Customizing CANopen for Use in an Automated
Laboratory Instrument

M. B. Simmonds, Quantum Design Inc. and Olaf Pfeiffer, Embedded Systems Academy

We describe an optimization of the CAN physical layer as well as the CANopen
application layer for use as an internal bus in a line of modularized laboratory
instruments. Modifications and extensions are described for the pin assignments,
Default Connection Set, Emergency Object, and the Device Profile to better

support the requirements of our hardware.

We also present a method that

facilitates updating a module’s firmware via CANopen.

Background
Our products are relatively complex
cryogenic instruments wused by

physicists and chemists to perform
research in material science. These
instruments contain several GPIB
(IEEE-488) modules that are controlled
by the operator from an application
running on a PC. The GPIB was
chosen primarily because it was widely
used by the scientific/engineering
community at that time and enjoyed
substantial hardware and software
support. It also enabled users to
integrate their own 3™-party instruments
into the measurement system.

As we begin looking toward a more
modular and modern architectures for
our products, however, the
shortcomings of the GPIB are becoming
more evident. The cost, complexity, and
cable size for this 8-bit parallel bus
becomes very unattractive when we
contemplate using it with a larger
number of modules. Even the stacked
26-pin ribbon connectors become a
major size problem.

Furthermore, the protocols for required
for exchanging short packets with an
array of modules is very time-consuming
and negates all the advantages one
would expect from a parallel bus: we
see an effective bit-rate for actual data
of only about 200Kb in our systems.

10-19

For these reasons, we began searching
for an alternative among the various
serial busses that have become popular
since our original decision was made
almost two decades ago. We looked
carefully at physical layers based on
RS485, FireWire, EtherNet, USB, and

CAN. We chose CAN because of
several perceived benefits: non-critical
cables and connector impedance

requirements, good hardware support at
the chip level, excellent bus arbitration
and error checking, and adequate
bandwidth. While we were initially
impressed by the promise of very high
bit-rates available in other busses, a
closer evaluation showed that for our
system we would be better off with the
shorter frames and inherent collision-
avoidance provided by CAN. Also, the
high bit rates of these busses would limit
our cable lengths or turn impedance
matching into a serious design concern.

Having chosen CAN for the lower-level
protocols, we needed to select (or
invent) an “application layer” for our
system. Several options were available,
all based upon CAN: DeviceNet, CAN
Kingdom, SDS, and CANopen. Here
the decision became more a matter of
taste since all of these approaches
appeared to offer a reasonable set of
features. The most important service
we required (and did not want to re-

invent) was a confirmed exchange of
messages longer than 8 bytes: a
Service Data Object in the terminology
of CANopen. DeviceNet and CANopen
appeared to be the most widely used
and best supported of these options,
with DeviceNet enjoying a much greater
presence in the United States. But
since it has never been our intention to
market fieldbus devices for use except
as internal components in our laboratory
instruments, this bias toward DeviceNet
was not a particular concern for us.
This higher baud rate and more efficient
block transfers offered by CANopen
were of greater importance.

Lab Instrumentation Requirements vs.
CAN Physical Layer Specification

The modules comprising our instrument
require several electrical services in
addition to CAN communication. We
need 24V power, 50/60Hz line
synchronization, hardware reset, and a
low-jitter hardware synch signal. We
also want to provide separate paths for
returning unbalanced supply currents,
for establishing system ground
reference, and for dumping shield
currents. Table 1 shows how we
adapted CAN’s 9-pin D-sub connector to
fill all of these requirements. Note that
it is possible to connect a standard 3™
party CAN module into our network by
using a cable with wires on only pins 2,
3, 7, and 9. In this case, the 24V supply

would only provide power for the
galvanically isolated CAN interface of
the module. We are not using galvanic
isolation of our CAN interfaces, so the
+24V supplies all power requirements in
our modules.

The 50/60Hz sync line allows us to
make very stable measurements in the
presence of substantial line interference.
Non-synchronous measurements are
prone to exhibit low-frequency beats as
their phase slowly slips with respect to
the power lines.

The SYNC-H/RS and SYNC-L lines
allow us to distribute a very accurate
and stable timing signal throughout the
system. This differential signal can
serve as a clock, sync, or trigger for
various modules depending on their
requirements. The sub-microsecond
latency and jitter available through this
SYNC mechanism is far better than we
could have obtained through the CAN
bus itself. Commands sent over the
CAN interface can be used to configure
or arm modules so that they can make
use of this timing signal as desired.

We will use CAN transceiver chips to
control these SYNC lines, so in normal
operation they will have the same
electrical characteristics as the CAN
bus. However, pulling Sync-H/RS to
system ground level for a few

Pin# | CAN Standard Pinout QD-CAN Pinout

1 Reserved -24VDC Supply

6 Optional Ground System Ground

2 CAN-L Line CAN-L Line

7 CAN-H Line CAN-H Line

3 CAN Ground 24VDC Return

8 Reserved SYNC-H/RS Line

4 Reserved SYNC-L Line

9 CAN_V+ Optional Supply +24VDC Supply

5 CAN_SHLD Optional Line-Sync (50/60 Hz)

Table 1: Comparison of pin assignments on D-Sub Connector

microseconds will initiate a hardware
reset of all modules connected to the
bus.

Lab Instrumentation Requirements vs.
CANopen Specification

As already mentioned, we were
selecting a serial bus for internal use in
our instrument lines, therefore slavish
adherence to an official specification
was not required. Nevertheless, we
wished to avoid “reinventing the wheel”
to as great an extent as possible. Our
earlier designs had also suffered from
incompletely engineered and under-
documented interfaces between the felt
that we could reduce such problems by
following an official standard that many
people had already spent considerable
time designing.

Also, we want to maintain the ability to
components of our instruments. It was
run 3™ party CANopen modules on our
instrument’s bus. Therefore, any
liberties we choose to take with the DS-
301 specification must be compatible
with this requirement. The converse is
not true, however: we do not care that
our own instruments do not function
correctly in someone else’s network or if
our instruments fail to pass CIA
conformance testing.

CANopen fieldbus system and the bus
required for our instruments. These
differences are summarized in Figure 2.
As one can see, the developers of
CANopen were attempting to solve a
very different set of problems than we
are. Nevertheless, the CANopen
application layer comes fairly close to
providing our company with the
necessary and sufficient services we
require.

Our modules are quite application
specific and can be pre-configured to
perform their assigned functions in our
instruments. There is no need to have
dynamic assignment of PDO data nor is
there even a need to have configurable
COB-IDs for the PDOs. In fact it is
desirable to have all these parameters
“hard-wired” into the firmware so that
our modules know everything about
each other at power-on. Because of this
determinism, no LMT and DBT
capabilities are required on our bus.

Optimizing the Default Connection Set

Since we are adopting a fully static
configuration of PDOs, the “default
connection set” for our network must
provide maximum capability and make it
possible for modules to send as much
process data as they may need to. The
CANopen specification only allows for 4

Typical CANopen Fieldbus

Laboratory Instrumentation Bus

Every implementation quite different

Most instruments basically identical

Large number of simple modules

A few complex modules

Several interchangeable vendors

Vendor makes, uses own modules

Only a few generic module types

Unique, application-specific modules

Substantial module configuration req’d

Modules wake up knowing their role

Modules exchange process data

Users’ computer collects process data

Minimal SDO traffic when “operational”

Commands continually sent via SDO

Computer used for config & diagnostics

User runs instrument through computer

Figure 2. Differences between typical CANopen System and Lab Instrument bus

There is a substantial difference
between the “flavor” of a typical

10-21

TxPDOs and 4 RxPDOs per node, a
number that we felt was insufficient for

our system requirements. On the other
hand, the number of nodes permitted by
the CANopen specification was far in
excess of what would be needed for our
instruments.

We have therefore decided to make a
tradeoff: limit the nodes to 31 in order to
expand the number of default TxPDOs
available on each node. Since our
modules will serve primarily to control
the instrument and report back process
data, it is the TxPDOs, as opposed to
the RxPDOs that are in short supply.
We have therefore devised a strategy
for “stealing” COB-IDs of the default
PDOs we are excluding from our
instrument network (32-127).

The technique is to allow each node in
the range 1-31 to have three additional
images in the range of 32-127. Thus,
node #1 also inherits the default PDOs
for nodes #33, #65, and #97. The COB-
IDs for both RxPDOs and TxPDOs in

default SDOs for these unused nodes.
We thus have a total of 34 separate
Process Data Objects available on each
module for reporting data back to the
user’'s computer. Note that we have
retained the four (4) RxPDOs provided
by the CANopen standard as part of our
own default connection set. The order
for assigning COB-IDs to these 34
PDOs is shown in Figure 3, and was
chosen so that they would be used in
order of decreasing priority.

Since we are not allowing the COB-IDs
to be changed, the values listed in
Figure 3 can be relied upon: the control
computer and the other nodes
automatically know a PDO’s source
node and number from its COB-ID. And
since dynamic data mapping is not
allowed in our network, the type and
meaning of the data payload is also
immediately known throughout the
network.

Std. CANopen QD-CANopen
Maximum nodes in system 127 31
Default TxPDOs / node 4 34
Default RxPDOs / node 4 4
Default SDOs / node 1 1
Baud rates 10-1000Kb 500, 1000Kb
Dynamic PDO Mapping Optional No
Variable COB-IDs Optional No
Remote Response Optional No
29-Bit Identifiers Optional No
LMT Services Optional No
SDO Block Transfers Optional Mandatory
Error Control Protocol Guarding or Heartbeat Heartbeat
+24V/ System Power on Bus No Yes
Sync/Reset Signals on Bus No Yes
Line-sync Signal on Bus No Yes
Compatible with DS-301 Net Yes No
Compatible with QD-CANopen Yes Yes

Figure 3. Comparison of standard CANopen and QD-CANopen

this range are taken for use as TxPDOs
for our modules. We also have
available to us the COB-IDs of the

10-22

Although we are not allowing the COB-
IDs to be changed, we do allow bit #31
in the dictionary entry for PDO

communication parameter/COB-ID to be
set or cleared. According to DS-301,
setting of this bit invalidates the PDO
and may prove useful in managing bus
bandwidth with so many default
TxPDOs potentially defined.

Figure 4 summarizes the differences we
have described so far between the

CANopen standard and our own

adaptation of it.
QD Default Connections | Assigned
TPDO COB-ID
1 TxPDO #1 on N 0x180 + N
2 TxPDO #1on N+ 32 | Ox1A0 + N
3 TxPDO #1on N +64 | Ox1CO + N
4 TxPDO#1onN+96 | Ox1EQ + N
5 RxPDO #1 on N + 32 | 0x220 + N
6 RxPDO #1 on N + 64 | 0x240 + N
7 RxPDO #1 on N + 96 | 0x260 + N
8 TxPDO #2 on N 0x280 + N
9 TxPDO #2 on N + 32 | Ox2A0 + N
10 TxPDO #2on N +64 | 0x2C0O + N
11 TxPDO #2on N+ 96 | Ox2EQ0 + N
12 RxPDO#2 on N + 32 | 0x320 + N
13 RxPDO#2 on N + 64 | 0x340 + N
29 TxSDO on N + 32 0x5A0 + N
30 TxSDO on N + 64 0x5C0 + N
31 TxSDO on N + 96 Ox5EQ0 + N
32 RxSDO on N + 32 0x620 + N
33 RxSDO on N + 64 0x640 + N
34 RxSDO on N + 96 0x660 + N

Figure 4: QD Connection Set TxPDOs on
Node N (0<N<32)

Enhancing the Role of the CANopen
Emergency Object

Specification DS301 appears to leave
quite a bit of flexibility in the use of the
Emergency Object for device-specific
purposes. There are several blocks of
Error Codes that have been provided to
facilitate this: FOxxh is for “Additional
Functions”, FFxxh is covers “Device
Specific” errors, 50xxh covers “Device
Hardware” errors, and the entire “6xxxh”
block is available for Device Software
errors.

10-23

We are extending the definition of
“‘emergency” to include any significant
events or state changes that might
occur in a module, but whose actual
occurrence would not otherwise be
known without performing continuous
polling of the module. Having to do
such polling is a substantial
programming burden and adds
unnecessarily to the loading on the CAN
bus. Also, such polling cannot be done
by another node on the network unless
it has Client SDO capability: a service
not supported by some commercial
CANopen slave stacks.

We propose to use the block of codes
from FOOOh to FFFFh indicate that there
has been a change-of-state in one of the
modules subsystems. One bit (of the
available 12) is assigned to each
subsystem that can have externally
significant state information. Whenever
there is an event or state change in one
of the module’s subsystems, the
corresponding bit-flag in the Error Code
is set. We provide an entry in the
Object Dictionary for the purpose of
clearing the flag-bits of this Error Code:
the “Event Reset Register”. Setting a bit
of this object clears the corresponding
flag of the Error Code. According to the
Emergency Object specification
described in DS301, the EMCY
telegram is sent when (and only when)
the Error Code changes. Thus clearing
any bits in the Error Code will cause the
EMCY telegram to be sent again. But
rather than sending an Error Code of
0x0000 upon resetting one of these bits
(as mentioned in the standard), we
propose to send the new Fxxxh pattern.
Clearing a bit in the Fxxxh group
indicates that the module has been re-
armed to send an EMCY telegram when
another state change occurs on that
subsystem. Otherwise no further state
changes will be announced. We will
institute a suitable EMCY ‘holdoff time”
in order to avoid consuming excessive

bandwidth through this module-state
reporting scheme.

The five (5) bytes of the “Manufacturer
Specific Error Field” provide a set of
status flags and mode bit-fields. Up to
40 bits of state/mode information can be
communicated with this scheme.

There has been considerable discussion
about “borrowing” the official CANopen
emergency protocol for the posting of
state-change information. The
alternative would be to implement the
above scheme using PDOs. We have
selected to use the emergency protocol
for several reasons: it gives these
messages a higher priority than all
normal PDOs, it allows state information
to be presented by a module even when
that module is in the Pre-operational or
Stopped mode, and it conserves COB-
IDs. In the case of our particular
CANopen master API, emergency
messages have their own dedicated
queue and callback function. This
should make them somewhat less likely
to become lost.

Providing for Application Firmware
Update Via CANopen

We need the capability to update a
device’'s firmware by loading new
executable code directly through the
devices own CAN interface. This
requirement creates an interesting
challenge for the firmware architect
since the CANopen stack is an integral
part of the application firmware and
must be compiled together with it. We
have decided that the most reliable and
robust method for implementing this
capability is to have a “CANopen
Loader” permanently available on the
module. This minimal operating system
only needs to provide a few services. It
must be able to implement an SDO-
Server download, it must be able to
verify the checksum of the program it
has downloaded, and it must be able to

10-24

transfer command to the downloaded
program. Once the new downloaded
program initializes and begins
execution; it completely replaces the
loader and provides the code to
implement a CANopen interface for any
further communications.

We have two separate banks of Flash
memory available on each module. One
bank contains the CAN loader firmware
in a write-protected area segment. The
other bank is available for storing
downloaded application code. When
the device is first powered-up or after a
hardware reset, program execution
transfers to the loader program. The
loader can verify that the currently
stored application has the correct
checksum as part of its initialization
process.

When the loader starts, the node is in a
special state not described within the
CANopen specification. Entry into this
mode is signaled by a Bootup Message
with a node number that is offset from
the actual node by a value of 0x20
(0x720+NodelD). This would normally
not be a valid Bootup Message within
our restricted pre-defined connection set
where we only allow a range of
NodelD’s (1-31), so it can be interpreted
as an entry into the “System State”. It
can receive data and report status via
SDO, but it has no access to the
application’s Object Dictionary and
cannot process any PDOs. If the
checksum of the current application
firmware is determined to be correct by
the system code, the node can be sent
into its normal “Preoperational” mode by
sending the usual network command.
Alternatively, new firmware can be
downloaded by use of SDO writes.
After the new firmware has been loaded,
execution can be transferred over to it
by bank-switching between the two
memory blocks. After initialization, the
“real” application sends a standard
Bootup telegram and enters its

Preoperational mode. By using bank
switching we avoid having to re-map the
interrupt vector table: a new table is
automatically loaded in the operation.

Creating a Manufacturer’s Device Profile

Our modules are not intended for use on
CANopen networks apart from our own
internal instrument bus. Therefore we
are free to create our own device profile
with a common set of dictionary entries
in the range 0x6000 - Ox9FFF.
According to the specification, non-
standard device profiles should be
indicated by a Device Profile Number of
zero in the Device Type entry (0x1000)
of the devices Communication Profile.
The 16 high bits of this entry are
available to specify “Additional
Information”. We will place a
characteristic version number in this
location so that our system software can
distinguish between different revisions
of our device profile.

Our device profile will provide a device-
independent structure for accessing
common information such as module
temperatures, module voltages,
firmware checksums, error registers,
and diagnostic test results. SDO writes
to a standardized dictionary entry will be
used to command various levels of
diagnostic tests.

Conclusions

Completely standardized CANopen
would come remarkably close to filling
the needs for our modularized
instrumentation. We will use PDOs to
report measurement results back to the
master node in the PC. SDOs will be
used to set or read parameters as well
as to issue confirmed commands to the
nodes. Our modification of the Default
Connection Set, our expanded scope of
the Emergency Object, our provision for
CAN-Based firmware updates, and our
customization of the Device Profile go a
long way toward making this high-level
protocol a perfect fit to our
requirements.

Quantum Design

11578 Sorrento Valley Road
San Diego, CA 92121
www.qdusa.com

Michael B. Simmonds
P: (760) 926-8673
info@qdusa.com

Embedded Systems Academy
50 Airport Parkway

San Jose, CA 95110
www.esacademy.com

Olaf Pfeiffer
P: (408) 910-7899
info@esacademy.com

