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Abstract-The Controller Area Network is widely used as fieldbus in many distributed
control systems. In addition to control information, a voice communication running on
the same bus may have several advantages. This paper deals with an efficient
implementation of a voice channel over an already designed CAN network. In
particular, the solutions to minimize the band occupation and to cope with the large
variability of the time taken to transmit a CAN message are described. A
proof-of-concept demonstrator, consisting of two CAN stations provided with audio
capabilities, has been realized and tested in an existing distributed control system
designed and installed in a high-end motorcycle. Finally, in order to fully demonstrate
the feasibility and effectiveness of our approach, the system performance under
several bus load conditions has been characterized.

Introduction

CAN networks are widely used in many
applications in which several
microcontroller-based  sub-systems
(stations) need to communicate in an
efficient and reliable way. CAN is a
broadcast bus designed to work at speeds
up to 1 Mb/s [1]. Data are wrapped in
messages, from 0 to 8 bytes long, to which
an unique identifier in the network is
assigned. The identifier field of a message
determines which kind of information is
carried, and the priority during the bus
contention. The main application fields are
automotive, as well as industrial process
control, building automation and maritime
systems. We note that in most of these
application environments a voice
communication over the bus could often
be desirable [2], [3].

CAN-based distributed control system
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Figure 1. Implementation of a voice channel over a

CAN network.

This goal can advantageously be achieved
connecting additional stations, provided
with the capability of interfacing a
microphone and a speaker, to the same

network responsible for the
communication of the already designed
distributed control system. Figure 1 shows
the modified network configuration in
which the stations S;-Sy implement the
control application, while the stations S,
and Sg provide operators with the chance
of talking between two points of the bus
line.

However, some issues must be faced to
guarantee an intelligible speech
communication when the traffic due to the
already existing control system is present
in the bus. First of all, the audio message
overhead should not impair the control
system real-time performance. In
particular, the minimization of the band
required to implement the voice channel
and the variability of the time taken to
transmit a CAN message (i.e. the time
interval between the instant the message
is ready to be transmitted and the one it is
effectively received by the destination
stations) are major topics to be faced.

These issues have already been
addressed in [2]. The proposed system
exploits a sophisticated voice compression
algorithm to obtain a very low band
occupation, but it needs a high
computational power at the same time.
Beside this, the feasibility of the voice
channel has been proven only without
additional traffic running in the network.
Aim of our work is to efficiently implement
the voice communication channel with a
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negligible amount of computational power
so that it could be established using the
same microcontroller employed in the
control system [3], and to characterize the
performance of the designed system when
the bus is loaded by other messages.

The paper is organized as follows. The
first section gives details of the
implementation of the voice channel, while
the second one presents an analytical
analysis of the system performance.
Finally, the experimental results are
described in the last section.

Voice channel implementation

Realizing a continuous full-duplex voice
channel over a CAN network means that
two stations (Sx and Sg in Figure 1) send
the audio data coming from their local
microphone on the bus, and get the audio
samples to be reproduced from the bus
too. From now on, we will refer to the units
responsible for the implementation of the
speech communication as voice stations.
Giving more details, each voice station
has the function of coding the local
microphone signal, and wrapping the
converted audio data in CAN messages to
be transmitted as soon as the bus
becomes free. At the same time, the unit
must receive the messages carrying the
audio samples originated in the other side
of the voice channel, and decode them in
an analog signal to be played by the local
speaker.

From the bus load point of view, each
voice station continuously transmits a
8-byte message, with a period depending
on the adopted speech coding. If a
traditional A-law or u-law PCM (Pulse
Code Modulation) speech coding with a
8 kHz sampling frequency is used, the
transmission period is equal to 1 ms,
which leads to a net band occupation of
128 kb/s [4]. Such a value is rather high in
a CAN network and cannot be tolerated in
most of the control systems, so the use of
a more sophisticated voice compression
algorithm is necessary. However, the
reduction of band due to the compression
is paid with an increase of the hardware
and software complexity of the voice
station. A very good tradeoff between
used bandwidth and resources needed for

the compression algorithm implementation
is provided by the ADPCM (Adaptive
Differential Pulse Code Modulation)
speech coding, which allows to halve the
band occupation with respect to the PCM
coding, maintaining a good audio quality at
the same time [4]. In fact, the ADPCM
coding is implemented by off-the-shelf
audio codecs, which can be used together
with the Ilow cost microcontrollers
generally employed in the control units. As
a consequence, the hardware of the voice
station has been realized by simply adding
an ADPCM codec to the control station
described in [3].

Moreover, the lowest possible priority has
been assigned to the CAN voice
messages, so that the worst-case
response time of the higher priority
messages remains as it is [5] and the
control system performance is not affected
by the insertion of the voice messages,
which are transmitted only when some
free bandwidth is available. However, the
low priority of the voice messages has
some implications in the voice channel
realization. In particular, we cannot rely on
the time equidistance of the voice
messages, because their transmission can
randomly be delayed by higher priority
messages. Therefore, two buffers must be
provided on both sides of the voice
channel, as shown in Figure 2. The
transmitting buffer has the function of
accumulating the data coming from the
codec (ADC) at a continuous fixed rate
when the bus is busy, while the receiving
one feeds the codec (DAC) when no audio
data are coming from the bus.

Tx Rx
% T30k

Cho
Ch 1

ChM;

15-My channels
in receiving buffer mode

top Ch 14

—

RxOk

bottom H top
Receiving buffer
Np bytes in
SRAM memory
Ch My-1

% ADC Req %
DAC Regq

Figure 2. Structure for the data buffering.

Transmitting buffer
M7 channels
in transmission mode|

bottom
|

It is worth noting that the larger the buffer
dimensions are, the lower the audio
communication sensitivity to a long period
of bus unavailability is. The microcontroller
used in our application provides 256 bytes
of SRAM and integrates a CAN controller
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with 15 message objects (Ch;, i=0..14),
each of them independently configurable
in transmission, reception, and buffer
reception modes [6]. Hence, a very
efficient data buffering implementation lies
in using M message objects as a circular
buffer to store the samples, coming from
the ADC, until the bus becomes free and
they can be transmitted. This approach
has two main advantages. First, building
the CAN message directly on the message
object mailbox permits to save SRAM
memory to be used as receiving buffer.
Second, as soon as the message object is
filled with 8 bytes, the contention for the
bus access can immediately start avoiding
the time overhead due to moving the audio
samples from memory to the CAN
controller.

Is there a
free
message
object ?

Move sample to

the mailbox. Throw sample.

Is the
mailbox
full ?

No

Is there any
higher index
pending
transmission ?

Enable transmission.

1
v

Decrement the number of
free message objects.

O

Figure 3. Flowchart of the interrupt
triggered by an ADC request.

routine

This data structure is handled by means of
two interrupt routines the execution of
which is triggered by an incoming audio

sample from the codec ADC and by the
success of a message transmission. The
flowcharts of these two routines are
reported in Figure 3 and Figure 4,
respectively. We must observe that if more
than one message object is enabled at the
same time, than the message built in the
lowest index object is always transmitted
earlier [6]. Therefore, some tricks to avoid
a time inversion of the audio samples have
to be adopted. In fact, it is sufficient to
enable a ready message object only when
there are no pending transmissions related
to message objects with higher index.
Otherwise, the last enable message object
will overcome the older ones causing a
time inversion of the audio data.

Select the first messag
object that completed
the reception.

Increment the number|
of free message
objects.

Move samples
from the mailbox
to the receiving
buffer.

Is the highest
index message
object ?

Is the
receiving
buffer full ?

Is the codec
currently
playing ?

Enable thetransmission
of already filled
message objects.

Start playing.

Re-cnable the
message object in
buffer reception modd.

5

Figure 4. Flowchart of the interrupt routines which
manage the CAN controller requests.

On the receiving side, 15-M; message
objects are used to receive the audio
messages. We observe that more than
one message object is necessary to
collect a burst of voice messages, which
may occur after a long period of bus
unavailability. For a network bit rate less
than 1 Mb/s, 4 message objects are
sufficient, while one additional object is
needed when the bit rate is set to 1 Mb/s.
Once the reception of a voice message is
completed, the related routine, shown in
Figure 4, moves the audio samples from
the mailbox to the receiving buffer, the
dimension of which is set to Ng = 88 bytes,
so the transmitting and receiving buffers
are symmetrical. Since the presence of a
high priority traffic on the network can lead
to long periods in which the bus is
unavailable and no audio messages can
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be transmitted, the reproduction of the
audio samples is started only when the
receiving buffer becomes almost full, i.e. it
is filled with 80 bytes and there is room
available only for an additional audio
message. The flowchart of the interrupt
routine responsible for the reproduction of
the audio samples is reported in Figure 5.
Finally, we note that the traditional
solutions adopted to manage a difference
between the clock frequencies of the two
voice stations [2] are hardly applicable in
presence of a large variability of the time
taken to transmit a voice message
together with the reduced size of the
receiving buffer.

Is the
receiving
buffer
empty ?

Stop playing.

Get a sample from
the receiving buffer

and send it to the
codec.

O

Figure 5. Flowchart of the interrupt routine
triggered by a DAC request.

Performance analysis

We start evaluating the workload WL of
the bus related to the implementation of
one full-duplex voice channel. Since each
voice message carries 16 audio samples
(4-bit for each ADPCM sample), its
transmission period T, is 2 ms, assuming
that the sampling frequency of the audio
signal is equal to 8 kHz. In order to obtain
the bus load, we need the time C, taken to
transmit a voice message. According to

[¢——coded by bit stuffing method

—Bus ldleblSOFK—

Arbitration Control Data
Field Field Field

CAN specifications [7], the total number of
bits of a standard data frame (11-bit
identifier), carrying 8 bytes in the data
field, is 111, as shown in Figure 6.
Because of the bit-stuffing coding, the
actual size of the voice frame could differ
from the one calculated above. The
number of stuff bits, added by the
bit-stuffing coding, can be obtained by the
sum of those originated in the header part
of the message (Start of frame, Arbitration
field and Control fields), which are known
a-priori, and those originated in the
payload and CRC field, which, instead,
depend on the data transmitted.

Identifier

N\ ¢ DLC
|0| llllliOlll (1)|000 1000 |

Arbitration Control
SOR* " Lield Field

Figure 7. Header parts of the two voice frames.

Assigning the lowest possible priorities to
the two voice messages results in the bit
patterns of the voice frame header parts
shown in Figure 7 (because of the
electrical characteristics of the bus, the
smaller the identifier is, the higher the
priority is. In addition, the CAN standard
forbids identifiers with the seventh most
significant bits equal to 1). Therefore, 1
stuff bit is always originated in the header
part, while the remaining 79 bits exposed
to bit-stuffing can lead to further stuff bits
in the range from 0 to 19. Consequently,
the size of a voice message can vary
between 112 and 131 bits. So, C, is equal
to 131 T,;: in the worst-case, where Ty; is
the nominal bit time. However, the bus
load

WL = 2?\) — 26;Tbit (1)

obtained in the worst-case scenario is
really pessimistic [8]. A more realistic

it fixed form 41
I

CRC ACK
Field | Field»N-End of Frame »+Int .#Bus Idlew
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Identifier / | DLC
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Figure 6. Standard data frame layout.
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value can be derived according to the
work of T. Nolte et al. [9], who have
calculated the probability of having a given
number of stuff bits in the data and CRC
fields. Their analysis is based on the
assumption of independence and equal
probability of 0 and 1 in each bit position,
which is a fairly good approximation in our
case. It follows that the average time taken
to transmit a voice message is:

<C,>=114.5T,, (2)
From Eq. (2), we obtain the average bus

load which is reported in Table 1 for
different values of Ty;.

T,it (Bit-rate) Bus load
1 us (1 Mb/s) 11.45%
1.25 us (800 kb/s) 14.32%
2 us (500 kb/s) 22.91%
4 us (250 kb/s) 45.81%
8 us (125 kb/s) 91.62%

Table 1. Bus load related to voice

versus network speed.

messages

Once the workload of the original control
application is known, Table 1 permits to
evaluate if the addition of a voice
communication is in principle possible. As
an example in a 1Mb/s CAN network, a
voice channel can be established at the
expanse of about 12% of the entire
bandwidth. However, other phenomena
must be taken into account [10], [11].
Indeed, since the voice messages have
the lowest priority, their transmission is
delayed by any other message. In that
case, the voice messages ready to be
transmitted are accumulated in the
transmission buffer which eventually
overruns. On the other hand, the receiving

buffer is progressively emptied. Both these
situations can lead to the loss of some
voice samples, especially when the higher
priority messages are enqueued in long
bursts. Therefore, fixed the buffers
dimensions, there is a maximum extent of
the bus busy time beyond which same
samples are lost causing a degradation of
the audio quality. Figure 8 shows a
condition in which a burst of higher priority
messages fills the bus for T, seconds,
so the lowest priority voice message must
wait T, seconds to be transmitted. When
the audio messages transmission is not
delayed, the transmitting buffer is normally
empty and the receiving one is filled with
80 bytes, which means 160 ADPCM
samples. Therefore, since the audio
samples are played with a rate of 8 kHz,
the maximum extent of time in which no
audio messages are received cannot be
larger than 20 ms. During this time the
audio data are accumulated in the
transmitting buffer. In order to avoid the
buffer overrun, the maximum waiting time
T must satisfy the following relation:

1+ (3)

v

T
W l=sM
T} T

As the waiting time is related to the bus
busy time by the following relation:

Tw +Tbit

Tw = Tbusy + Cv (4)

v

from Eqg. (3) and (4) we obtain a second
bound for the maximum extent of time in
which the bus cannot be available for
transmitting audio messages. The
calculated values of the maximum
acceptable T,,s, are reported in Table 2 for

Bus busy time (7},,,)
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Figure 8. Bus condition in which the periodical audio message transmissions A and B are delayed because the

bus is filled by higher priorities messages.
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different network speeds.

(o
T (worst-vcase) Tousy
1us 131 us 16.8 ms
1.25u 163.75 us 18.3 ms
2 us 262 us 17.38 ms
4 us 524 us 15.76 ms
8 us 1.048 ms 10 ms
Table 2.  Maximum extent of bus busy time versus

network speed.

The lower value of T, for a bit rate of
1 Mb/s compared with the one obtained for
800 kb/s, can be explained bearing in
mind that the transmitting buffer consists
of 10 message objects for the former,
while 11 objects are used in the other
cases.

Experimental results

A proof-of-concept demonstrator,
consisting of two stations connected to a
microphone and a speaker, has been
realized and fully tested on our target
application [3]. The test results
demonstrate a good quality of the speech
communication, while the original system
continues to correctly run. Furthermore, in
order to prove the effectiveness of our
approach in a more general way, the
characterization of the designed system
under several operating conditions has
been carried out. In fact, a 3-station CAN
network, shown in Figure 9, has been set
up, in which two stations S, and Si are
responsible for the audio communication,
while the third has the function to
periodically inject messages into the bus.
In particular, every Burst repetition period
seconds the Traffic Injector station fills the
bus with a message burst, which creates a
time interval of Burst length seconds in
which the bus is not available for the audio

Traffic
Injector
CAN bus |
l I
S Sp
Ain Aout Bin Bout

Figure 9. Set-up of the experiment.

messages transmission. This situation is
illustrated in Figure 10. Varying the
repetition period and the number of
messages injected each time, several bus
load conditions can be produced. We note
that the message traffic so obtained is a
good approximation for many control
systems in which the great amount of
messages is periodic, and in particular for
those driven by a cyclic scheduler.

Burst repetition period

—_ — = —

_CRRERNN RRRRRRRR.

t

Figure 10. Message traffic generated by the Traffic
Injector station.

In order to evaluate the performance of the
voice channel, the two voice stations have
been fed by the same sinusoidal wave
(Ain = Bis) and the output waves (A, and
Bout) have been sent to an oscilloscope to
show the correct regeneration of the input
signal on both the receiving stations. It is
important to note that an input signal like a
sinusoid is a very pessimistic case, since
every missed sample leads to a
degradation of the reproduced signal. The
experiment has been carried out for
different bus loads by varying the Burst
repetition period and the Burst length.
Figure 11 shows the experimental results
when the audio messages are the only
messages running on the network, while
Figure 12 shows the opposite situation in
which the bus is completely filled by both
the audio messages and the messages

Tek Prevu | L ii 1 |
Ain = Bin : : :

L2

at )

=t Bus activity

@ W@ 1.00V_ &M[1.00ms Al Ch1 \ —120my|

Chi]_1.00 V
ch3[_1.00V

jcha _1.00v &
n3E4.80%

Figure 11. Experimental results for an unloaded
bus.
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generated by the Traffic Injector station. It
is to be noted that the sine waves are
finely reproduced at both sides of the CAN
bus in both the cases of light and heavy
traffic, thus demonstrating the functionality
of the 2-way audio link.

Tek Prevu | L i 1

Ain =B, U
(i

PR s L g b
2]
(41

Busactuvity o0
Chi] 1.00V & 1.00V %M[1.00ms A| Ch1 % -120mV

ch3[ 1.00v _|Ch4] 1.00vV &

[36.80 %

Figure 12. Experimental results in a heavy traffic
bus condition.

Figure 13 summarizes all the experiments
carried out. It shows the maximum Burst
length, once the Burst repetition period
has been fixed, which allows the
sinusoidal wave to be perfectly reproduced
on the receiving sides, for different
network speeds. The dotted lines
represent the bandwidth expressed in
percentage occupied by the traffic injector
station. It is worth noting that the points
correspond with a very good
approximation to the analysis pointed out
in the previous section, both for the band
occupation and for the maximum bus busy
time allowed. As an example, let us
consider a CAN network with 500 kb/s bit

}— —*—1000k
—*—800k
—&—500k
——250k
—=— 125k

100 %,.-="
80 %
T 60%, ..t

Burst length (ms)

30

20
Burst ripetition period (ms)

0 10 40

Figure 13. Voice channel performance versus the bus

load for different network speeds.

rate. We note that the voice channel can
be established at full audio quality if up to
77% of the overall band is used by the
control application (this confirms the
theoretical expectations of Table 1),
provided that the requirement of bus
unavailability time less than about 17.5 ms
is satisfied, as expected by the analytical
analysis reported in Table 2. Finally, the
same experiments have been carried out
replacing the sine generator with a
microphone and the oscilloscope with a
headset. The speech communication
remains intelligible also for bus loads
slightly beyond the lines reported in
Figure 13.

Conclusion

The efficient implementation of an audio
communication over a CAN control
network has been presented. The goals of
minimizing the band occupation and of
coping with the large variability of time
taken to transmit an audio message have
been achieved keeping the hardware
complexity very low. In addition, the
requirements that the original network
must satisfy in order to accommodate a
2-way audio communication capability
have been calculated. Then, a
proof-of-concept demonstrator has been
realized and successfully tested on a CAN
network already designed for a high-end
motorcycle. Finally, the performance of the
voice channel under several bus load
conditions has been measured. The
experimental results demonstrate that the
audio communication is still possible also
when the bus is completely filled by
messages, provided that a given value of
bus unavailability time would not be
exceeded. Besides, a very good matching
between the analytical analysis and the
measured results has been found.
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