
08-11

Automatic Generation of Control Software Components
for CAN Devices by Using Java and XML

Gerd Nusser, University of Applied Sciences Reutlingen, University of T�bingen, Germany
Gerhard Gruhler, University of Applied Sciences Reutlingen, Germany

Wolfgang K�chlin, University of T�bingen, Germany

The integration of automation systems in a general management and service
infrastructure, like for example a company's logistic and management network, as well
as the use of high level languages to support state of the art software development is
a major challenge in automation engineering. Embedding devices in information
technology infrastructures and applying modern software development methods
require the representation of devices on a higher level of abstraction. Once low level
device facilities and communication details are encapsulated and represented by a
software entity with respective interfaces, the application software development gets
much more efficient.
This paper introduces a system which offers the opportunity to automatically discover
and classify CANopen devices running in a CAN system. An XML description of the
discovered devices and their interfaces is generated, which is then used to
automatically generate Java control software for these devices including high level
application interfaces. The XML description offers a lot of additional possibilities like
automatic generation of web interfaces, integration in document management
systems, access to database systems and Internet-based services in general. The
current system setup consists of an Industrial PC-based controller running either
Windows NT or the real time operating system RMOS offering a real time Java Virtual
Machine named RTVM. The goal of the presented system is, not to be concerned with
low level device facilities and communication protocols but to easily develop
applications using high level components wherever possible to support modern
software development processes and to seamlessly integrate automation systems in a
general information technology infrastructure.

Introduction

Moving towards a general service
infrastructure of cooperating services and
devices, it is important to factor out details
about different hardware and software
platforms by enhancing the level of
abstraction [1]. Therefore each device can
be regarded as a special kind of service,
which offers its services over some kind of
network [3].
This paper presents a system which
automatically generates software control
components which encapsulate the
hardware access and hardware dependent
communication to CANopen devices. The
generated software components are
located at the controller site and have
access to devices connected to a CAN

fieldbus. A single component receives
requests for a specific device and handles
all communication details, like send and
receive CAN messages, internally.
One major concern is to abstract away
from device dependent technical issues
like for example communication protocols
and to offer a high level interface.
The generation of a high level interface
simplifies resp. facilitates the integration
into some kind of middleware technology,
and the possibility to apply modern
software concepts like for example
(mobile) agents to the field of automation
engineering.
The main purpose is the integration of
devices in a general management and
service infrastructure.

08-12

Approach

For the representation of devices, XML
[17], a subset of SGML is used. XML is an
Òopen, platform independent and vendor
independent standardÓ [7], which is easy
to parse and supported by many tools.
The basic approach for automatic
generation of software components for
devices consists mainly of the parts
discovery (device ident i f icat ion),
representation and code generation, as
illustrated in figure 1. First the system
searches for CANopen devices connected
to CAN and represents their interface
using XML. During the generation process
different components can be generated
automatically. As shown in figure 1 the
system offers the possibility to generate
Java components as well as web
interfaces (HTML comp).

The representation of devices in XML and
the concept of automatic code generation
based on these XML documents offer the
following benefits:

1. The XML representation of device
interfaces raises the level of
abstraction and are (almost)
independent of any implementation
language. Furthermore, a wide range
of different tools support the use of
XML applications.

2. The process of automatic generation
is less error prone and leads to more
reliable and stable software
applications. Additionally, it serves as
a basis for rapid system prototyping

and highly dynamic application
environments, like for example agent
based architectures [8].

3 . High level interfaces support
interoperability between different
technologies, applications, and
systems, with respect to information
exchange.

4. Devices can easily be integrated into
a distributed environment, such as
the Internet, in common middleware
architectures, or in a general
information technology infrastructure,
as the generated components directly
support this kind of integration.

5. By making device representations
persistent, structural query and
retrieval facilities can be applied.

6. Due to the XML abstraction and
dynamic generation, the overall
development and integration process
is speed-up tremendously.

System architecture

The current setup consists of an industrial
personal computer named SICOMP [9],
running either Windows NT or RMOS, a
real-time operating system from Siemens
AG. The system is equipped with various
components (SMP16), like digital and
analog components, and a CAN/CANopen
component including CANopen master
software.
CANopen uses an object-oriented
approach to the definition of standard
devices, where each device is represented
as a set of objects that can be accessed
through the network. All the objects are
accessible through the object dictionary of
a device. The entries in an object
dictionary, i.e. the objects, are referenced
by a simple addressing scheme consisting
of an unsigned 16-bit index and an
unsigned 8-bit subindex. To read and write
to object dictionary entries low priority
messages, so called service data objects
(SDOs) are used. High priority messages,
so called process data objects (PDOs) are
used for real-time communication.
For CAN/CANopen development purposes
the SICOMP system offers a C/C++

Digital
Input/Output

Analog
Input

Analog
Output

Java Comp.

HTML Comp.

Device2XML XML2É

Discovery & representation
of devices

Code generation

CAN

XML

HTML
page

Analog
Output

Digital
I/O Analog

Input

Figure 1: System Overview

08-13

library. Three different I/O modules,
namely DIOC711 (digital input/output),
AIC711 (analog input) and AOC711
(analog output) are currently connected to
CAN. All of these devices comply to the
draft standard DS-401 ÒDevice Profile for
Generic I/O ModulesÓ [6].
Supposed that appropriate peripherals and
system support for CAN are available, the
presented system may also be used on an
embedded Java Virtual Machine. An
implementation for a Java low cost
embedded system equipped with CAN,
named TINI, is currently under
development (cf. section 0).
CANopenProvider

To access the previously mentioned
CAN/CANopen library from inside Java,
the library is encapsulated in a dynamic
link library on the system level and
encapsulated in a Java package called
CANopenProvider interfacing the system
library through the Java Native Interface
(JNI). On the system level the
CANopenProvider processes all of the
CAN resp. CANopen spec i f i c
communication details. On the Java
language level the CANopenProvider
offers a high level object oriented interface
to CANopen. Currently the system does
not support real-time capabilities, even
though the SICOMP system offers a real-
time Java Virtual Machine, called RTVM.
The higher level protocol CANopen is very
well suited for introspection, as it is
possible to gather all information of a
device because of device profiles.
Additionally each CANopen device holds
an object dictionary with all internal
parameters, which are described in detail
in the electronic data sheet (EDS). An
electronic data sheet contains all device
parameters along with a description, data
type, object type, access type, etc. As
described in section 5 this information is
used for documentation and component
generation.
The system heavily depends on CANopen
but only makes use of the mandatory
requirements of CANopen and CANopen
device specifications.

XML representation of devices

During startup the system first searches
for available CANopen devices connected
to CAN. This discovery process uses
CANopen messages according to DS-401,
which contains some pre-defined
communication objects. One of these
objects is the so called device type at
index 0x1000, subindex 0x0. The return
value of this entry consists of four bytes
(cf. figure 2).

The first two bytes hold the device profile
number (DPN). For generic I/O modules
this DPN is 401, the specification identifier.

According to the DPN the third byte
represents the I/O functionality of the
device. For I/O modules this can be either
digital input (DI), digital output (DO),
analog input (AI) or analog output (AO) or
any combination of these. The fourth byte
defines some device specific functionality.
Requesting the device type with different
message identifiers each device is
requested to send its type. If an answer
arrives, a device with the demanded
identifier exists. With this technique, all
devices currently connected to CAN are
discovered.
During the process of introspection,
additional information about a specific
device is gathered. The knowledge about
the I/O functionality allows to read the so
called PDO mapping parameters, which
are directly mapped to the according
inputs resp. outputs of the device.
According to the device type the mappings
are defined at well known object entries
(0x1600 for DOs, 0x1A00 for DIs, 0x1601,
0x1602, 0x1603 for AIs and 0x1A01,
0x1A02, 0x1A03 for AOs). The object
entries hold the number of mapped
objects, the mapped objects themselves

I/O
Functionality

Additional Information General Information

Device Profile Number
Specific

Functionality

byte 4 byte 3 byte 2 byte 1

Figure 2: Device type entry ([6])

08-14

and the corresponding data length. For
example, for DOs with 8 output lines the
default entry at index 0x1600, subindex
0x0, the number of mapped objects is
0x01. Index 0x1600, subindex 0x1 holds
the first mapped object, which is mapped
to index 0x6200, subindex 0x1 with a data
length of 0x8. As a digital output device is
considered, the implication is that this
device has eight output lines.
Like shown in figure 3, the current setup
consists of a digital I/O device with 8 input
and 8 output lines, an analog input device

and an analog output device with four
input resp. output lines. In contrast to
digital I/O where each line is represented
by a binary value 0 or 1, each analog input
resp. output has a length of 2 bytes (16
bits).

XML representation of CANopen devices

To construct a general representation of a
device, each device is characterized by its
interface. The interface reflects the device
functionality and is represented by a XML
document. The XML document is
compatible with the Object resp. Class
Markup Language (OML, CML) [2]. CML
defines objects, methods and parameters
in a general manner, where each object
consists of a number of methods and each
method takes parameters and returns a
value. As mentioned previously, a digital
I/O device offers an interface to set the
output lines, and to read the input lines.
Additionaly, each CANopen device offers
extended functionality, like e.g reading the
device type or device name. Taken into

consideration, that each of these attributes
can be set resp. get, it is possible to
identify a set of methods, along with
parameters and return values. To
introspect a device, a specification file is
needed. This specification file is written in
XML and contains objects and
parameters defined in DS-401, along with
data types and address information (index,
subindex). Currently, this specification file
contains information for generic I/O
modules.
The discovery process and the
introspection progress lead to the following
XML document (excerpt):

This document defines a class named
Dx11 which belongs to a package
Devices. The node identifier is 4, and the
device is a combination of a Digital-
InputDevice and a DigitalOutputDevice.
Further on two methods are shown. The
method DeviceType returns a value of
type Unsigned32 and is mapped to index
0x1000, subindex 0x0. The method
NumberOfOutput returns the number of
output modules. In this way, every

ID Name Type Mapping Length
4 Dx11 DI

DO
6000,1
6200,1

8
8

8 AI11 AI 6401,1
6401,2
6401,3
6401,4

16
16
16
16

9 AO11 AO 6411,1
6411,2
6411,3
6411,4

16
16
16
16

Figure 3: Device setup

<CML>
 <Class>
 <Name>Dx11</Name>
 <Package>Devices</Package>
 <Attributes>
 <NodeID>4</NodeID>
 <Types>
 <Type>DigitalInputDevice</Type>
 <Type>DigitalOutputDevice</Type>
 </Types>
 </Attributes>
 <Methods>
 <Method>
 <Name>DeviceType</Name>
 <Datatype>Unsigned32</Datatype>
 <Desc>Type of device</Desc>
 <Attributes>
 <Index>0x1000</Index>
 <Subindex>0</Subindex>
 <AccessType>r</AccessType>
 </Attributes>
 </Method>
 ...
 <Method>
 <Name>NrOfOutput</Name>
 <Datatype>Unsigned8</Datatype>
 <Desc>Number of output modules</Desc>
 <Attributes>
 <Index>0x6200</Index>
 <Subindex>0</Subindex>
 <AccessType>r</AccessType>
 </Attributes>
 </Method>
 ...
 </Methods>
 </Class>
</CML>

08-15

parameter defined in DS-401 is
represented as a node in the XML
document.

Automatic code generation out of XML
representations

Once the interface of the connected
devices are represented as standard XML
documents, they can be easily processed
and used to generate different
components. Two generation processes
will be presented. The generation of Java
classes, and the generation of web
interfaces.
Automatic code generation

To automatically generate Java classes to
wrap the basic device functionality, the
XML document is processed. As the
document already contains an object
oriented view on a device, it is fairly easy
to generate a basic Java interface, i.e. the
class along with the appropriate methods.
The basic device functionality is inherited
from some prepared Java classes (base
classes) with a general interface for I/O
modules. According to the device type, the
generated class implements the
appropriate interfaces, like for example
DigitalInput-, DigitalOutput-, AnalogInput-,
or AnalogOutputDevice.
The CAN resp. CANopen communication
details are hidden in the methods
themselves. Inside each method a SDO or
PDO with the corresponding values is
constructed and sent to CAN with the help
from the previously mentioned CANopen
provider. If a message is expected, the
corresponding message is read,
processed and returned with the specified
return type. The data type mapping
between Java and CANopen is done
automatically, whereby some complex
datatypes, like for example the PDO
mapping, are mapped to appropriate Java
classes (PDOMapping).
Figure 4 shows three generated Java
classes (AI11, AO11, DX11). The
CANopenProvider encapsulates the CAN
interface hardware and hides the protocol

specific communication details to the
CANopen devices.
The following source code excerpt shows
a typical automatically generated method
to read the device type. The name
DeviceType from the previously shown
XML document is extended by set resp.
get according to the given access type.

public int getDeviceType()
{
 int retval;
 byte[] data;

 // recv value at index 0x1000, sub 0x0
 data = recv(0x1000, 0);
 // convert resulting byte array to int
 retval = DataConverter.
 ByteArray2int(data));

 return retval;
}

As each device extends the base class
Device, the basic CAN/CANopen
functionality is implemented in the base
class, which offers some methods like for
example send and recv . The mapping
between datatypes is done by a helper
class, called DataConverter.
Another attractive feature is the generation
of automatic callback functionality. As
CANopen input devices can be
parameterized to send a message when
the value of the input lines have changed,
the wrapping Java class should also
support this feature. Therefore, the code
for asynchronous notification is also

Device
AI11

Device
DX11

Device
AO11

CAN

CAN
HW

Interface

Java
classApplication

=

AI11 AO11 DX11

CANopen
Provider

Figure 4: Java classes encapsulating
CANopen communication details

08-16

generated dynamically. An object which is
interested in a device only has to
subscribe to this specific device, and gets
notified if the state changes.
To use the generated Java class, an
application simply creates an instance of
the class and uses it like any other Java
class.

public class App
 implements DigitalInputListener
{
 DX11 dx11;

 public App()
 {
 // create instance
 dx11 = new Dx11();
 // get devicetype
 dx11.getDeviceType();
 // subscribe for events
 dx11.addDigitalInputListener(this);
 }

 // callback method
 public void inputChanged() {
 ...
 }
}

Besides the source code files, the system
generates some files for ant [11] to
automatically compile the sources and to
automatical ly generate the Java
documentation.
Once, a Java class is generated, it can be
reused in a variety of ways. It can easily
be used by other local Java classes or
used remotely for the purpose of
teleservice resp. t e l econ t ro l [4], by
integrating the classes into a common
middleware architecture like e.g. RMI
[14], JINI [15], or CORBA [16]. Like
presented in [2], this can also be done
automatically by introspection of the
generated Java c lasses, XML
representation of these classes and
automatic generation of middleware
components. This procedure can also be
appl ied to W i n d o w s COM [12]
applications, as these components
support some kind of introspection.
Therefore it is possible to combine the
generated Java classes for a device with
any COM object. Therefore the devices
can easily be interfaced with standard
Windows applications, like for example
Microsoft Excel.

As the XML representations are
programming language independent,
the generation of source code in other
programming languages is possible too.

Automatic web interface generation

A more static view on the devices can be
produced by an eXtensible Style Sheet
Language Transformation (XSLT). As
shown in figure 5 an XSLT processor [10]
is integrated into a web server and
delivers dynamically generated HTML
pages.
An XSLT processor takes an eXtensible
style sheet language document (XSL) to
extract information out of a given XML
document and produces some output like
for example an HTML page, shown in
figure 6.
A table oriented view on the devices
shows the methods, corresponding return
values, parameter types and names, and a

description. The underlying XML
document is the same as before. In
general, different views can be generated
on the basis of a single XML document
describing the interface of CANopen
devices.

Future work

In the future the current system will be
extended to support graphical plug and
play functionality. The goal is to visualize
the interface and connect different XML
documents, resp. objects and to generate
all the necessary code for interaction
automatically. This would result in a

Server

Web-
Server

XSLT
Processor

XML

XSL

Client

Web-Browser
request

response

Figure 5: Web server and XSLT processor

08-17

system, which can be used to build
complex applications with a visual builder
tool very quickly.
Regarding reality-driven visualization
based on Java, Java3D and XML [5], the
XML documents for visualization could be
combined with XML document describing
the functionality of devices.
As Java source code is generated
automatically it is also possible to
automatically generate components for
JINI, RMI and CORBA. The concept of the
automatic generation of middleware
components regarding standard Java and
COM objects is presented in [2].
The integration into a mobile agent system
[8], will be part of the future work. Mobile
agents have the possibility to discover
devices and can talk to devices with XML
as an intermediate layer.
The embedded system TINI [13] is a low
cost system supporting a Java Virtual
Machine and CAN. A CANopen
implementation for this system is currently
under development. Therefore, it will be
possible to use the generated Java control
software components in an embedded
environment.

If XML device representations are made
persistant and stored in a database, it is
possible to apply structural query and
retrieval capabilities, for example to search
for all available devices of a certain type
(e.g. Drives, I/O modules, etc.).

Summary

Dynamic discovery of devices, XML based
representation of interfaces and automatic
component generation allows a nearly
transparent integration of devices into a
general management and service
infrastructure. As high level interfaces are
generated, the integration into a higher
level language supports the use of modern
software concepts and architectures. The
XML based representations are easy to
process and suitable to generate different
target components.

Acknowledgement

This work is partially based upon work
within the research consortium VVL
funded by the Minister ium f�r
Wissenschaft, Forschung und Kunst of the
state of Baden-W�rttemberg through the
research initiative Virtuelle Hochschule.

[1] R.-D. Schimkat, G. Nusser and D.
B�hler: ÒScalability and Interoperability
in Service-Centric Architecture for the
WebÓ, Proc. of the Network based
Information Systems (NBIS 2000),
Greenwhich (GB), Nov. 2000.

[2] G. Nusser and R.-D. Schimkat: ÒRapid
Appl ica t ion Deve lopment o f
Middleware Components by Using
XMLÓ, Proc. of the 13th Intl. Workshop
on Rapid System Prototyping (RSP
2001), Monterey, CA (USA), Jun.
2001.

[3] G. Nusser and G. Gruhler: ÒDynamic
Device Management and Access
based on Jini and CANÓ, Proc. of the
7 th Intl. CAN Conf. (ICC 2000),
Amsterdam (Netherlands), Sep. 2000.

Figure 6: Dynamically generated HTML-
page for a digital I/O CANopen device

visualized in a standard browser.

08-18

[4] G. Nusser and G. Gruhler: ÒTeleservice
of CAN systems via the InternetÓ, Proc.
of the 6th Intl. CAN Conference (ICC
Ô99), Torino (Italy), Nov. 1999.

[5] G. Nusser, D. B�hler, G. Gruhler, and
W. K�chlin: ÒReality-driven Visualization
of Automation Systems via the Internet
based on Java and XMLÓ, Proc. of the
1st Intl. Conf. on Telematics Applications
(TA 2001), Weingarten (Germany), Jul.
2001.

[6] CAN in Automation (CiA), DS-401 V2.0,
ÒCANopen Device Profile for Generic
I/O modulesÓ, CiA draft standard 401,
Dec. 1999, CiA.

[7] Object Management Group (OMG),
http://www.omg.org/. O M G XML
M e t a d a t a I n te rchange (XMI)
Specification

[8] R.-D. Schimkat, M. Friedrich, W.
K�chlin, ÒDeploying distributed state
information in mobile agents systemsÓ,
Proc. of the 9t h Intl. Conference on
Cooperative Information Systems
(CoopIS 2001), volume 2172, pages 80-
94, Trento, Italy, September 2001.
Springer LCNS.

[9] Siemens AG, SICOMP homepage,
http://www1.ad.siemens.de/sicomp

[10] M . K a y , SAXON homepage,
http://users.iclway.co.uk/mhkay/saxon/

[11] The Apache Jakarta Project Ant,
http://jakarta.apache.org/ant/

[12] Microsoft Corp., http://www.microsoft-
.com/com. Homepage for Microsoft
COM: COM, DCOM, COM+
technologies.

[13] TINI homepage, http://www.ibutton-
.com/TINI/

[14] Sun Microsystems, http://java.sun-
.com/rmi/. Java Remote Method
Invocation (RMI).

[15] Sun Microsystems, http://www.sun-
.com/jini/. JINI Network Technology.

[16] Object Management Group (OMG),
http://www.omg.org/. The Common
Object Request Broker: Architecture
and Specification, Aug. 1997, Rev. 2.1.

[17] World Wide Web Consortium (W3C),
http://www.w3.org/TR/REC-xml.
Extensible Markup Language (XML)
1.0.

Dipl.-Inform. Gerd Nusser
University of Applied Sciences Reutlingen
Institute for Applied Research (IFA)
Alteburgstr. 150
72762 Reutlingen
Phone: +49 7121 271-625
Fax: +49 7121 25713
gerd.nusser@fh-reutlingen.de

Prof. Dr-Ing. Gerhard Gruhler
Steinbeis Transfer-Center Automation
(STA)
Alteburgstr. 150
72762 Reutlingen
Phone: +49 7121 271-331
Fax: +49 7121 25713
gerhard.gruhler@fh-reutlingen.de
http://www.fh-reutlingen.de/~www-sta

Dipl.-Inform. Gerd Nusser,
Prof. Dr. sc. techn. Wolfgang K�chlin
University of T�bingen
Wilhelm-Schickard-Institute (WSI)
Sand 13
72076 T�bingen
Phone: +49 7071 29-77047
Fax: +49 7071 29-5060
nusser@informatik.uni-tuebingen.de
kuechlin@informatik.uni-tuebingen.de
http://www-sr.informatik.uni-tuebingen.de

