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The low-processing power microcontrollers used within typical CAN nodes, usually
place tight limits on the complexity and flexibility of on-line message scheduling
systems. One solution to break this barrier is to transfer the scheduling task to a
hardware implementation.
A traffic scheduling and schedulability analyser coprocessor is presented in this paper.
The coprocessor generates message schedules for the master node CPU of a fieldbus
system, leaving it just with the dispatching task. Scheduling can be made to follow one
of three different policies. The number of messages to be scheduled and their
parameters can be changed dynamically. To support on-line admission control of new
messages, the coprocessor implements a schedulability analyser function.
The coprocessor was designed to support the FTT-CAN protocol, but it can be adapted
to any other fieldbus using centralised scheduling. The description presented here is
focused mainly on the coprocessorÕs overall functionality and interface with the node
CPU. To characterise its performance, calculated response times are presented.

1. Introduction

The FTT-CAN protocol (Flexible Time-
Triggered communication on CAN) [1] was
originally introduced to support time-triggered
communication of periodic messages on the
CAN network, while providing some
operational flexibility in what concerns the on-
line changing of message parameters.
The ability to make these changes

dynamically is an important feature of modern
distributed real-time communication systems,
which require an efficient utilization of system
resources [2].
All changes made at some point in the

message set are reflected on the system
with a delay which must be usually upper
bounded. If the changes are solicited as a
result of a human operation, a reaction time
of a few seconds is normally tolerable. On
the other hand, if the change request comes
from the system itself, as a result of the
application of some QoS strategy, a
responsiveness of a few milliseconds may
be required. This calls for a fast reaction
time from the message scheduler.

An efficient software implementation of the
scheduler executed in a high-performance
CPU can easily fulfil this requirement.
However, in cost-sensitive CAN applications
(such as in automotive) where nodes are
typically powered by low processing power
microcontrollers, this level of responsive-
ness may be hard to achieve.
In addition, to guarantee that changes in the
message set donÕt jeopardise the timeliness
properties of the system, a schedulability
analysis must be executed beforehand.
Whether it is utilisation or response time-
based, this analysis requires a level of
computation power to be completed within
reasonable time bounds, not provided by
the aforementioned microcontrollers.
To address these two requirements in the

framework of the FTT-CAN protocol, a
coprocessor implementing in hardware the
scheduling and schedulability analysis
functions was developed.
The paper proceeds with a short reference

to previously reported scheduling coproce-
ssors, followed by an overview of the FTT-
CAN protocol. The coprocessor is then
described focusing on its functionality and
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interface with the microcontroller. A practical
scenario of its utilisation related with
autonomous mobile robots is discussed.
Finally, its performance is characterised.

2. Scheduling Coprocessors

Judging by published work, not much effort
has been dedicated in the past to the
development of dedicated hardware for
scheduling. The SSCoP [3] developed for
the Spring kernel and the universal task
scheduling coprocessor reported in [4] are
two of the few examples that address the
problem of task scheduling in real-time
operating systems.
In the area of fieldbus traffic scheduling, the

Planning Scheduler CoProcessor (PSCoP)
[5] developed by our team, was, as far as we
know, the first dedicated hardware solution
to appear. Being implemented on FPGA
technology and running at a mere 12 MHz
clock rate, PSCoP exhibited a remarkable
performance by being able to generate
message-schedules for a fixed time interval,
in less than 1% of the time needed to
dispatch that same interval.
The coprocessor described in this paper is

somehow an evolution of PSCoP, with a
whole new functionality, including a
schedulability analyser

3.  FTT-CAN Overview

The FTT-CAN protocol defines a centralised
master node where the properties of all

synchronous messages in the system are
located, and where the scheduler executes.
The transmission of messages in FTT-CAN

is carried out in fixed duration time slots
called Elementary Cycles (ECs). Within each
EC there are two consecutive time windows,
one dedicated to the transmission of periodic
messages (synchronous window) and
another to allow the transmission of normal
event-triggered messages (asynchronous
window). In this paper, only the synchronous
time-triggered traffic is of concern.
The scheduler schedules message transac-

tions in units of a single EC, called EC-
schedules. Each contains the information of
which messages should be produced in each
part icular EC. EC-schedules are
broadcasted to all nodes within a special
message, known as the Trigger Message.
The transmission of the trigger message
marks the start of each EC. The nodes that
identify themselves as producers of one or
more messages, transmit the identified
messages in the synchronous window of that
EC. Collisions on the bus access are
resolved by the native distributed MAC
protocol of CAN.

4.  Scheduling / Schedulability
Analyser Coprocessor

The coprocessor works as a slave of a
microcontroller in the FTT-CAN master node
(see fig. 1). Its function is to take care of
scheduling and schedulability analysis while
the microcontroller executes EC-schedule
dispatching, admission control and node
management.
In the scheduling mode the coprocessor

generates one EC-schedule at a time.
Between the generation of successive EC-
schedules the node CPU can change the
existing message parameters, as well as add
to or delete messages from the set. A high
responsiveness is guaranteed by reflecting
all changes in the message set right in the
next EC-schedule.
Scheduling can be performed according to

three static policies: rate monotonic (RM),
deadline monotonic (DM) and Priority-based.
Operation can be changed dynamically
between these policies according to the
application requirements.
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Fig. 1 Ð Typical centralised scheduling
fieldbus architecture having a Master Node
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In the schedulability analysis mode the
coprocessor tests the current message set to
see if all messages can be produced within
their respective deadlines. This analysis can
be done between the genera-tion of
successive EC-schedules. In fact, as it will
be seen later, the coprocessor is fast enough
to perform more than one schedu-lability
analysis within an elementary cycle.
The joint hardware integration of the

scheduling and schedulability analysis
functions constitutes a unique feature of this
coprocessor in the realm of fieldbus traffic
scheduling, mirrored only by the SSCoP
coprocessor in the area of task scheduling.
A first prototype of the coprocessor is being

implemented in a FPGA supporting up to 32
messages with parameters expressed with a
resolution of 8-bits. These figures are appro-
priate for a broad range of applications, e.g.
the SAE benchmark as described further on.

4.1. Basic Architecture

At a high level of description the coproce-
ssor architecture doesnÕt differ much from the
one adopted in PSCoP [5]. This is because,
despite dealing now with a dynamic schedu-
ler, we can still divide the scheduling function
in the same two basic activities: the action of
placement of transactions in the ECs, and the
function of keeping track of the instants in
time when each message must be produced.
In the new coprocessor this work is carried
out by the EC-Schedule Builder (ECSB) and
the Message Production Timer (MPT),
respectively.
Fig. 2 depicts the coprocessor architecture

with one ECSB and 32 MPTs connected
through an internal bus. Each message to be
scheduled is allocated to one MPT unit that
holds the messageÕs period (P), initial phase
(Ph), deadline (D) and priority (Pr) parame-
ters.
When a MPT detects that the scheduling for

a particular EC where its message should be
produced has started, it signals the ECSB
requesting the allocation of the associated
transaction. Based on the transactionsÕ
duration (C) and the remaining EC time left,
the ECSB unit decides to allocate or reject
the transaction. If the transaction is accepted,
further requests for allocation in the same EC
(from other MPTs) are evaluated, otherwise

the current EC-schedule is finished.
The schedulability test is based on a

response time analysis in which the
coprocessor executes internally consecutive
scheduling operations, building what is known
as the timeline. If the first allocation of each
message is made within its deadline, then the
schedulability of the set is guaranteed. It can
be shown [6] that this simple test constitutes
a necessary and sufficient schedulability
assessment.

4.2. Coprocessor Interface

4.2.1- Software Interface

Fig. 3 illustrates the coprocessor
programmers model with all the registers
accessible by the controlling node CPU.

Message Parameters Register Slots (MPRS)
These registers hold the parameters of each

message to be scheduled. There are 32 slots
of registers for a maximum of 32 messages.
Each slot contains 5, 8-bit registers, where
the parameters of each message should be
written to prior to any scheduling or
schedulability analysis operation.
The message priority, optionally written to

the priority register (PriReg), has a range of 0
(highest priority) to 255. The values written to
the phase (PhaReg), period (PerReg) and
deadline (DeaReg) registers are expressed in
number of ECs. The values written to the
message duration register (DurReg) should
be expressed in a normalized unit given by
NECd = (EC Duration / 255). If a message
has a duration of ∆ t time units, its
corresponding DurReg register should have
the value ∆ t / NECd . The deadline value
written in the DeaReg register is only relevant
for schedulability analysis.
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EC-Schedule Register
At the end of a scheduler operation this 32-

bit register contains the schedule for an entire
EC: an EC-schedule. Each message
allocated in that EC is specified by a 1, in the
bit position corresponding to its register slot.
In other words, bit number i corresponds to
the message assigned to MPRSi. This is the
same coding method used in the FTT-CAN
trigger message data field (see fig. 4), and it
was adopted here in order to minimise the
dispatching overhead in the node CPU.

Control and Status Register
This 8-bit register is used by the

microcontroller to control the coprocessor and
to check its status. Table 1 describes the

function of each bit.

4.2.1- Physical Interface

The coprocessor has a simple standard
peripheral-like 8-bit interface that can be
easily connected to a variety of
microprocessor or microcontroller families.
Fig. 5 shows all the signals and buses of this
interface. The active low interrupt signal is
asserted when the Go/Done bit is reset in the
CSReg, indicating the end of a scheduling or
schedulability analysis operation. It is
deactivated when either the CSReg or any
byte of ECSReg, are read. The 8-bit address
bus is used to select each internal register.
To prevent unwanted changes in the
message set while the coprocessor is active,
only the CSReg is accessible when the
Go/Done bit is set.

4.3.  Using the Coprocessor: A Practical
Example

Consider an autonomous robot with several
guiding sub-systems such as line tracking,
beacon following and target tracking, as well
as other application-related sensors and
actuators. The robot is equipped with a
distributed computer control system based
on the FTT-CAN protocol that interconnects
its sensors, controllers and actuators. The
Master node is supported by the coprocessor
just described.
The robot global control follows a flexible

approach according to which all activities in
the system are executed when necessary,
only, and with a quality of service (QoS)
depending on the current availability of
system resources. In particular, concerning

the communication system, the properties of
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the message streams are adapted on-line
according to the current needs. For example,
consider the line-tracking module. When the
robot follows a line, it may adjust its speed
according to the current line pattern (curved
or straight) or the available bandwidth for the
message stream carrying the samples with
the robot deviation.

Suppose that the robot is travelling along a
straight line and suddenly faces a sharp
curve. Then, two actions can be taken: either
the sampling rate is increased and the robot
maintains its speed, or the rate cannot be
increased and thus the robot must slow
down. Increasing the sampling rate implies
reducing the period of the respective
message stream. Thus, the node CPU
requests a schedulability analysis of the

changed message set. If it is schedulable,
the change, i.e. reduction in message period,
is performed and the robot maintains its
speed. Otherwise, the robot slows down.
In general, itÕs not possible to predict the

outcome of the schedulability test. The
dynamic activation / deactivation of some
sub-systems may lead to deeply varying
conditions of bus load. Fig. 6 shows the
sequence of interactions that are carried out
between the node CPU and the coprocessor
in the scenario just described.
First the coprocessor is asked to generate

EC-schedules in automatic start mode, using
interrupts. Then, when the robot detects the
curve, scheduling is suspended, the
message period from the line tracking
sensors is reduced and a schedulability test
is requested. The outcome of this first test
indicates a non-schedulable set. In response,
the node CPU decides to readjust the
message period to some pre-defined
intermediate level, and requests a second
schedulability test. This test results now in a
schedulable condition. EC-scheduling is then
resumed with the updated message period.
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Fig. 6. Sequence of interactions between the
node CPU and the coprocessor in the

Tab. 1 Ð Control/Status Register Bits

Go/Do
ne

 The microcontroller sets this bit
to command the coprocessor to
generate an EC schedule (if
SA=0)  o r  pe r fo rm a
schedulability analysis (if SA=1).
The coprocessor resets this bit
when done.

SA When set,  enables the
schedulability analysis mode in
the coprocessor.

NS  After the coprocessor is
instructed to do a schedulability
analysis, NS becoming 1 means
that the set is not schedulable.

AS When set, enables the automatic
star t  mode, where the
coprocessor starts building a
new EC schedule after the less
significant byte of ECSReg is
read. This mode only works with
the scheduler function (SA = 0).

INT  Interrupt status bit that reflects
the (inverted) state of the
external interrupt signal.

SP[[[[0,1]]]] These two bits specify the
scheduling policy to be used by
the coprocessor, according to
the assignments in Table 2.

Tab. 2 - Scheduling policy control bits.

SP1 SP0 Scheduling Policy
0 0 Priority-based
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5. Performance Evaluation

In this section, we analyse the coprocessor
performance to check whether it exhibits the
dynamic behaviour required by applications
like the one in the previous section. The
coprocessor must be fast enough to carry out
several schedulability tests and scheduling
operations in one EC.
At the time of this writing this coprocessor

has not yet been physically implemented, so
no measured performance figures are yet
available. Nevertheless, to anticipate its
performance level we make use of two
expressions derived in [7], which quantify the
number of clock cycles required by the
coprocessor to complete each function:
scheduling and schedulability analysis. Since
the coprocessor is an all-synchronous
design, the results derived from such
expressions are believed to be exact.
In addition we consider as workloads

selected message subsets from the SAE
benchmark. This benchmark is summarized
in table 3 that classifies its 53 messages in 6
types, according to their respective periods
and deadlines.

5.1. Scheduler Function

The basic performance requirement the
coprocessor must fulfil is to generate an EC-
schedule within the time of an EC. Ideally it
should be fast enough in order to spare
some EC time for one or more schedulability
tests.
The number of clock cycles spent in the

generation of an EC-schedule is given by [7]:
t Nvsch = +3 16. (1)

where N v  is the number of messages
allocated in the EC. To compute the worst
case scheduling time, we consider a
maximum number of allocations per EC.

Given the SAE benchmark message
periods, we assume an EC duration of 5ms.
Additionally, since all SAE messages have a
data area with one byte or less, they all
correspond in CAN to single byte messages.
In a CAN2.0A fieldbus operating at
500Kbit/s, the smallest duration of these
messages is 110µs [8], which means that it is
possible for the coprocessor to have all 32
messages allocated in the same EC.
From equation (1), the scheduling time in

this worst case scenario is thus computed as
515 clock cycles. If we now consider a low
clock rate, e.g. 20MHz, this translates to
25.8µs, which is indeed a very small fraction
of the EC time, making almost all the EC
available for schedulability analysis.

5.2. Coprocessor vs Microcontroller

At this point the key question is: Could we
attain this level of performance with an off-
the-shelf microprocessor-based solution?
To answer this question we will use data

taken from an experimental CAN system,
where the scheduler was executed by an
80C592 microcontroller clocked at 11 MHz
[9]. For a set of nine messages this micro-
controller takes 7.8ms to output a single EC-
schedule. If we had, let say, a 200MHz CPU
in the master node, which corresponds to a
speed-up factor of 18 (ignoring, for simplicity
sake, performance gains due to architectural
enhancements) we could expect a similar
reduction in the scheduling time, to about
430µs which is still much more than what we
can achieve with the 20MHz FPGA-based
coprocessor. Increasing even further the
microprocessor clock will shorten the
scheduling time, but will also raise costs and
power dissipation problems, which are both
sensitive issues in CAN systems.

5.3. Schedulability Analyser Function

The performance requirement imposed on
the coprocessor in what concerns the
schedulability analysis capability is basically
the same as for the scheduler function, i.e. it
must be completed while the coprocessor is
idle between successive scheduling
operations.

Tab. 3 - SAE message set summary.

Type P (ms) D (ms) N¼ of
Msgs

A 5 5 8
B 10 10 2
C 50 5 1
D 50 20 30
E 100 100 6
F 1000 1000 6
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The maximum time required by the
coprocessor to check the schedulability of a
message set is given by [7]:

( )t k Nv EC
sa i

i

k
= +

=
Σ5 16

1
� � (2)

where k is the number of scheduling actions
executed as part of the test, and Nv(ECi) the
number of messages allocated in the ith EC-
schedule.
To find the highest value that tsa can reach,
we need therefore to find the SAE message
subset that maximizes k and Nv(ECi) simulta-
neously. The maximum possible value for k
is:

{ }k D Dwc N= max ,. ..,1 (3)

The coprocessor generates all kwc EC-
schedules when it is not able to allocate the
message with the longest deadline. The
maximum tsa will then be obtained in this
scenario considering the greatest possible
number of message allocations per EC, that
is, the highest possible value for Nv(ECi).
Since, from the point of view of CAN, all
messages of the SAE benchmark have the
same size and we must consider the EC time
completely allocated in all kwc ECs, then
Nv(ECi) is constant and given by:
 Nv(ECi) = Nv(EC) = ECSP / C    for all i   

(4)
where ECSP is the EC time slot allocated to
the synchronous phase and C the transmi-
ssion time of each message.
In table 4 we present four different idealised

scenarios where ECSP was selected so that
we could have in each EC as much as 8, 9,
10 or 11 messages. For each case we
selected a subset from the SAE benchmark
in such a way that all generated EC-
schedules are fully booked. That turned out
possible for the first three cases but not for
the fourth. We then considered that a new
message of type F (deadline = 1000ms) was
added to each subset, and for each case tsa

was computed.
Since the bus is saturated in the first three

cases, the set becomes not schedulable. To
reach that conclusion the coprocessor must
build 1000/5 EC-schedules in each case.
The time to complete the schedulability test
is indicated in the rightmost column of table
4. For the case where Nv(EC) = 11, the
addition of a new type F message still results

in a schedulable set. Since only the first 14
EC-schedules are fully booked, the new
message is allocated in EC number 15 which
is therefore the last generated by the
schedulability test. In this case t s a  is
significantly lower. For Nv(EC) less than 8 or
greater than 11 we will have lower values for
tsa. The same will happen for bus speeds
higher than 125Kbit/s because more
messages will fit in each EC.
From table 4 we see that the worst case for

tsa corresponds to Nv(EC) = 10, and amounts
to 33000 clock cycles. For a 20MHz clock this
is 1.65ms, which is about one third of the EC
time considered in this example (5ms). This
result gives a clear indication of the
coprocessor performance. In particular it
shows the coprocessor capacity to execute
schedulability analysis in a substantially less
time than the EC duration.

6. Conclusion

A coprocessor to support traffic scheduling
in the FTT-CAN protocol was described. A
special emphasis was given to its overall
functionality and user interface. The
coprocessor integrates a timelineÐbased
schedulability analysis, and can be easily
explored in other fieldbus systems relying on
centralised scheduling.
The coprocessor implements a dynamic

scheduler model, allowing all message
parameters to be changed on-line with high
responsiveness. It has a simple and flexible
CPU interface and supports three distinct
scheduling policies based on fixed priorities:
rate-monotonic, deadline-monotonic and
generic priority-based. A first prototype

Tab. 4 -  Schedulability analysis worst-case
execution times. (EC=5ms; Bus speed=125 Kbit/s;
Ci=Cmin=440µs)

ECSP

(µµµµs)
Nv
(EC)

SAE Message
Subset

N¼ of
Msgs

k tsa

(clock
s)

3700 8 (8xA) 8 200 26600

4000 9 (8xA)+(2xB) 10 200 29800

4500 10 (8xA)+(2xB)+(4xD)
+(6xE)+(6xF)

26 200 33000

4900 11 (8xA)+(2xB)+(8xD)
+(6xE)+(6xF)

30 15 2715
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implemented on a Spartan II series FPGA is
almost completed.
The preliminary performance analysis

presented revealed excellent results despite
the worst-case SAE message subsets
considered, and the relatively slow clock rate.
In particular it demonstrated that the
coprocessor is capable of generating EC-
schedules in a very small fraction of the EC
duration, leaving virtually all EC time available
for schedulability tests. The worst-case
execution time of these tests can be
computed from the message-set parameters,
leaving for the node CPU the decision of
whether or not to start a schedulability test,
depending on the remaining time left until the
next scheduling operation. In any case, even
in the most stringent conditions, the analysis
has shown that the coprocessor is able to do
at least three on-line schedulability tests
between successive scheduling actions, for
the SAE benchmark.
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