real-time Distributed computing, 1998,
http://citeseer.nj.nec.com/kaiser98invocation.html

[13] Kaiser J., Mock M., ÒImplementing the Real-time
Publisher/Subscriber Model on the Controller Area
Network (CAN)Ó, Proceedings of the 2nd Int. Symp. On
Object-Oriented Real-time distributed Computing
(ISORC99), France, 1999, http://www.infomatik.uni-
ulm.de/rs/core/isorc99.ps

[14] Kim K. H., ÒAPIs for Real-time Distributed Object
ProgrammingÓ, IEEE Computer, pp 72-80, 2000



08-10

[15] Kim K., Jeon G., Hong S., Kim S., Kim T., ÒResource-
conscious Customization of CORBA for CAN-based
Distributed Embedded SystemsÓ, In the Proceedings of
2000 IEEE International Symposium on Object-Oriented
Real-time Distributed Computing , Newport Beach,  pp 34-
41, 2000

[16] Kim H., Jeon G., Hong S., Kim T. H., Kim S., ÒIntegrating
Subscription-based and Connection-oriented
Communications into the Embedded CORBA for CAN
BusÓ, Proceedings of 2000 IEEE Real-time Technology and
Applications Symposium Washington DC, 2000

[17] Nielsen M. K., Jorgensen A. B., ÒXOIP Ð XML Object
Interface ProtocolÓ, Center for Object Technology, COT/3-
34, 2000

[18] Object Management Group (OMG), ÒThe Common Object
Request Broker: Architecture and Specification Revision
2.4Ó, OMG Technical Document formal/00-11-07, 2000

[19] Object Management Group (OMG), ÒFault Tolerant
CORBA SpecificationÓ, OMG Document orbos/99-12-08
edition, 1999

[20] Object Management Group (OMG), ÒMinimum CORBAÓ,
OMG Document formal/00-10-59, 2000

[21] Object Management Group (OMG), ÒReal-time CORBAÓ,
OMG Document formal/00-10-60 edition, 2000

[22] Platt D.S., ÒUnderstanding COM+Ó, Microsoft Press,
Redmond, Wash., 1999

[23] Vanegas R. et al., ÒQuOÕs Runtime Support for Quality of
Service in Distributed ObjectsÓ, Proceedings of IFIP
International Conference in Distributed System Platforms
and Open Distributed Processing, Springer-Verlag, New
York, pp. 207-223, 1998

[24] Wunderlich H., Schwab M., ÒThe Potential of Bluetooth in
Automotive ApplicationsÓ, Embedded Systems Conference
Ð San Jose, 2000


