
CANopen-based Distributed Intelligent Automation
K. Etschberger, C. Schlegel, IXXAT Automation

First the main benefits of distributed processing will be discussed and the require-
ments summarized, which have to be met for the implementation of intelligent distrib-
uted systems. With the additional CANopen standard DSP 302 a framework for distrib-
uted systems is now specified which, besides other items, comprises the introduction
of network variables, the support of program download and control, a standardized
system boot-up procedure as well as the definition of a configuration management
instance. As system configuration is one of the most important practical aspects for
the establishment of distributed intelligent systems, an introduction into the configu-
ration process of those systems will be given and a versatile configuration tool shortly
presented. Finally, it is shown how the implementation of programmable CANopen
devices can be facilitated considerably on the basis of an available CANopen Master
software package.

1. Benefits and Requirements of Distrib-
uted Intelligence

Distributed processing in automation sys-
tems today is still not widely in use. One
reason is that popular fieldbus communi-
cation systems do not efficiently support
multi-master communication. On the other
hand, there are many advantages of dis-
tributed intelligence. CAN-based commu-
nication systems supporting producer-
consumer oriented communication are
well suited for the establishment of sys-
tems with distributed intelligence. The
main benefits of distributed processing
are:

���� Lower processing requirements and
higher system performance, respec-
tively: Since in a system with distributed
intelligence the overall processing task is
distributed to a number of processing
units, the processing load of each unit is
considerably lower than in a system with
only one central processing unit – or at the
same processing capacity per processing
unit, a much higher system performance is
possible.

���� Higher modularity and flexibility: In a
well designed distributed intelligent auto-
mation system processing capacity it allo-
cated to independent functional units or
subsystems. Therefore adding and ex-
tending of further functional units or sub-
systems should be much simpler than in
systems with central processing.

���� Easier system development, installa-
tion and testing: Due to the implementa-
tion of the system in form of independent
functional units or subsystems develop-
ment, installation and testing of the inde-
pendent functional units can be accom-
plished in parallel. Since the processing is
limited to smaller subsystems, program
development should be simplified as well
and integration of the subsystems should
be much easier than with a centrally con-
trolled system.

���� Better real-time behavior: Due to the
local processing capacity even very time
critical tasks, like closed-loop control can
be performed on a system with distributed
processing.

���� Lower bus load and lower bit rate re-
quirement, respectively: A system with
distributed processing does not need to
transmit each single signal or event via the
communication system to a central control
unit, since most of the processing is per-
formed directly at the remote subsystems.
This should result in a considerable reduc-
tion of the bus load or alternatively in a
reduction of the bit rate.

���� Higher system availability: If it is pos-
sible to organize the system into highly
independent subsystems or functional
units, the system can remain at least par-
tially operational even when one subsys-
tem or functional unit fails. In a centrally

controlled system, a failure of the central
controlling unit causes the failure of the
complete system.

Of course, distribution of intelligence is not
without costs. Besides the non-availability
of the appropriate technology certainly the
higher costs of utilizing multiple processing
units was one of the main reasons for the
relatively minor usage of distributed intelli-
gent systems until now. In addition, there
are several specific requirements for dis-
tributed processing, such as:

• Globally (network-wide) accessible pro-
gram variables

• Support of system configuration and
programming by efficient tools

• Powerful network management func-
tionality featuring plug-n-play capabili-
ties

• Support of program download and re-
mote program control

In the following, it is shown that with the
extension DSP 302 of the CANopen stan-
dard a comprehensive framework for the
implementation of distributed intelligent
systems is provided; also efficient system
configuration tools and universal, cost-
efficient processing devices and I/O-
modules based on DSP 302 are now
available in the marketplace.

As an example, Figure 1 shows a coal
conveyor plant, which is completely con-
trolled by a CANopen-based automation
system according to DSP 302. The sys-
tem, developed and installed by the
Helmut Mauell company [1], comprises 11
IEC-61131-3 programmable control units
and 44 universal I/O modules. The com-
plete system consists of more than 1000
data points and 280 network variables.
More than 500 PDOs have been estab-
lished for the transmission of process data
and network variables more than 500
PDOs have been established.

Figure 1: Coal conveyor plant of the harbor power
plant, City of Bremen/Germany, controlled by a
CANopen-based automation system with distributed
intelligence (Foto: Helmut Mauell GmbH).

2. CANopen DSP 302: A Framework for
Distributed Intelligent Systems

The CANopen Communication Profile [2,
3] specifies the basic mechanism for ex-
changing process and service data via the
CAN bus. The Communication Profile also
describes the heart of the CANopen stan-
dard, the CANopen Object Dictionary (OD)
which provides a standardized description
of any communication and application pa-
rameters, data and functions of a CAN-
open device which are accessible from the
CAN bus via so-called Service Data Ob-
jects (SDOs). Also services for network
management, emergency messaging, the
provision of a global system time and syn-
chronization are specified in this part of
the standard.

Within an additional framework for pro-
grammable CANopen devices, specified in
[4], further functions are specified for the
implementation of distributed intelligent
systems. Main parts of this specification
are the

• Definition of “Network variables”
• A mechanism for program download

and program control
• A standardized system “Bootup-Proce-

dure” as well as functions for configura-

tion management and the dynamic es-
tablishment of SDO-channels.

For IEC 61131-3 compatible programma-
ble devices a detailed application profile is
being specified in [5].

2.1 Network Variables

As the most essential requirement for dis-
tributed intelligence the interaction be-
tween application programs running on
different nodes of a network must be pos-
sible. This means that an application pro-
gram on node X can communicate directly
with an application program on node Y just
by reading or writing of a common vari-
able. Of course, this variable has to be
declared on both application programs as
“remote” or “external” or, according to
CANopen, as “Network Variable”. There-
fore CANopen DSP 302 specifies vari-
ables which may be accessed via the net-
work as a new type of application objects,
to be described in the object dictionary of
a programmable device. Since the usage
of network variables cannot be specified
before programming of an application, a
programmable device only can provide the
means for specifying of network variables
in its object dictionary. Thereby the spe-
cific attributes of a network variable are its
direction (input or output) and its data
type. Network variables are mapped into
the object dictionary in form of data direc-
tion - and data type -specific index-seg-
ments. DS 302 does not specify where in
the index range of the object dictionary
network variables are to be described. As
an important type of standardized pro-
grammable devices DSP 405 [5] specifies
this for IEC 61131-3 compatible program-
mable devices. There, for any of the
specified data types 64 main-indices with
each 254 sub-indices are available. This is
shown in Table 1. A further introduction
into this topic is given in [6].

Table 1: Mapping of input network variables into the
CANopen Object Directory according to IEC 61131-
3 compatible devices

Start Index Data Type
A000H Integer8
A040H Unsigned8
A080H Boolean
A0C0H Integer16
A100H Unsigned16
A140H Integer24
A180H Unsigned24
A1C0H Integer32
A200H Unsigned32
A240H Float32
A280H Unsigned40
A2C0H Integer40
A300H Unsigned48
A340H Integer48
A380H Unsigned56
A3C0H Integer56
A400H Integer64
A440H Unsigned64

Figure 2 shows the relationship between a
local application program with remote ap-
plication programs via network variables.
Remote or external input and output vari-
ables defined in a local application pro-
gram refer to network variables located in
the object dictionary of the local CANopen
Interface. Network variables are denoted
according to the direction as seen from the
network. Therefore input network variables
are seen as inputs to the network. This
corresponds to outputs of the local appli-
cation programs and inputs of the remote
application programs, respectively and
vice versa.

Figure 2: Definition of CANopen input and
output network variables

Most programming systems support a
mechanism for the definition of resources.
This can be used to assign the CANopen
attributes of a Network Variable like in-
dex/sub-index of the location in the OD
and its associated data type to the corre-
sponding symbolic name of a variable in
the application program. Based on a user-
friendly system configuration tool this can
be accomplished by importing a so-called
Device Configuration File (DCF) created
as the result of the configuration process
(See 3.1).

In order to allow programmable devices
the usage of a so-called “process image”
for input and output variables – a method
which is especially common for PLCs - a
relationship between the process image
and the location of the network variables in
the CANopen OD is necessary. The net-
work variables storage capacity of a pro-
grammable device is described in the sec-
tion “Dynamic Channels” of the Electronic
Data Sheet (EDS) of the device. Besides
the number of storage segments available,
the data type, direction, index range, offset
related to the base address of the process
image and maximum number of objects
which can be allocated are specified for
each segment.

After configuration of a programmable de-
vice, i.e. allocation of the used network
variables, the specified variables in com-
bination with the information of the EDS is
provided by the Device Configuration File
(DCF) for usage in the application pro-
gramming system.

2.2 Program Download and Control

Downloading of a complete application
program or parts of a program, for exam-
ple from a system configuration tool, may
also be considered as a mandatory capa-
bility of a distributed intelligent system. To
support this feature, a device needs to
provide only a basic CANopen bootstrap-
loader.
Downloading of the program code and
data is supported by means of a standard
SDO transfer protocol, e.g. the SDO block
transfer protocol, by addressing the spe-
cific “Download Program Data” - object

(Index 1F50H) in the OD. With up to 254
sub-indices the downloading of up to 254
different application programs or parts of
them is possible.

For controlling of a remote application
program via the bus, the “Program Con-
trol” – object (Index 1F51H) has to be ad-
dressed. By writing a specific control word
to the corresponding sub-index starting,
stopping or resetting of a specific program
is possible.

With a third object (1F52H), the “Verify
Application SW” – object, the latest date
and time of an update of the application
programs can be stored.

2.3 Network and Configuration Manage-
ment

Network Management

The network management in a CANopen
system is organized in form of a master-
slave relationship between a node which
acts as the master – this node is called a
“NMT-Master” – and the other nodes
which act as slaves (“NMT-Slaves”).
Please note that the master/slave feature
only refers to network management. Net-
work management in the context of a
CANopen system comprises the functions
of controlling and monitoring the commu-
nication status of the nodes.

Since in such a system only one device
can perform the NMT-mastership, but
several devices may have the capability to
do this, it is necessary to have the possi-
bility to configure this functionality. For this
purpose a specific “NMT-Start-Up” – ob-
ject (1F80H) has been defined to specify
the NMT-mastership as well as the spe-
cific start-up behavior of an assigned
NMT-Master. It should be mentioned here,
that there is also a pending standardiza-
tion proposal for a “Flying-Master” feature
for CANopen networks. It is intended that
this feature will get an optional part of DS
302.

Standardized System Boot-up

As a further extension to DS 301, DSP
302 introduces a standardized system
boot-up procedure to be performed by the
NMT-Master during initialization of a
CANopen system. To perform these func-
tions, the NMT-Master needs to know
what nodes (NMT-Slaves) are to be man-
aged. This information together with fur-
ther data is available to the NMT-Master in
form of several network related objects.

The first of these objects, the so-called
“Slave-Assignment”- object (1F81H) pro-
vides information about the slave nodes
assigned to the NMT-Master, how they
have to be booted (there are several
booting options), specifies the different
error control parameters and the re-
quested actions in case of an error control
event detected by the NMT-Master.

There are further data structures (objects)
specified for checking the system identifi-
cation such as Device Type, Vendor Iden-
tification, Product Code, Revision Number
or Serial Number of any of the devices.
This information is used by the NMT-
Master to verify the correct system con-
figuration during each system boot-up.

Figure 3 shows only the basic principle of
the system boot-up-process with some
simplifications.

Reset Communication all nodes

set NMT master operational

yes no

for all nodes assigned to the NMT master

halt
network
boot-up
procedure

set network operational

Boot Slave Procedure (see Fig. 4)

start network ?

error status o.k. ?yes no

notify error status

all mandatory nodes booted successfully ?
yes no

Figure 3: CANopen system boot-up procedure (only
basic principle)

First the NMT-Master performs a reset of
the communication interface of any of the
assigned nodes to ensure a properly de-

fined environment. Then, any of the as-
signed slave devices are booted individu-
ally. The basic principle of this procedure
is shown in Figure 4.

Request device type

response received ?

check identity objects (if required)

yes

error status o.k. ?
yes

yes

yes

no

no

no

no

check configuration

notify
application

notify
application

notify
application

notify
application

mandatory
node ?

error status o.k. ?

repeat
cyclically
booting of
slave until

slave
response
until boot

time
expired

start error control
(node guarding / heartbeat)

start slave
individually ?

yes no

set node operational

Figure 4: CANopen Slave boot-up procedure (prin-
ciple)

To boot a Slave device, the NMT-Master
checks the Device Type by reading of the
“Device-Type”- object (1000H) of the de-
vice and compares it with the device type
stored in the corresponding network iden-
tification object. If there is no response to
the Device Type read request and the de-
vice is mandatory, the application process
is notified and the system boot-up process
stopped after expiration of the “boot-up”-
time. If on the other hand a non-mandatory
device does not answer a read Device
Type request, the read request is repeated
until the slave is found or the application
process stops polling. This allows the
system to identify even devices which are
later connected to the network.
Of course, if the device type of a node
does not correspond to the stored device
type, the application is notified and the
Slave boot-up procedure stopped.

After a successful verification of the device
type further identification data of the de-
vice is checked, in case this data is pro-
vided by the device.

Optionally (not shown in Figure 4) the
Slave boot-up process continues with
verifying the version of the application
software including an automatic update of
the application software in case of a ver-

sion inconsistency. This function is per-
formed in cooperation with the Configura-
tion Manager (CM). The function of the
CM is described later.

After the successful verification of the
identification data, the device configuration
date and time parameters are being read
by the CM. If the CM detects a mismatch
of this data with the corresponding values
stored by the CM, or if the CM is re-
quested to configure the device with each
boot-up, it initiates downloading of the
configuration data to the device.

After a successful verification or down-
loading of the device configuration data
the Slave error control services are finally
started by the NMT-Master. In case that
the device refers to the Heartbeat protocol,
the reception of a Heartbeat message
within the NMT-Masters Heartbeat Con-
sumer Time is being checked. If the device
supports Node Guarding, it will be started
right after.

When all nodes are successfully booted
(see Figure 3) the NMT-Master sets itself
and all its assigned Slaves into the “op-
erational” state. Now the transmission of
process data via PDOs is enabled.

The Configuration Manager

The main function of the Configuration
Manager (CM) is to configure a device
during boot-up if requested. Therefore the
CM uses the configuration data provided
by the Device Configuration File (DCF) of
the device. If the CM is not located on the
computer used for setting-up the DCF, it is
necessary to transfer the DCF via CAN-
open. The DCFs of the network devices
are written to the CM, e.g. by a configura-
tion tool via the “Store DCF” – object
(1F20H) with the sub-indices correspond-
ing to the node-ID of the devices. The
DCF of a device can be read from the CM
by reading the “Store DCF” – object with
sub-index according to the node-ID of the
device. A DCF can be stored “as it is” or in
compressed form.

To further reduce the storage require-
ments a concise configuration data format

is specified in DSP 302. This format does
not contain all of the information included
in the DCF. The information to be stored
consists of the parameter values of the
object dictionary entries which differ from
the default values and is written to the CM
in form of a stream of data to the “Concise
DCF” – object (1F22H) with the sub-index
equal to the node-ID of a device.

To allow the CM to determine whether a
device needs to be reconfigured, DS 301
provides the “Verify Configuration” – object
(1020H). If a device supports the saving
of parameters in non-volatile memory, the
CM uses this object to verify the configu-
ration after a device resets and to deter-
mine if a reconfiguration of the device is
necessary. Therefore the configuration
tool has to write date and time of the con-
figuration in this object.

To check the validity of the configuration
data of a device after a reset, the CM
reads the “Verify Configuration” – object of
the device and compares the values of this
object (date and time of device configura-
tion) with the expected values for date and
time, stored in the CM objects “Expected-
ConfigurationDate” (1F26H) and “Expect-
edConfigurationTime” (1F27H) by the
Configuration tool. If the expected values
are zero or not identical with the values of
the “Verify Configuration”- object, the CM
starts downloading the configuration data
from the DCF of the device.

3. Configuration of Distributed Systems

Based on the concept of the object dic-
tionary and a complete free choice of type
and structure of communication relation-
ships between application objects, CANo-
pen provides a very high degree of flexibil-
ity with respect to device and system con-
figuration.

On the other hand, this high flexibility
makes configuration of a CANopen system
a rather complex matter if this is not sup-
ported by a configuration tool. This is es-
pecially true, for the configuration of dis-
tributed intelligent systems with more than
one interacting programmable device and
a complex communication structure. A

more detailed discussion of this topic is
given in [3].

3.1 The Configuration Process

The main steps for the configuration of a
CANopen-based automation system are:

• Definition of the network configuration:
Selection of the devices on the net-
work, allocation of node-Ids and baud-
rate.

• Configuration of the specific device
functionality. For programmable de-
vices this includes the definition of the
required network variables.

• Set-up of the communication relation-
ships between all application objects
shared across the network and of the
required service data channels be-
tween devices.

Figure 5 illustrates the basic task of set-
ting-up the communication relationships
for transmission of process data (applica-
tion objects) between two intelligent de-
vices. This process includes the following
steps:

• Definition of the required input and
output network variables according to
the application programs running on
the programmable devices.

• Mapping of the producer application
objects (input network variables and/or
local process inputs) of both devices
into appropriate Transmit PDOs
(TxPDOs). Generally, several applica-
tion objects can be mapped into one
TxPDO. Also the transmission mode
(e.g. asynchronous, synchronous) of
the TxPDO has to be selected.

• Mapping of the consumer application
objects (output network variables or lo-
cal process outputs) of both devices
into appropriate Receive PDOs
(RxPDOs). Of course, there can be
more than just one consuming device.
In that case any of the other consum-
ing devices also need to be configured

• Allocation of appropriate CAN-
Identifiers to each TxPDO and the cor-
responding RxPDO

Figure 5: Mapping of network variables into PDOs
and PDO-Linking

The described basic process of configur-
ing the transmission of process data
shows, that configuring a distributed intel-
ligent CANopen system without a configu-
ration tool is not very efficient. The next
section will introduce an existing CANopen
configuration tool.

3.2 System Configuration by means of a
CANopen Configuration Tool

With the PC-based CANopen Configura-
tionStudio offered by IXXAT Automation
[7] a powerful configuration tool for the
configuration of intelligent CANopen sys-
tems is available. When the system is
combined with a programming system,
e.g. for PLC programming, not only con-
figuration but also programming of distrib-
uted intelligent CANopen systems is pos-
sible. Based on an efficient data base
system, the consistent storage of Elec-

tronic Data Sheets, as well as further,
project-specific information is ensured.

Via the tool’s Control Panel the basic
administration of several projects is pro-
vided. Further functions of the Control
Panel are: Selection and control of the
different tools, structuring and definition of
networks, handling of Electronic Data
Sheets and Device Configuration Files,
allocation of node-Ids to network devices,
definition of the baud rate as well as utility
functions like Windows and file handling
options.

The following plug-ins are available:

• Object Dictionary Browser
With this tool browsing of the CANopen
object dictionary of a device is possible
and object dictionary entries can be easily
edited.

• Device Configurator
This tool specifically supports editing a
device’s communication and application
parameters, PDO-mapping and PDO link-
ing.

• Visual Object Linker
Whereas the usage of the Object Diction-
ary Browser and the Device Configurator
is mainly of interest for someone familiar
with CANopen (like developers), the Visual
Object Linker tool (Figure 6) very effi-
ciently supports the configuration of com-
munication relationships between process
data and/or network variables on the ap-
plication level. Therefore this tool requires
almost no knowledge of CANopen. With
the Visual Linker it is only necessary to
link the producer application object (like a
specific Output Network Variable) to one
or more consuming application objects.
Mapping of the application objects into a
TxPDO, allocation of CAN identifiers to
Transmit and Receive PDO as well as de-
mapping on the consumer side is per-
formed automatically by the Object Linker.
Therefore, the CANopen communication
mechanism are completely hidden. The
Object Linker also supports the definition
of network variables and the export of
specified variables to an integrated or ex-
ternal programming system.

• Network Access Interface
This plug-in builds the interface to a
CANopen network and provides functions
for down- and uploading of configuration
and program data, scanning of a network,
verification of device configurations, net-
work and program control as well as Layer
Setting Services.

Figure 6: IXXAT CANopen ConfigurationStudio,
Object Linker plug-In.

4. Implementation of Programmable
CANopen Devices

Since “intelligent” functions in a distributed
CANopen system are located mainly on
programmable devices like PLCs or HMI
devices, these devices should principally
be able to perform the function of a
CANopen Master as well as that of a
CANopen Slave. Based on the CANopen
Master software package of IXXAT Auto-
mation the implementation of a CANopen
controller device is considerably facilitated.
In addition to the basic functions sup-
ported by standard CANopen software
packages, the IXXAT CANopen Master
software package (Figure 7) includes all
the additional functions necessary for the
control of distributed intelligent systems.

The included Network Manager provides a
configurable, standardized system boot-up
procedure, the Configuration Manager the
configuration functionality as defined in
CiA DSP 302.

The CANopen Kernel comes with a uni-
versal application programming interface
for integration with the PLC run time sys-
tem and the application program, respec-
tively, consisting of a “Process Image” as
the interface for process data, as well as a
command and a diagnosis interface (Fig-
ure 7).

Figure 7: Software architecture of the IXXAT
CANopen Master software package

The command interface actually consists
of two command buffers: One for local
commands and one for commands trans-
mitted by means of SDOs. Via the local
command buffer the application program
can control the different functions of the
CANopen Master software package. Typi-
cal commands of this type are, for exam-
ple, requesting the storage of configuration
data, starting the boot-up process or re-
questing information about the automati-
cally configured Process Images.

Through the remote command buffer
commands the reading and writing of the
object dictionary entries of the local and
remote nodes is performed.
Each command returns a confirmation
value which indicates the successful or
non-successful execution of the command
in the corresponding confirmation buffer.

The diagnosis and error Interface serves
to inform the application program about
the error statuses of the Master software
package, the communication system and
the nodes. This interface also provides
node emergency messages and error sta-
tistics as well as the nodes configuration
status and many further status data.

Via the Process Images Input and Output,
the application program exchanges proc-
ess data with the CANopen kernel, which
is responsible of transferring the process
data between the process images and the
remote nodes. The process images are
implemented in form of a global data
structure accessible by the PLC run time
system and the Master software package.

5. Summary

With CANopen DSP 302 a versatile
framework for the implementation of dis-
tributed intelligent automation systems
based on CANopen is available. This in-
cludes sophisticated features like network
variables, standardized system boot-up,
automatic reconfiguration and program
download and control. In addition, efficient
system configuration and programming
tools are available in the market as well as
powerful software packages for the im-
plementation of programmable CANopen
devices. Therefore, due to the many
benefits of distributed intelligent systems,
it is expected that CANopen-based auto-
mation systems with distributed intelli-
gence will become more and more popular
in the near future.

References

[1] http://www.mauell.com

[2] CiA Draft Standard 301, CANopen –
Communication Profile for Industrial Sy-
stems, Version 4.01, 6/2000

[3] Etschberger, K.: Controller Area Net-
work, Basics, Protocols, Chips and Appli-
cations. IXXAT Press, 2001. ISBN3-00-
007376-0

[4] CiA Draft Standard Proposal 302:
Framework for Programmable CANopen
Devices, Version 3.0, 6/2000. CAN-in-
Automation

[5] CiA, Draft Standard Proposal 405:
Interface and Device Profile for IEC
61131-3 Programmable Devices. Version
2.0, 2/2000

[6] Etschberger, K., Eberle, J.: CANopen
becoming intelligent with IEC 1131-3. CAN
in Automation. Proceedings of the 5th in-
ternational CAN Conference. 11/98.

[7] http://www.ixxat.de

Prof. Dr.-Ing. K. Etschberger
IXXAT Automation GmbH
Leibnizstr. 15
D-88250 Weingarten
e-mail: etschberger@ixxat.de
Phone: +49-0751-56146-0
Fax: +49-0751-56146-29
web: www.ixxat.de

Dipl.-Ing. Ch. Schlegel
IXXAT Automation GmbH
Leibnizstr. 15
D-88250 Weingarten
e-mail: schlegel@ixxat.de
Phone: +49-0751-56146-0
Fax: +49-0751-56146-29
web: www.ixxat.de

