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Abstract: this paper describes a mechanism for multi-axis coordinated motion 
control via the CAN bus. The trajectory generation function is shared between the 
CAN host and CAN servo nodes. The position loop is closed in the CAN servo 
node. The trajectories of each axis are de-coupled, and all axes are synchronized 
via the CANopen Time Stamp message. 
 
Introduction 
Multi-axis coordinated motion control 
has traditionally been solved using 
dedicated multi-axis motion controllers, 
either PC based or standalone. 
Coordinated motion encompasses 
motion involving multiple axes, where 
there exists a relationship between the 
axes (for example to describe a circle, 
two axes must move in a sine-cosine 
relationship). Trajectory generation and 
position loop algorithms are 
implemented on a single hardware 
platform, due to the real-time 
requirements. Figure 1 shows a block 
diagram of this approach in case of a 2-
axis system. The command signal is 
typically a +/-10V signal, and the 
feedback is a position signal, which can 
be generated by an encoder, resolver, 
potentiometer, etc. 
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Figure 1 

The servo drive can be of an analog or 
digital nature, and can operate in 
velocity or torque mode. The motor 
velocity or torque is proportional to the 
command signal. The servomotor can 
be a permanent magnet DC brushed 
motor or a permanent magnet DC or AC 
3-phase brushless motor. The position 

loop algorithm is commonly a PID type 
servo algorithm. Although this approach  
works well in many applications, it 
exhibits some significant drawbacks: 

• Wiring: all feedback wiring needs 
to be brought back to the 
controller. Since motors are 
physically mounted on the 
machine, and the controller and 
drives are typically mounted in 
an enclosure, low-level signals 
need to be wired over relatively 
long distances. This can create 
signal integrity problems, which 
can be catastrophic in a closed 
loop system as it may cause 
motor run-away.  Cost of such 
wiring also tends to be fairly 
significant. The analog +/-10V 
command signal can have 
potential noise problems, 
resulting in servo loop jitter, 
which in turn affects accuracy. 

• Flexibility: the addition of axes is 
difficult or impossible. With a 
fixed central hardware platform, 
scaling (changing the number of 
axes under control) is difficult or 
quasi impossible. 

• Diagnostics: the controller-to-
drive interface does not provide 
detailed drive diagnostics. 
Typically, a simple drive fault 
output is connected to the 
controller. The controller does 
not have access to drive 
parameters such as phase 
currents or voltages, or more 
detailed information about drive 
failures. Such extensive 



 

diagnostics could support 
preventive maintenance or help 
troubleshoot problems more 
efficiently. 

 
Networking 
As digital networking was introduced 
into the domain of motion control, 
different approaches have been 
investigated to achieve coordinated 
motion. One approach has been to keep 
the trajectory generation and position 
loop algorithms in a central host 
controller, which sends digital torque or 
velocity commands via a high-speed 
serial link to a digital servo drive. The 
servo drive updates the controller with 
the actual motor position via that same 
serial interface. This approach basically 
replaces the +/-10V and position 
feedback interface with a high-speed, 
digital interface. Since the drive can be 
mounted in the direct vicinity of the 
motor, and since the drive typically 
needs the motor position for proper 
commutation (in case of 3-phase 
brushless motors), this provides an 
elegant wiring solution. Figure 2 shows 
the block diagram of such a system.  
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Figure 2 

The drawback of this approach is that 
the serial connection between the 
controller and the drive needs to be 
relatively fast, which adds cost and 
complexity to both drive and controller. 
Some of the existing solutions are:  

• SERCOS: optical fiber solution, 
running at 2, 4, or 16Mbit/s 

• IEEE1394 (a.k.a. FireWire): 
copper wire or optical fiber 

solution running at 200, or 400 
Mbit/s 

• 100BaseT, 10BaseT (a.k.a. 
Ethernet): copper wire solution 
running at 10 or 100 Mbit/s 

The actual communication protocol used 
with the above physical layers varies. 
Some protocols are open standard; 
some are manufacturer specific and 
thus proprietary. Position loop update 
rates are in the 5 to 10 kHz range, which 
means torque or velocity commands 
need to be sent, and actual positions 
received, at 200 to 100 µsec intervals.  It 
is also important to maintain 
synchronization between all axes, which 
means transmission latencies need to 
be minimized. Also, since the drive is 
already of a digital nature, its resources 
are not fully used if it is only to control 
motor torque or velocity.  
 
Distributed Approach 
An alternative approach, suitable for 
many applications, is to move the 
position loop to the digital drive. In this 
new scenario, the controller sends 
position commands to the drives, which 
can be done at a lower rate (at least 
lower compared to position loop update 
rates). A more cost effective, lower 
speed serial link can be used. To further 
reduce the position command update 
rate, the drive could perform higher 
order interpolation.  This means now 
that the servo drive has both a trajectory 
generation and position loop algorithm 
implementation. With this mechanism, 
the host controller would split the overall 
position trajectory in segments, and 
would send the segment information to 
the servo drive. The servo drives 
perform a higher order interpolation on 
the segment end point information. In 
essence, this means that the trajectory 
generation is shared between the host 
controller and the servo drive. Figure 3 
shows a block diagram for a 2-axis 
system. 
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Figure 3 

Segmentation 
In a multi-axis system, the overall, multi-
dimensional, trajectory can be 
decomposed into a position vs. time 
profile for each axis. The position profile 
for each axis can be split into segments, 
as Figure 4 shows. 
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Figure 4 

This segmentation is carried out in the 
controller. Each segment Si has an 
associated segment time Ti (i=0, 1, 
2,…), which can vary between 
segments, but also between axes. 
Selection of the segment time is 
somewhat controller and application 
dependent. In addition, each segment 
has a segment end point position and 
velocity Pi and Vi (i=0, 1, 2, …). Note 
that the segment end point velocity is 
the slope of the position profile in that 
point (velocity is the first time derivative 
of position). Also note that the end point 
of one segment is the start point of the 
next segment. The position and velocity 
of the end point of one segment is the 
same as the position and velocity of the 
starting point of the next segment. 
In case of a third order interpolation 
between segment start and end points, 
the position x(t) has the following format: 

( ) dtctbtatx +⋅+⋅+⋅= 23  
Given the start time Ts and end time Te 
= Ts + Ti (where i=0, 1, 2, … is the 
segment number), the position and 
velocity of the segment start and end 
time, 

( )
( ) ( )
( )
( ) ( ) eee

ee

sss

ss

xTxTv

xTx

xTxTv

xTx

&&

&&

==
=

==
=

 

, one can determine the 4 coefficients of 
the third order curve between the 
segment end points: 
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The 4 equations above allow solving for 
the four coefficients a, b, c, and d. This 
interpolation is performed in the servo 
drive, for each segment.  
Through the segment time and end 
point position and velocity, the original 
position profile can be recreated with 
some degree of accuracy. The 
inaccuracies introduced by the third 
order interpolation can be established 
by comparing the original position profile 
and the profile resulting from the 
segmentation and third order 
interpolation of each segment. This 
inaccuracy can be reduced by careful 
selection of the segment time. Intuitively 
one can see that by reducing the 
segment time, the maximum error 
between the original profile and the 
profile generated in the drive can be 
reduced. However, this requires that 
segment information needs to be sent 
more frequently, which in turn presents 
a design trade-off. 
 
The actual relationship between 
segment time and the error created by 
interpolation is mathematically very 



 

complex. The example below will 
provide some further insight. Assume 
that the position profile is the following: 

( ) ( )ttx ωcos= ; where ω = 2π/T. T is the 
period of the cosine profile. Since most 
complex motion trajectories are based 
on straight lines and arc-segments, this 
example is quite relevant. Assume that 
T = 2 seconds, and that the profile is 
split in 10 segments. This would mean 
that the segment time is 200 
milliseconds. It can be calculated that 
the worst-case error due to interpolation 
is approximately 0.04, or about 4%. If 
the profile is split in 20 segments, with a 
segment time of 100 milliseconds, the 
worst-case error is approximately 0.009, 
or about 0.9%.  
From this example it can be seen that 
the error resulting from third order 
interpolation can be reduced 
dramatically by reducing the segment 
time. Notice however that the segment 
time in this example is still relatively 
large, compared to a typical position 
loop update rate. Final selection of the 
segment time is application dependent. 
 
CAN Implementation 
The above approach has been 
implemented utilizing the CAN bus and 
the CANopen communication protocol, 
see Figure 5. The maximum bit rate of 
CAN is 1Mbit/s. A CAN message frame 
can contain up to 8 bytes of data, and 
127 nodes can be connected to a single 
CAN bus. The 8 data bytes of a single 
CAN message, used to send segment 
information, are assigned as follows: 

• 3 bytes for the segment end 
point position (in position units) 

• 3 bytes for the segment end 
point velocity (in position per 
second units) 

• 1 byte for the segment time (1-
255 milliseconds) 

• 1 byte for an integrity counter (0-
255, with roll-over) 

The messages above are generated in 
the CAN host. The end point of one 

segment is obviously the start point of 
the next segment; therefore only 
segment end point information is 
required. It is always assumed that the 
first segment start point position and 
velocity are zero. The CAN servo node 
performs a third order interpolation, 
since segment start and end point 
position and velocity are known (to 
determine the four coefficients of a cubic 
curve, four equations are necessary). 
The segment time can vary, which 
improves accuracy in case of rapid 
position changes.  
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Figure 5 

The integrity counter ensures that each 
node receives consecutive segments in 
the proper sequence. The above-
described CAN messages are allocated 
a certain COB-ID range, within the 
CANopen communication protocol (as a 
matter of fact, they use COB-ID’s within 
the receive PDO COB-ID range).  
Each CAN servo node has a 15-level 
FIFO buffer, which receives the 
segment messages. This buffer can be 
further managed through standard 
CANopen objects. The CAN servo node 
automatically sends an error message in 
case: 

• a CAN message with incorrect 
length was received 

• the buffer is full 
• the buffer is empty 
• a non-consecutive counter value 

is detected. 
Actual motion is started on all CAN 
servo nodes at the same time via a 
broadcast message, from the CAN host. 
Each CAN servo node removes 
segment messages from the buffer as 
needed (one at a time). The trajectory 



 

generation of each segment is 
accomplished dynamically, on-the-fly.  
CAN servo node synchronization is 
maintained through the CANopen TIME 
STAMP message, which is broadcast 
regularly by the CAN host, and is 
received by each CAN servo node at the 
exact same time. Each CAN servo node 
compares the time difference between 
consecutive TIME STAMP messages 
with its own time measurement. Internal 
time base changes are made 
dynamically, and thus synchronization 
between all axes is assured. 
Selection of the segment time is based 
on: 

• Number of axes 
• CAN bus bit rate 
• CAN bus load 
• CAN host capability 
• Application performance 

requirements 
Under ideal circumstances, the CAN 
host would change the segment time 
dynamically, based on the position 
profile shape and curvature. Practically, 
it suffices to select a fixed segment time, 
which can be applied throughout the 
whole position profile. 
Example: 
At 1Mbit/s, an 8 data byte message, 
takes worst-case approximately 130 
microseconds to transmit (130 bits total 
message length which is comprised of 
64 data bits, CAN node address, 
CRC…). In a 4-axis system, the total 
time required to send a segment 
message to all 4 axes is approximately 
4*130=520 microseconds. Additional 
time must be allotted for other 
messages on the CAN bus, such as: 
status messages, emergency 
messages, etc… Note that it is not 
necessary to send segment messages 
at rates typically found in centralized 
controllers (in the order of 100 – 500 
microseconds). Since the CAN servo 
node performs cubic interpolation, the 
position update rates can be in the order 
of 10 – 200 milliseconds, depending on 

the application.  In case of 10 
millisecond segment times, the CAN 
busload, created by the segment 
message transmission is 520 
microsecond/10 millisecond = 5%. One 
can see immediately that the relatively 
slow CAN bus can easily accommodate 
such rates and provide sufficient 
bandwidth for other messages. 
 
Conclusion 
As networking is introduced into the field 
of motion control, real “distributed” 
control is possible. It is important to 
allocate machine control functionality 
properly across “intelligent” devices on 
the network. By shifting the position loop 
to the servo node, and by “distributing” 
trajectory generation over host and 
servo node, a simpler, lower cost 
network can be utilized. Some further 
advantages of the above approach are: 

• “Soft Motion”: the motion 
trajectory is generated in the PC 
or controller CPU. No dedicated 
motion control hardware is 
required, except for a network 
interface (in this case a CAN 
interface). 

• Flexibility: the axis count can be 
changed more easily; no 
additional hardware is required 
on the host controller. Other 
devices such as I/O modules, 
sensors, etc, can also be 
connected to the CAN bus. 

• Network Requirements: the 
network speed requirements are 
reduced through this “partial 
trajectory generation”. This 
allows selection of a more 
robust, less complex, and more 
cost-effective network (such as 
CAN). 

• De-coupling: the position loop in 
the servo drive is de-coupled 
from the host controller. In a 
system with a centralized 
controller, the trajectory 
generation and position loop 



 

algorithms share the same 
hardware. Increasing the number 
of axes typically requires 
reduction of the position loop 
update rate for each axis under 
control. 

• Wiring: devices can be mounted 
on the machine, which 
dramatically reduces wiring cost 
and complexity, and enhances 
machine reliability. 

• Diagnostics: the CAN bus 
interface, in conjunction with the 
CANopen protocol, provides full 
access to the servo node internal 
variables and state machine. 
This becomes increasingly 
important for remote diagnostics 
and field repair. 
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