
05-08

A Novel Distributed Add-on Concept to Detect and Recover
from Bus Failures in Controller Area Network using REDCAN

H�kan Sivencrona, Chalmers University of Technology
G�ran Nilsson, Sauer-Danfoss
Fredrik Bj�rn, Sauer-Danfoss

Abstract

In this paper a novel wire concept is presented that increases the dependability of a distributed
communication system in a major way. It tolerates and can still provide full functionality in
presence of one single fault of several types, such as short/open circuit, nodes that fail
uncontrolled, so-called babbling idiots and other bus failures.
The concept utilizes a bus structure where the wire is divided into a plurality of sections. These
sections are then interconnected to form an annular unit, ring, by means of a special module,
REDCAN module. Each module comprises of a relay unit and logic, by which these can be
coordinated with other circuits with the same functionality along the wire to define the left and
right end of the wire to form a real broadcast bus. This is done by the individual circuit that
decides to terminate the wire, one or two ends, or not at all Ð a transparent mode.
The paper presents two fault recovery techniques. The first is currently implemented in a CAN
kingdom system, where the master controls the set-up of the broadcast bus. However, an
algorithm that can be utilized by a fully distributed system e.g. CAN, is presented. The concept
is furthermore intended to be protocol independent, and therefore the system should be useful
for many existing embedded communication systems.

1 Introduction

The communication between embedded
computers that controls applications with high
requirements must be robust and reliable. To
reach this state, dependability-increasing
means is usually implemented in the system
at several layers/levels in the system,
including the physical level. These
techniques include hardware and software
and architecture so that the system can
tolerate, handle and detect faults, errors and
failures [1].
The faults in a communication system
manifests in different ways but could be
categorized as hardware and software faults.
Parts of the hardware are the chosen
transmission media, driver circuits and
redundancy. This together with the
communication protocol as well as topology
affects the possibility to meet set
requirements [2].

All electric buses are for example sensitive
towards open and short circuits, typical

hardware faults. A short circuit can jeopardize
the whole communication and seriously
damage connected computer nodes. An open
circuit on the other hand can degrade the
system and cause the system to loose
functionality in some parts of the system.
A software fault could be that erroneous data
in a node could results in uncontrollably
sending in either at the wrong time or as in a
CAN system block other by continuously
sending and thus ruin otherÕs communication
- a potential single point of failure.

A broadcast bus is hard to make fail silent,
but on the other hand, topologies that rely on
other protocols and methods are not always a
better choice. Optical point-to-point
communication, for example, has other fault
models and drawbacks.
Given all pros and cons, the broadcast bus is
still common and believed to be a very good
solution for embedded control systems, due
to for example low price, non-complex
structure, etc.

05-09

Many concepts have emerged that aim to
increase the reliability of the broadcast bus.
Both hardware and software mechanisms
have been implemented with different
objectives and result.
A common strategy is the use of redundant
channels, buses where the double bus makes
it possible to tolerate single faults, both
transient and permanent on one bus.
An extra step is the use of so-called bus-
guardians. These only allow the guarded
node to send on its own scheduled time thus
protecting protects against timing faults, e.g.
so-called babbling idiots [3]. This technique
works well in a synchronous system. In an
event triggered systems it is much harder to
achieve a temporal firewall.
In the value domain many more
mechanisms/features are known that can be
implemented on different levels. These
methods include features such as checksums
and watchdogs as well as membership
protocols that are used by other entities in the
system to prevent the faulty node from
sending incorrect data.

The problem often comes back to, if the
nodes in the cluster can identify the faulty
node in the system, which is not easy on a
broadcast bus where the signal could be sent
by anyone. It requires functions to exclude
the faulty from the rest.
One strategy to do this is if the bus
architecture could be re-designed run-time,
with respect to signal path where the faulty
node becomes disconnected.
 It is very important that all nodes agree on
such decision and that all functioning nodes
avoid partitioning of the system.
A solution to these problems is proposed in
this article.

REDCAN is a novel protocol and hardware
that enables the coupling of several bus
sections into a ÒbroadcastÓ bus, i.e. all
connected nodes see the same signal without
delay and are connected electrically.
The papers is organized as follows; section
two describes the functionality and hardware
that has to be implemented in the
communication controller to take care of the

coupling of the sections to a broadcast bus.
Section three describes the existing
implementation and its functions, start
up/restart in presence of faults as well as fault
detection and establishing of a new signal
path when fault occurs. Section four
describes a distributed algorithm and the
changes that must e implemented to set up
the system utilizing the same REDCAN
module, a fully distributed solution for a CAN
system [4] and the new situation connected to
such an architecture. Section six presents
some thoughts concerning future research in
order to improve the performance. Section
number seven concludes the paper with
discussion and conclusions.

2 The Add-on concept

The Add-on concept comes from the
possibility to modify an existing broadcast bus
system. The modification is done through
dividing the bus into a feasible number of
sections and then remove them from the
drivers. The loose wires are then connected
to a special module, the Redundant Can
Module, RCM. The RCM is implemented in
the node as a transparent interface between
either the communication drivers or the bus
or as a modified communication controller,
CC, see figure 1.

CAN Communication
Controller

REDCAN MODULE

BUS BUS

Application Processor

driver

Figure 1 The REDCAN module in a CAN
hierarchy.

05-10

ECU
CC1

ECU
CC3

E
C

U

C
C

4 E
C

U

C
C

2

section 1

section 2section 3

section 4

Figure 2 The bus structure with bus sections

The sections seen in figure 2, can host more
than the two end nodes, but these
communication controllers are not equipped
with any RCM.
The RCMs shall define the left and right end
termination of the bus wire. Thus, the
individual RCM must choose to terminate
left/right or not at all, a transparent mode to
open up a signal path that in a fault free
environment starts and ends in the same
node. The transparent mode is a node where
the termination resistance is disabled for the
moment.
The application processor controls the
functionality through combining two bits in the
module.
The most critical task of the system
configuration sequence is to manage the
RCMs, and make them set their relays
correctly. Three scenarios are handled,
namely: during normal start-up or start-up in
presence of faults as well as after detected
errors.
To be able to know what decision to make,
during start up or when a fault occurs, special
knowledge is required. Every host must have
information about transmit- and receive-times
for the throughput of messages
acknowledgement times of sent messages in
the system. This is required to be able to
activate the RCM mechanism correctly.
The status of the bus in run time must be
checked by either heartbeat messages or by
usage of information extracted from normal
message frames.
The features of the system allow that faults
can be detected in several ways. It can detect

that a message that was expected never
arrived, timing, omission and crash faults. As
well as nodes that send incorrect data.

3 Centralized implementation

CANkingdom [5] is a special high-level
protocol utilizing the CAN protocol. It has one
master, the King, and the slaves that are
called cities, controlled by the King, see figure
3. This hierarchy suits the centralized
implementation very well. But some extra
information is needed. The system needs the
knowledge of the total number of RCMs to be
able to decide about consistency in the
system, e.g. no partitioning.

Figure 3 A CANkingdom architecture

The existing implementation utilizes a
heartbeat protocol for detection. One node is
appointed the master and this node transmits
heartbeat messages with the interval T1. All
the other nodes must respond to this within
time T1. If the master does not work, another
node will take care of the responsibility of
being the master.
The master is designed so that if a node fails
to respond one request, the master will
decide this node faulty, e.g. if the node does
not respond within 2*T1. When the master
has detected the fault it ceases to send its
heartbeats messages.
The slave nodes tolerate missing of one
heart-beat message, that is, the slave node

0

13

2

05-11

will only act if it hasnÕt received any heart-
beat during the time 2*T1.
The longest time for a system like this from
fault occurrence to that the last node has
detected the fault is, in the case of the master
notifies some but not all nodes. 2*T1 after the
fault arise the master cease to transmit the
heartbeats. Another 2*T1 the nodes that did
answer the last heartbeat will realize the
occurrence of a fault. The longest time for
fault detection is thus 4*T1.
In current implementation this time, T1 is 30
ms.
The fault detection mechanism can be
activated by several reasons, for example at
booting the system, in presence of a fault or
to check if the fault was transient or
permanent.
There are currently two algorithms for start
up, fault detection and fault recovery for
different high-level protocol. One method
utilizes on randomly testing right/left while the
implemented method utilizes the master
(CANkingdom) in the system to make a
sequential scan of each node, first right and
then left. This method requires that all nodes
are starting up approximately simultaneously.
When the sequence starts all nodes, except
the master, connect left, see figure 4.

Figure 4. Connected left, disconnected right

These slave nodes then wait for a master
message. When this is received a flag is set
in the slave node that left connection is
functioning.
The node then enters the transparent mode;
see figure 5, and then waits for the master.
The slave node then also receives a
message from the master, stating that the
right connection was okay.

R1 R3 R2

Communication
Controller Fi

gure 5. Circuit in transparent mode, default mode

After a time T2, the slave node will take a
decision following table 1.

Left OK Right OK Decision
True True Stay in transparent m
True False Connect left, fault det
False False Connect right, await m

Table 1 Decision table for slave node

If the node was allowed to turn right the fault
detection is ready whenever the master
contacts the node.
The master starts up the fault detection
sequence by connecting right. It polls the first
node to the right. This knowledge is defined
in the system design. If this turns out okay the
slave node will set transparent mode and the
master may connect to next node. If this is
also going well the master will tell the first
node that the nodes right neighbor is okay as
well. This continues until a node does not
respond. If the node can connect to the last
node the master will test left connection. If
that is true the fault detection is ready and the
master hold both terminations.
If the master cannot connect with all nodes
within T2 the master will turn left and make
the sequential testing in the same way as
before, just opposite direction.
If not all nodes have been reached within
another T2 from the time the master
connected left and the nodes that did not
respond are assumed disconnected.
T2 must be chosen so that the master can
reach all nodes during this time. Parameters
that affect this are for example the baud rate
and the total number of nodes. It is important
to realize that all nodes do not start their

R1 R3 R2

Communication
Controller

05-12

clocks at the same time. This depends on the
detection of fault at different times.
In the existing implementation, a CAN
system, T2 is chosen to be 500 ms, the
number of nodes have varied between 3 and
10. No tests have been done so far to
optimize T1 and T2. The time for recovery is
estimated to be at maximum 1 s.

4 Distributed algorithm

The centralized CAN kingdom algorithm is
very specific and suited for that protocol and
thus not optimized for other protocols. A fully
distributed system is believed to have higher
performance and can be more resilient
towards faults in the system.
A node can enter four Modes; ScanÊÊÊ = The
node randomly tests to left and right to see if
it can connect to a neighbor, Connect = The
node has contact to one neighbor and tries to
connect to the other, ConnectScan = The
node have contact with both neighbors but is
not yet allowed to go into transparent mode
and finally Transparent = The node have
contact with both neighbors and is connected
transparent.
The scan mode is a random function that will
either try to transmit set-up messages left or
right with information such as identity and
other information that it necessary to
establish a system. If no connection is
established it will wait for a random time. This
time is multiplied with the time it takes for one
frame to be received/transmitted. The time
varies for example between 4 and 8 frame
times, and then the direction (mode) is
changed. During this time the node listens
through the whole time but one frame time
when it transmits its data. The node has
furthermore a unique node number that can
be the same as used by the host.
A message to a Neighbor node includes four
parameters, O = Own node number, N =
Neighbor node number (only if known), S = if
Own Scan Mode is on, T = if allow neighbor
to enter transparent mode/Neighbor allows us
to enter transparent mode. There is
furthermore another message type that asks
for a specific node, D? = Asks if nearest
neighbor on the not connected side is
present, O? = How this message is

understood at the receiver. A node, which is
in transparent mode, can respond to an N?
message with O! = Node number O is
present
Upon start up of the nodes the random scan
is activated, see figure 7.

Figure 6 All nodes in scan mode, A to E

When any node (A) hears a message it is
allowed to answer it answers, and depending
on the current mode it acts accordingly.
When the connect ion has been
acknowledged both nodes (A and B) will act
either by entering the scan mode again or
enter a transparent mode. This depends if
they have established a connection in
opposite direction before (E, C). The node
that transmits first (B) and also has a known
connector to the opposite direction may enter
the transparent mode, if the node is not the
same, as it already knew. The node (B) must
therefore first send one message in the
opposite direction and ask for the node it
negotiated with (B) to protect against a non-
terminated system.
When the node (A) has entered scan mode
again it tries to connect to another node (C) in
the old direction (over B). If no response the
node can time-out and consider the system in
a degraded mode. Or the system is
established, see figure 8. For pseudo code,
see table 2.

Figure 7 Request send to see if transparent mode
is allowed

05-13

In Scan mode, Connect mode and
ConnectScan mode the node have a
Direction, (Dir), LeftÊ = The node is connected
to the left or Right = The node is connected to
the right.
In Scan Mode the node can have two states,
NoResponseYetÊ=ÊWaiting for message from
neighbor and WaitForSecondResponse
=ÊWaiting for message from neighbor.
In Connect Mode the node can have two
states, NoResponseYetÊ=ÊWaiting for
m e s s a g e f r o m n e i g h b o r a n d
WaitForSecondResponse =ÊWaiting for
message from neighbor.
In ConnectScanMode the node can have two
states, NoResponseYetÊ=ÊWaiting for
m e s s a g e f r o m n e i g h b o r a n d
WaitForSecondResponse = Waiting for
message from neighbor.

var
ÊÊ ReadyÊÊÊÊÊÊÊÊÊÊ := False;
ÊÊ OKÊÊÊÊÊÊÊÊÊÊÊÊÊÊ := False;
ÊÊ ModeÊÊÊÊÊÊÊÊÊÊÊÊ := Scan;
ÊÊ ScanStateÊÊÊÊÊÊÊ := NoResponseYet;
ÊÊ ConnectStateÊÊÊÊ := NoResponseYet;
ÊÊ ConnectScanState := NoResponseYet;
ÊÊ DirÊÊÊÊÊÊÊÊÊÊÊÊÊ := Random(Left,Right);
while not Ready do
begin
ÊÊ case Mode of
ÊÊÊÊÊ Scan :
ÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊ case ScanState of
ÊÊÊÊÊÊÊÊÊÊÊ NoResponseYet :
ÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ if not Rx then
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ // If Time out change direction
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ if RandomTimeOut then
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ShiftDirection(Dir);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O S); // Own Addr and Scan mode
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ else // Message from neighbor
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ case Rx of
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NÊ : begin // Neighbor addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N S T);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ScanState := WaitForSecondResponse;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NO : beginÊÊÊ // Neighbor and Own addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N S T);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode := Connect;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ShiftDirection(Dir);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NS : begin // Neighbor addr and Scan mode
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N S)
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ScanState := WaitForSecondResponse;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NOS: beginÊÊÊÊ // Neighbor and Own addr and Scan mode
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N S);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode := Connect;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ShiftDirection(Dir);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end; // case Rx
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊ end; // ScanState NoResponseYet;
ÊÊÊÊÊÊÊÊÊÊÊ WaitForSecondResponse :
ÊÊÊÊÊÊÊÊÊÊÊ begin

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ case Rx of
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NO : begin // Neighbor and Own addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode := Connect;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ShiftDirection(Dir);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end; // case Rx
ÊÊÊÊÊÊÊÊÊÊÊ end; // ScanState WaitForSecondResponse
ÊÊÊÊÊÊÊÊ end; // case ScanState
ÊÊÊÊÊ end; // State Scan
ÊÊÊÊÊ Connect:
ÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊ case ConnectState of
ÊÊÊÊÊÊÊÊÊÊÊ NoResponseYet :
ÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ if not Rx then
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O); // Own Addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ else
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ case Rx of
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NÊ : begin // Neighbor addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N T);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ConnectState := WaitForSecondResponse;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NS : begin // Neighbor addr and Scan mode
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ConnectState := WaitForSecondResponse;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NO : beginÊÊÊ // Neighbor and Own addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode := ConnectScan;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NOT,ÊÊÊÊÊÊÊÊÊ // Neighbor and Own Addr and
Transparent OK
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NOST:begin // Neighbor and Own Addr and Scan mode
and Transparent OK
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode = Transparent;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ SetTransparentNode();
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end; // case Rx
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end; // if Rx
ÊÊÊÊÊÊÊÊÊÊÊ end; // ConnectState NoResponseYet
ÊÊÊÊÊÊÊÊÊÊÊ WaitForSecondResponse :
ÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ case Rx of
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NO : begin // Neighbor and Own addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode := ConnectScan;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NOST:begin // Neighbor and Own Addr and Scan mode and
Transparent OK
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode = Transparent;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ SetTransparentNode();
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end; // case Rx
ÊÊÊÊÊÊÊÊÊÊÊ end; // ConnectState WaitForSecondResponse
ÊÊÊÊÊÊÊÊ end; // case ConnectState
ÊÊÊÊÊ end; // Mode Connect
ÊÊÊÊÊ ConnectScan :
ÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊ case ConnectScanState of
ÊÊÊÊÊÊÊÊÊÊÊ NoResponseYet :
ÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ if not Rx then
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ // If Time out change direction
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ if RandomTimeOut then
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ShiftDirection(Dir);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ // Ask for the nearest node on the other (not Dir) side
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(D?)
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ // And ask for nearest not transparent neighbor
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ else // Message from neighbor
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ case Rx of
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NÊÊ :begin // Neighbor addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N T);
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ConnectScanState := WaitForSecondResponse;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ NOT :begin // Neighbor and Own addr and Transparent
OK
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Tx(O N) ;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Mode = Transparent;

05-14

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ SetTransparentNode();
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ D!Ê :beginÊÊÊ // Response from nearest node on the
other (not Dir) side
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ Ready := True;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ OK := True;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end; // case Rx
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊÊÊÊÊÊÊ end; // ScanState NoResponseYet;
ÊÊÊÊÊÊÊÊÊÊÊ WaitForSecondResponse :
ÊÊÊÊÊÊÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ if Rx = NO then // Neighbor and Own addr
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ ConnectScanState := NoResponseYet; // Keep looking for
nodes
ÊÊÊÊÊÊÊÊÊÊÊ end; // ScanState WaitForSecondResponse
ÊÊÊÊÊÊÊÊ end; // case ConnectScanState
ÊÊÊÊÊ end; // State ConnectScan :
ÊÊÊÊÊ Transparent:
ÊÊÊÊÊ begin
ÊÊÊÊÊÊÊÊ if Rx = O? then // Request for this specific node
ÊÊÊÊÊÊÊÊÊÊÊ Tx(O!);
ÊÊÊÊÊ end; // Mode Transparent
ÊÊ end; // case Mode
ÊÊ Ready := ReadyTimeOut;
end;ÊÊ // while not ready
// If Time out
if not OK then
begin
ÊÊ case Mode of
ÊÊÊÊÊ ScanÊÊÊÊÊÊÊ : // Whatever is best if no neighbor found (>1 error)
ÊÊÊÊÊ ConnectÊÊÊÊ : ShiftDirection(Dir);ÊÊÊ // 1 neighbor found
ÊÊÊÊÊ ConnectScan : begin
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ SetTransparentNode(); // both neighbors found
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ OK := True;
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ end;
ÊÊÊÊÊ Transparent : OK := True;ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ // both neighbors found
ÊÊ end
end;

Table 2 The algorithm in pseudo code

It is furthermore possible to improve the
algorithm by letting the node that first notify
an established system transmit OK.

5 Possible implementations

One possible implementation of a distributed
REDCAN system is to modify the CAN
controller. The controller could then be totally
transparent from the host point of view. It
would consist of logic that allows the
scanning of messages on the bus and act
due this information. It would manage the two
relays to establish the broadcast bus, see
figure 8.

REDCAN
Communication

Controller

Drivers and
REDCAN Relays

BUS BUS

Application Processor

Figure 8 An implementation with a specifically
designed Communication Controller, CC

The Controller could act on three different
cases. The first is to have own identifiers for
the REDCAN communication, i.e. messages
that are only sent when there is a need and
with low priority. This could be solved through
some dynamic scheduling [6]. Second is to
piggyback normal messages sent from the
host and finally produce non-formatted
messages that would be used by the
REDCAN functionality but discarded by the
application.

6 Future work

Fast fault recovery is an important property of
a communication system. The centralized
algorithm has not been designed with this in
mind and couldnÕt provide short recovery
times, thus the introduction of a distributed
concept.
One of the first tasks will be to validate the
algorithm, with for example formal methods.
When the algorithm has been implemented in
a CAN system, it is the scoop of the authors
to test and verify the behavior and optimize
the start-up algorithms that have been
proposed. The function could hopefully be
implemented in a block transparent from the

05-15

host and system. There is also possible to
improve this algorithm by means of minimize
the message overhead.

7 Conclusions

The REDCAN concept is a suitable concept
for harsh conditions and can, although the
bus is incommunicable due to babbling idiots
or short circuits, find new paths for the
messages and also disconnect the failing
node. The centralized algorithm can detect
and recover from the same fault types as this,
for example short cuts and babbling idiots.
Failures such as one faulty node can always
be disconnected but more than one bus
failure can be detected although the
communication might be degraded. The most
significant difference between them is that a
distributed algorithm does not have a master
that jeopardizes the whole system start-up.
Compared to the centralized it is more useful
for general CAN systems that are fully
distributed.

The performance has yet not been fully
verified but the time from a missing message
or occurrence of a fault to the time for the
communication to run again is in the far from
optimized (centralized) system around 500
ms. With a fully distributed system it is not
unrealistic to aim for times in the area of
maybe two communication cycles, e.g. nodes
have sent two times, this remains to be
tested.
With the sequential fault detection algorithm
the time to recover from a fault is dependent
on the amount for nodes in the system. The
random method algorithm is not so heavily
depending on the number of nodes. However
this is an interesting field to investigate and
compare different algorithms.

8 References

[1] J.C. Laprie, Dependability Ð Its
Attributes, Impairments and Means:
Springer-Verlag, 1995.

[2] Christian, F., ÓUnderstanding Fault
Tolerant Distributed SystemsÓ,
Communication of the ACM, 1991.

[3] Temple C., ÒAvoiding the babbling-
idiot failure in a time-triggered
communication systemÓ, Fault-
Tolerant Computing, 1998. Digest of
Papers, Twenty-Eighth Annual
International Symposium on, 1998.

[4] CAN, SS-ISO 11898, Road Vehicles
- Interchange of digital information -
Controller area network (CAN) for
high-speed communication.

[5] CAN Kingdom 3.01 specification
[6] K. M. Zuberi and Kang G. Shin,

ÒNon-Preemptive Scheduling of
Messages on controller Area
Network for Real-Time Control
ApplicationsÓ, Copyright IEEE 1994.

[7] Jalote P., Fault Tolerance in
Distributed Systems. (Prentice Hall,
NJ, 1994).

[8] �. Askerdal, Fault detection and
handling: PALBUS10: 5, 2000.

Chalmers University of Technology
Department of Computer Engineering
SE 412 96 G�teborg
+46(0)31-772 1669
+46(0)31-772 3663
E-mail: sivis@ce.chalmers.se
Website: www.ce.chalmers.se

Sauer-Danfoss
St�lgatan 1
SE-343 34 �lmhult
+46 (0) 476-56918
+46 (0) 476-56944
E-mail: fbjorn@sauer-danfoss.com

gnilsson@sauer-danfoss.com
Website: www.sauer-danfoss.com

