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Distribution of neural-based discrete control algorithms
applied to home automation with CAN
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Distributed systems have been demonstrated as one of the best options when
implementing industrial control systems due their simplicity and power.
Following this line, our group has proposed Rule Nets (RN) as a HLP over CAN for
the implementation of Distributed Expert Systems (at 6th ICC), obtaining excellent
results although RN lack of continuous control capabilities.
To provide these new features, in this article, the use of Neural Networks (NN)
alongside of RN, as an application level over CAN is proposed, offering an
intelligent and hierarchical environment of distributed control, where continuous
control loops are being supervised by an expert system.
This technique is now being applied in the integral control of an automated house,
where NN implement the control loops (heating /cooling, brightness, etc) and
advanced features (voice, fingerprints and shape recognition, etc.) and over them
RN supervise the operation of the system, under normal operation conditions and
exceptional situations.

Introduction
Distr ibuted systems offer several
advantages when implementing industrial
control systems, such as scalability, fault
tolerance, simplicity and power. In this line,
a new HLP over CAN for the implementation
of Distributed Expert Systems was proposed
[1]. It was based in the so-called Rule Nets
(RN), obtaining excellent experimental
results [7][8] although RN lack of continuous
control capabilities.
New capabilities were required to allow the
implementation of continuous control
systems. Continuous and discrete control
are not incompatible, but complementary,
when dealing with complex systems.
Combination of both techniques offers new
possibilities, such as the implementation of
hierarchical control systems. In this scheme,
lower level perform continuous control loops
while the upper level, based on discrete
control techniques, takes decisions over the
system, supervises the system function and
diagnoses continuous control failures.

When dealing with the implementation of a
continuous control system it was needed to
decide the most accurate to the
characteristics that the previous protocol
had achieved, such as:

•  To be able to control any system with
the same benefits that the control
systems already existent.

•  Possibility that even non-expert users
could design the control system, and
even allowing the capacity for the self-
learning of the system.

•  Possibility to be executed in a
distributed way

•  Easiness when being transmitted
through the net for their execution in
generic nodes (possibly very different
between them).

After an exhaustive study of different
techniques of continuous control, Neural
Networks [2][3](NN) have been selected
because they meets all the previous
conditions.
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Indeed, NN not only completes the first
condition since they can deal successfully
with any control system, but, far beyond,
they are able to control systems where no
other techniques can be applied.
They also fulfill perfectly the second
condit ion due to their  learning
characteristics [4], making possible that
even non-expert users in the design of
control systems can be capable, in a
centralized way, to define the desired
behavior of the system. NN are capable to
learn in an automatic way thought the
analysis of a group of samples that reflect
the answers expected in real situations of
execution. Even more, it is possible in the
design phase the simulation of the system
operation in front of hypothetical situations
with the purpose of checking that it fulfills
the desired specifications.
Since the NN are formed by perfectly
detachable units (neurons), the distribution
of these neurons in different nodes is not
very difficult, so the results obtained by each
neuron must be spread thought the
interconnection network to be used as an
input for any other neuron needing it.
Finally, it is possible to characterize a neural
network as a group of neurons. All the
neurons present a common structure, and
they are easily adapted in function of a set
of parameters. Therefore, it is possible to
locate several generic neurons in the nodes
and make a particularization of them in
function of the desired control system by
means of the transmission of these
parameters.
The structure of a generic neuron can be
observed in the figure 1. Figure 2 shows a
NN where interrelations between neurons
are appreciated.
To particularize a generic neuron to fit any
one of the NN, the following parameters are
required:

•  Position of the neuron in the NN. To
determine this, a layer number and
an order number inside the layer will
determine one neuron.

•  Number of neuron inputs: how many
inputs the neuron has.

•  Characteristic of the inputs: The
source neuron and the weigh of each
input must be defined. The weigh can
be explicitly transmitted, and the
neuron connected with this input is
identified by the position in the NN as
shown above.

•  Activation function: The number of
activation functions is limited, so it has
been proposed a function code that
selects the desired one in a set of
available functions.

With this parameterization, it is possible to
transmit a NN through a distributed system
in a simple and efficient way.
NN execution needs some synchronization
mechanisms. Several synchronism
techniques have been evaluated, and finally
the following one has been selected.
The system works in a event-oriented way.
Any input neuron (those whose inputs
correspond to external inputs) can start the
operation of the NN. When a Start condition
arises, the input neuron send an NN START
message, making that all input neurons read
all their input values and evaluate their
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Figure 1: Generic Neuron
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Figure 2: Sample neuronal network
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outputs. These outputs must be send
through the CAN network, while they are
been used as input values of subsequent
neurons. Any neuron will calculate and
spread its output as soon as it gets all its
inputs. Finally, output neurons will not apply
its outputs until no remaining value would
exist. This is accomplished by means of a
fictitious neuron. Fictitious neuron, uses as
input values the outputs of the system, and
activates the NN for a new operation,
allowing output to be applied. Synchronous
operation is granted by this procedure.
The fault tolerant characteristics of the
system must be highlighted. When being a
hierarchical system, the superior level takes
charge from the topic of fault tolerance.
When a failure in the system is detected, the
upper level takes the control of the system,
evaluating the failure and deducing from the
characteristics of it the correction actions
that should be carried out for the
reconfiguration of the system (operation in
degraded way) or those guided to drive the
system into a safe failure state.
CAN network [5] has been selected for the
execution of the Distributed Neural Network
because of its particular characteristics.
First of all, CAN is a diffusion network,
providing that all neurons that need a value
produced by another neuron get the value
with only one message. Even more, these
messages are labeled (in the identifier field)
with the neuron that produced it, so avoiding
any overload. Also, non-destructive
contention allows a limited response time. Is
it also possible to fix the priority of any
messages, guaranteeing that values
proceeding from latter neurons will be sent
before those from earlier ones. Finally, CAN
offers several advantages, such as low cost,
fault tolerance, great variety of products,
etc.
Communication protocol
The new protocol ICCAL (Intelligent Control
CAN Application Layer) is an extension of
the protocol DESCAL [1], updated in [6]. A
new level has been included for the
implementation of continuous control
systems by means of neural networks.
System architecture is shown in figure 3.

The PSN (Programming and Supervision
Node), which will also support the
specification functions, training and
distribution of the neural networks, and
CN«s (Control Nodes) also incorporate news
features in order to NN execution. The
protocol use addresses in CAN extended
format (CAN 2.0B). Therefore, the new
characteristics of the protocol only will be
available in CN implemented with extended
CAN devices, although passive CAN
extended devices could belong to the
system, but restricted to Rule Nets
execution.
Under these circumstances, new protocol is
fully compatible with the old DESCAL
protocol.
Protocol messages
The protocol DESCAL used four types of
messages. ICCAL contemplate two new
messages and adds new control messages.
Control messages: To control the NN
operation, the same messages that
appeared in DESCAL have been used. It is
also necessary to add a GO message, that
applies the outputs of the NN and activates
all neurons for the next operation.
To distinguish RN and NN commands,
those related to the NN will be sent in
extended CAN messages.
Identification messages:  Several updates
have been introduced from DESCAL. After
the beginning of the identification phase,
each node transmits a message where it
announces its presence in the network,
informing of its capacities, followed by the
transmission of a list of its inputs and

Figure 3: System architecture
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outputs. In this identification message a bit
has been added (NNC) to indicate that the
node offers the possibility to execute NN.
Load messages: They make possible the
transmission of the variables and matrix
alongside the CAN network. To differentiate
the messages of the RN matrix transmission
and those of the NN, the use of CAN
extended messages for latter ones has
been selected. In this way, only extended
CAN CNs will be affected by the new
messages.
Updating Variable messages: they allow the
diffusion of the new values in the RN and in
the NN. To differentiate both cases, the
distinction between standard CAN and
extended CAN has been used, Extended
CAN messages being reserved to indicate
the change of values referred to the NN.
Stages of the protocol
The protocol is structured in three phases or
states:
Initialization
During this phase all the available CN's in
the system are identified, informing to the
PSN of their characteristics. The new
version adds at the beginning of this phase,
the transmission of an identification
message for each CN, in which is indicated,
alongside other characteristics,  if it is able
to execute NN.

3 8 7 1 8 8
001 Node 0000000 NNC Ports Speed

Identifie
r

Data

Where:
Node: Number of node that is identifying
itself.
NNC (Neural Network Capability): This bit
must be set to Ò1Ó to indicate that this node
is able to execute neural networks.
Ports: This field indicates how many input
and output ports are available at the CN.
Speed: it indicates what transmission
speeds supports the node. The assignment
of each bit is the following one:

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0
1
Mbps

500
Kbps

250
Kbps

125
Kbps

Since all nodes should contemplate at least
the speed of 125 Kbps, the minimum value
of this field will be 1. This field is used as a
guide for the selection of the speed of the
system.
The rest of the identification messages
related to the input and output ports, are
numbered consecutively by means of the
field count of 7 bits, existent in the first byte
of the field of data.
Design & Distribution
During the design stage, the user introduces
the Rule Net (RN) and Neural Net (NN) in
the PSN, assigning the logical variables
from the Rule Net and Neural Net to the
physical inputs and outputs and even
creating the necessary internal variables.
Also the powerful graphical environment of
the PSN will allow to the user train the
neural network given a collection of
samples.
The distribution of the neuronal net is user-
guided, so that he can select the most
accurate node for the execution of each
neuron. Several automatic distribution
techniques in function of the requirements of
the system and the user are being studied.
As first step in the particularization of the
generic neurons to the desired control
system, it is necessary the selection of the
activation function and the data format used
in the representation of the numeric values
weight and results). To achieve this goal,
the following message is send to each
neuron:

3 8 16 2 8 8
000 Node NI 00 AFC NRSC

Identifier Data

Where:
Node: Node where the neuron resides.
Thanks to the presence of this field it is
simple the definition of reception masks in
the CAN controllers.
Neuron Identifier (NI): it allows the
identification of a neuron. The first five bits
indicate their level and the last eleven
indicate the ordinal number inside the level.
Activation Function Code (AFC): This field
selects among the set of activation functions
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which one should be used in the
calculations of the neuron.
Numerical Representation System Code
(NRSC): The code of the numeric
representation system that will be used to
transmit the results of each neuron is
indicated in this field.
For every neuron input, the distribution will
require one of the following messages:

3 8 16 2 16 8 40
110 Node NI 00 INI NRSC Weight

Identifier Data

Where the fields node , NI and   NRSC
correspond with those previously described.
Also, other two fields exist:
Input Neuron Identifier (INI): This field
reflects the identifier of the neuron that will
send the value, in function of their level and
number inside the level, that will be
contained in the identifier of the CAN
message that diffuses the value through the
network.
Weight: Weight associated to the
corresponding input.
Execution
During this stage each node executes its
Rule and Neural nets, communicating
through the net the changes produced in the
global variables and the results of each
neuron.
We will distinguish among input neurons,
those that their entrances correspond with
physical input of the system, o u t p u t

neurons, those that their exit correspond
with one physical output of the system, and
the rest of neurons will be intermediate
neurons, because their inputs come from
other neurons and their outputs are needed
by other neurons.
Initially all the neurons are active in state
WAITING (see figure 4) for its input data.
The process will be initiated by an input
neuron through a start condition, diffusing
by means of a START message the
beginning of the computing process to the
other input neurons.  The START message
has the following format:

3 26 8
000 Broadcast START

Identifier Data

Once initiated, when all inputs are available
the neuron perform their calculations and
diffuses its output by the network and
changes its state to DISABLED (see figure
5). The obtained values are sent through
messages with the following format:

3 16 11 <= 64
111 NI 1010101010 Result

Identifier Data

Where the field NI correspond with those
previously described. And the other field is:
Result: Value calculated by the neuron,
according to the established representation
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Figure 4: Input neuron state diagram

Figure 5: Intermediate neuron state diagram
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system.

Finally, when output neurons finish their
operations, they will send its results to a so-
called fictitious neuron. This neuron, which
is added automatically for the system, will
receive the values of all the outputs. When
all the values are available, the fictitious
neuron sends a GO message that forces the
output neurons to apply their results to the
physical output (see figure 6). This
procedure guarantees that all the outputs
will be applied at the same time.
Additionally all neurons in DISABLED status

will pass to WAITING, so a new computing
process could start when an start condition
rises
The format of the GO message is:

3 26 8
000 Broadcast GO

Identifier Data

Test application: Home integral control by
means of a Neural Network
As experimental environment for the test of
the new protocol capabilities, the integral
control of a house is being implemented in a
laboratory scale model, very interesting
partial results being obtained at the
moment.
The system structure can be seen in figure
7. The system presents a hierarchical
structure where upper level deals with the
discrete control, the supervision of lower
layers and must perform the adequate
actions in case of failure. Middle layer takes
into account the continuos control loops,
including hardware supervision. Finally,
lower layer consists of the system to control
and a group of sensors and actuators that
carry on the actions defined by upper layers.

Figure 6: Output neuron state diagram
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Physically, the system consists on at least
six nodes, an PSN and five CN,
interconnected by means of a CAN network
Practical evaluation of proposed protocol
has been performed by means of a test
system, described below. There has been
built an illumination control loop based on
two CNs; first one (N1) is implemented by
means of a PC with a USB-CAN
communication device, that holds a Neural
Network able to recognize simple voice
commands [9]. This NN actualizes the value
of some variables of the Rule Net, that
controls the illumination. This RN is
located in both N1 and N2 nodes. N2 is
implemented by means of a CANary
processor, able to handle all the
illumination devices at the whole house.
The collaboration between both networks,
NN and RN, has proved to be very
effective and successfully resolved. The
diagram of interrelations can be seen in
the figure 8. Voice commands are
interpreted by the NN, indicating the
wishes of the user. The presence is also
detected by means of adequate sensors
and optical barriers at doors, but these
inputs are handled by the RN. As a result of
all these inputs, RN updates the control light
signals.
By the other way, to verify the distributed

functioning of the NN, another control loop
that controls the habitability conditions of the
house, has been established. This system is
composed by four nodes. Node N3 is in
charge of the boiler, and it is implemented
by means of a CANary processor with a
digital output. Node N4 controls the
conditioned air of the room, and it is also

implemented with a CANary processor,
using a digital output (ON/OFF) and an
another that, by means of a triack, controls
the fan speed. Finally, node N5 is located
outside the house. Node N1 is also needed
in this subsystem, with a temperature
sensor inside the room. Our NN uses the
indoor and outdoor
temperatures as inputs, and is able to
indicate the RN if the utilization of any
temperature control systems (boiler and air
conditioner) is necessary. If AA is needed,
NN controls the analog fan speed, as shown

in figure 9.

After a design process to determine the best
topology of the NN, and the appropriate
training, the distribution of the NN was

performed by the user. The protocol
performance was completely successful.
Some design and training matters of the
NN should need further revision.

Finally, both control systems (RN and NN)
work together in a perfect manner,
guaranteeing the correct function of the
proposed objectives. Nowadays, new
specifications are being introduced, such
as temperature control by means of voice
commands and self-learning.

Conclusions and future work
Given the excellent results obtained, two
new approaches are being applied to the
system. One of them consists on the
implementation of a more powerful PSN
software that integrates all options and tools
(design, training, distribution, etc.), and
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could take carry on an automatic distribution
of NN. This distribution algorithms should
take into account the user restrictions
(minimum number of messages on the
network, maximize parallelism, fault
tolerance by means of redundancy, etc. )
Other interesting question to study is the
response time of the proposed system, in
order to its application to Real Time control
systems, and the impact of fault tolerance in
this situations.
Finally, this methodology is being applied to
other control systems, such as the integral
control of a Diesel engine, substituting
current strategies (cartographic methods)
with NN based ones. Over them an expert
system is responsible of the supervision and
control of normal and anomalous operation
of the system.
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