

Coordinated Multi-Axis Motion Control via CAN bus.

Jan Bosteels, Advanced Motion Controls

Abstract: this paper describes a mechanism for multi-axis coordinated motion
control via the CAN bus. The trajectory generation function is shared between the
CAN host and CAN servo nodes. The position loop is closed in the CAN servo
node. The trajectories of each axis are de-coupled, and all axes are synchronized
via the CANopen Time Stamp message.

Introduction
Multi-axis coordinated motion control
has traditionally been solved using
dedicated multi-axis motion controllers,
either PC based or standalone.
Coordinated motion encompasses
motion involving multiple axes, where
there exists a relationship between the
axes (for example to describe a circle,
two axes must move in a sine-cosine
relationship). Trajectory generation and
position loop algorithms are
implemented on a single hardware
platform, due to the real-time
requirements. Figure 1 shows a block
diagram of this approach in case of a 2-
axis system. The command signal is
typically a +/-10V signal, and the
feedback is a position signal, which can
be generated by an encoder, resolver,
potentiometer, etc.

TRAJECTORY
GENERATION

POSITION
LOOP

POSITION
LOOP

VELOCITY
LOOP

VELOCITY
LOOP

CURRENT
LOOP

CURRENT
LOOP

MOTOR +
FEEDBACK

MOTOR +
FEEDBACK

CONTROLLER SERVO DRIVE

SERVO DRIVE

Command

Feedback

Feedback

Command

Figure 1

The servo drive can be of an analog or
digital nature, and can operate in
velocity or torque mode. The motor
velocity or torque is proportional to the
command signal. The servomotor can
be a permanent magnet DC brushed
motor or a permanent magnet DC or AC
3-phase brushless motor. The position

loop algorithm is commonly a PID type
servo algorithm. Although this approach
works well in many applications, it
exhibits some significant drawbacks:

• Wiring: all feedback wiring needs
to be brought back to the
controller. Since motors are
physically mounted on the
machine, and the controller and
drives are typically mounted in
an enclosure, low-level signals
need to be wired over relatively
long distances. This can create
signal integrity problems, which
can be catastrophic in a closed
loop system as it may cause
motor run-away. Cost of such
wiring also tends to be fairly
significant. The analog +/-10V
command signal can have
potential noise problems,
resulting in servo loop jitter,
which in turn affects accuracy.

• Flexibility: the addition of axes is
difficult or impossible. With a
fixed central hardware platform,
scaling (changing the number of
axes under control) is difficult or
quasi impossible.

• Diagnostics: the controller-to-
drive interface does not provide
detailed drive diagnostics.
Typically, a simple drive fault
output is connected to the
controller. The controller does
not have access to drive
parameters such as phase
currents or voltages, or more
detailed information about drive
failures. Such extensive

diagnostics could support
preventive maintenance or help
troubleshoot problems more
efficiently.

Networking
As digital networking was introduced
into the domain of motion control,
different approaches have been
investigated to achieve coordinated
motion. One approach has been to keep
the trajectory generation and position
loop algorithms in a central host
controller, which sends digital torque or
velocity commands via a high-speed
serial link to a digital servo drive. The
servo drive updates the controller with
the actual motor position via that same
serial interface. This approach basically
replaces the +/-10V and position
feedback interface with a high-speed,
digital interface. Since the drive can be
mounted in the direct vicinity of the
motor, and since the drive typically
needs the motor position for proper
commutation (in case of 3-phase
brushless motors), this provides an
elegant wiring solution. Figure 2 shows
the block diagram of such a system.

T
R

A
JE

C
T

O
R

Y

G
E

N
E

R
A

T
IO

N

P
O

S
IT

IO
N

LO

O
P

S

H
IG

H
-S

P
E

E
D

 IN
T

E
R

F
A

C
E

VELOCITY
LOOP

VELOCITY
LOOP

CURRENT
LOOP

CURRENT
LOOP

MOTOR +
FEEDBACK

MOTOR +
FEEDBACK

CONTROLLER SERVO DRIVE

SERVO DRIVE

INT.

INT.

Figure 2

The drawback of this approach is that
the serial connection between the
controller and the drive needs to be
relatively fast, which adds cost and
complexity to both drive and controller.
Some of the existing solutions are:

• SERCOS: optical fiber solution,
running at 2, 4, or 16Mbit/s

• IEEE1394 (a.k.a. FireWire):
copper wire or optical fiber

solution running at 200, or 400
Mbit/s

• 100BaseT, 10BaseT (a.k.a.
Ethernet): copper wire solution
running at 10 or 100 Mbit/s

The actual communication protocol used
with the above physical layers varies.
Some protocols are open standard;
some are manufacturer specific and
thus proprietary. Position loop update
rates are in the 5 to 10 kHz range, which
means torque or velocity commands
need to be sent, and actual positions
received, at 200 to 100 µsec intervals. It
is also important to maintain
synchronization between all axes, which
means transmission latencies need to
be minimized. Also, since the drive is
already of a digital nature, its resources
are not fully used if it is only to control
motor torque or velocity.

Distributed Approach
An alternative approach, suitable for
many applications, is to move the
position loop to the digital drive. In this
new scenario, the controller sends
position commands to the drives, which
can be done at a lower rate (at least
lower compared to position loop update
rates). A more cost effective, lower
speed serial link can be used. To further
reduce the position command update
rate, the drive could perform higher
order interpolation. This means now
that the servo drive has both a trajectory
generation and position loop algorithm
implementation. With this mechanism,
the host controller would split the overall
position trajectory in segments, and
would send the segment information to
the servo drive. The servo drives
perform a higher order interpolation on
the segment end point information. In
essence, this means that the trajectory
generation is shared between the host
controller and the servo drive. Figure 3
shows a block diagram for a 2-axis
system.

TRAJECTORY
GENERATION

TRAJ.
GEN.

TRAJ.
GEN.

POSITION
LOOP

POSITION
LOOP

VELOCITY
LOOP

VELOCITY
LOOP

TORQUE
LOOP

TORQUE
LOOP

MOTOR +
FEEDBACK

MOTOR +
FEEDBACK

CONTROLLER SERVO DRIVE

SERVO DRIVE

Figure 3

Segmentation
In a multi-axis system, the overall, multi-
dimensional, trajectory can be
decomposed into a position vs. time
profile for each axis. The position profile
for each axis can be split into segments,
as Figure 4 shows.

Po
sit

io
n

Time

S0

S1

S2

T2T0 T1 T3 T4 T5 T6 T7 T8

S3

S4
S5

S6 S7

S8

Figure 4

This segmentation is carried out in the
controller. Each segment Si has an
associated segment time Ti (i=0, 1,
2,…), which can vary between
segments, but also between axes.
Selection of the segment time is
somewhat controller and application
dependent. In addition, each segment
has a segment end point position and
velocity Pi and Vi (i=0, 1, 2, …). Note
that the segment end point velocity is
the slope of the position profile in that
point (velocity is the first time derivative
of position). Also note that the end point
of one segment is the start point of the
next segment. The position and velocity
of the end point of one segment is the
same as the position and velocity of the
starting point of the next segment.
In case of a third order interpolation
between segment start and end points,
the position x(t) has the following format:

() dtctbtatx +⋅+⋅+⋅= 23
Given the start time Ts and end time Te
= Ts + Ti (where i=0, 1, 2, … is the
segment number), the position and
velocity of the segment start and end
time,

()
() ()
()
() () eee

ee

sss

ss

xTxTv

xTx

xTxTv

xTx

&&

&&

==
=

==
=

, one can determine the 4 coefficients of
the third order curve between the
segment end points:

cTbTax

dTcTbTax

cTbTax

dTcTbTax

eee

eeee

sss

ssss

+⋅⋅+⋅⋅=

+⋅+⋅+⋅=

+⋅⋅+⋅⋅=

+⋅+⋅+⋅=

23

23

2

23

2

23

&

&

The 4 equations above allow solving for
the four coefficients a, b, c, and d. This
interpolation is performed in the servo
drive, for each segment.
Through the segment time and end
point position and velocity, the original
position profile can be recreated with
some degree of accuracy. The
inaccuracies introduced by the third
order interpolation can be established
by comparing the original position profile
and the profile resulting from the
segmentation and third order
interpolation of each segment. This
inaccuracy can be reduced by careful
selection of the segment time. Intuitively
one can see that by reducing the
segment time, the maximum error
between the original profile and the
profile generated in the drive can be
reduced. However, this requires that
segment information needs to be sent
more frequently, which in turn presents
a design trade-off.

The actual relationship between
segment time and the error created by
interpolation is mathematically very

complex. The example below will
provide some further insight. Assume
that the position profile is the following:

() ()ttx ωcos= ; where ω = 2π/T. T is the
period of the cosine profile. Since most
complex motion trajectories are based
on straight lines and arc-segments, this
example is quite relevant. Assume that
T = 2 seconds, and that the profile is
split in 10 segments. This would mean
that the segment time is 200
milliseconds. It can be calculated that
the worst-case error due to interpolation
is approximately 0.04, or about 4%. If
the profile is split in 20 segments, with a
segment time of 100 milliseconds, the
worst-case error is approximately 0.009,
or about 0.9%.
From this example it can be seen that
the error resulting from third order
interpolation can be reduced
dramatically by reducing the segment
time. Notice however that the segment
time in this example is still relatively
large, compared to a typical position
loop update rate. Final selection of the
segment time is application dependent.

CAN Implementation
The above approach has been
implemented utilizing the CAN bus and
the CANopen communication protocol,
see Figure 5. The maximum bit rate of
CAN is 1Mbit/s. A CAN message frame
can contain up to 8 bytes of data, and
127 nodes can be connected to a single
CAN bus. The 8 data bytes of a single
CAN message, used to send segment
information, are assigned as follows:

• 3 bytes for the segment end
point position (in position units)

• 3 bytes for the segment end
point velocity (in position per
second units)

• 1 byte for the segment time (1-
255 milliseconds)

• 1 byte for an integrity counter (0-
255, with roll-over)

The messages above are generated in
the CAN host. The end point of one

segment is obviously the start point of
the next segment; therefore only
segment end point information is
required. It is always assumed that the
first segment start point position and
velocity are zero. The CAN servo node
performs a third order interpolation,
since segment start and end point
position and velocity are known (to
determine the four coefficients of a cubic
curve, four equations are necessary).
The segment time can vary, which
improves accuracy in case of rapid
position changes.

TRAJECTORY
GENERATION

TRAJ.
GEN.

TRAJ.
GEN.

POSITION
LOOP

POSITION
LOOP

VELOCITY
LOOP

VELOCITY
LOOP

TORQUE
LOOP

TORQUE
LOOP

MOTOR +
FEEDBACK

MOTOR +
FEEDBACK

CAN HOST CAN SERVO NODE

CAN SERVO NODE

C
A

N
_H

C
A

N
_L

C
A

N
_G

N
D

Figure 5

The integrity counter ensures that each
node receives consecutive segments in
the proper sequence. The above-
described CAN messages are allocated
a certain COB-ID range, within the
CANopen communication protocol (as a
matter of fact, they use COB-ID’s within
the receive PDO COB-ID range).
Each CAN servo node has a 15-level
FIFO buffer, which receives the
segment messages. This buffer can be
further managed through standard
CANopen objects. The CAN servo node
automatically sends an error message in
case:

• a CAN message with incorrect
length was received

• the buffer is full
• the buffer is empty
• a non-consecutive counter value

is detected.
Actual motion is started on all CAN
servo nodes at the same time via a
broadcast message, from the CAN host.
Each CAN servo node removes
segment messages from the buffer as
needed (one at a time). The trajectory

generation of each segment is
accomplished dynamically, on-the-fly.
CAN servo node synchronization is
maintained through the CANopen TIME
STAMP message, which is broadcast
regularly by the CAN host, and is
received by each CAN servo node at the
exact same time. Each CAN servo node
compares the time difference between
consecutive TIME STAMP messages
with its own time measurement. Internal
time base changes are made
dynamically, and thus synchronization
between all axes is assured.
Selection of the segment time is based
on:

• Number of axes
• CAN bus bit rate
• CAN bus load
• CAN host capability
• Application performance

requirements
Under ideal circumstances, the CAN
host would change the segment time
dynamically, based on the position
profile shape and curvature. Practically,
it suffices to select a fixed segment time,
which can be applied throughout the
whole position profile.
Example:
At 1Mbit/s, an 8 data byte message,
takes worst-case approximately 130
microseconds to transmit (130 bits total
message length which is comprised of
64 data bits, CAN node address,
CRC…). In a 4-axis system, the total
time required to send a segment
message to all 4 axes is approximately
4*130=520 microseconds. Additional
time must be allotted for other
messages on the CAN bus, such as:
status messages, emergency
messages, etc… Note that it is not
necessary to send segment messages
at rates typically found in centralized
controllers (in the order of 100 – 500
microseconds). Since the CAN servo
node performs cubic interpolation, the
position update rates can be in the order
of 10 – 200 milliseconds, depending on

the application. In case of 10
millisecond segment times, the CAN
busload, created by the segment
message transmission is 520
microsecond/10 millisecond = 5%. One
can see immediately that the relatively
slow CAN bus can easily accommodate
such rates and provide sufficient
bandwidth for other messages.

Conclusion
As networking is introduced into the field
of motion control, real “distributed”
control is possible. It is important to
allocate machine control functionality
properly across “intelligent” devices on
the network. By shifting the position loop
to the servo node, and by “distributing”
trajectory generation over host and
servo node, a simpler, lower cost
network can be utilized. Some further
advantages of the above approach are:

• “Soft Motion”: the motion
trajectory is generated in the PC
or controller CPU. No dedicated
motion control hardware is
required, except for a network
interface (in this case a CAN
interface).

• Flexibility: the axis count can be
changed more easily; no
additional hardware is required
on the host controller. Other
devices such as I/O modules,
sensors, etc, can also be
connected to the CAN bus.

• Network Requirements: the
network speed requirements are
reduced through this “partial
trajectory generation”. This
allows selection of a more
robust, less complex, and more
cost-effective network (such as
CAN).

• De-coupling: the position loop in
the servo drive is de-coupled
from the host controller. In a
system with a centralized
controller, the trajectory
generation and position loop

algorithms share the same
hardware. Increasing the number
of axes typically requires
reduction of the position loop
update rate for each axis under
control.

• Wiring: devices can be mounted
on the machine, which
dramatically reduces wiring cost
and complexity, and enhances
machine reliability.

• Diagnostics: the CAN bus
interface, in conjunction with the
CANopen protocol, provides full
access to the servo node internal
variables and state machine.
This becomes increasingly
important for remote diagnostics
and field repair.

About the author:
Jan Bosteels has an electro-technical
engineering degree from the University
of Gent, Belgium. He is at present the
digital product manager at Advanced
Motion Controls, and has worked in the
motion control industry in various
positions for the last 10 years. He is also
an active member of the IEEE.

Jan Bosteels
Advanced Motion Controls
3805 Calle Tecate
Camarillo, CA 93012
USA
Tel: (805) 389-1935
Fax: (805) 389-1165
E-mail: jbosteels@a-m-c.com
http://www.a-m-c.com

