
iCC 2003 CAN in Automation

Design and Implementation of CANopen devices

Rüdiger Härtel, Torsten Gedenk

port GmbH

Abstract

The CANopen application protocol is widely used in industrial machines. There
are several companies providing source code that implements the protocol
according to standards of the CiA and ISO EN 50325-4. The first steps into a new
technology are very time consuming, especially when developing directly on the
target hardware .
Graphical tools can support development engineers during the creation of the
object dictionary and produce the source definition in a programming language
for the CANopen library as well as the EDS file and an HTML documentation.
Star ting implementation on a desktop operating system like Windows or Linux,
instead of starting directly on the target system is efficient because there is no
need for flashing or downloading the firmware and debugging is easier. Por ting
the application from the OS to the target hardware is done by only exchanging
drivers and new compilation.
The article shows that using a tool for defining the communication behaviour and
object dictionary content at a high description level leads to dramatically reduced
implementation effor t for CANopen devices.

Introduction

Standardized higher layer protocols
(HLP) offer several advantages when
implementing a communication interface,
such as fully thought through access to
variables, separation of communication
into services, ready to use protocol
stacks. On the other hand understanding
the complete matter of the protocol, the
implementation of the stack and usage in
the first application is accompanied with
long times of orientation and training.
This article focuses on the development
process of a tool for design, implementa-
tion and documentation of a device that
uses CANopen as a higher layer proto-
col. It shows how a dev eloper can be
suppor ted by a tool throughout the pro-
cess of designing and implementing
devices with CANopen as the higher
layer protocol. The ar ticle will also take a

look at the infor mation that has to be pro-
vided by either the tool and/or the user of
it.

The requirements that must be met by
such a tool are:

• read user input
• handle project files
• impor t/expor t EDS file
• suppor t user with profile databases
• suppor t user with hardware

databases
• generate source code, EDS-file and

documentation

For the specification and a later imple-
mentation there were different aspects
that had to be looked upon:

• provide an intuitive graphical user
interface (GUI)

• data model

04 - 1

CAN in Automation iCC 2003

• storage for mat of databases
• source code generation

profile
databases

Hardware database

black box

EDS &
Project

File

DS301

DS401
DS???

source
code

Docu-
menta-

tion

EDS &
Project

File

Figure 1: pr inciple function

GUI

The graphical interface must be able to
provide a good overview and organise all
necessar y data in a functional way. The
data which is displayed consists of differ-
ent parts. It is composed of:

• EDS data, documentation
• object dictionary
• activation of services
• optimisation of the librar y
• hardware infor mation

CANopen uses an object oriented
approach for storing communication and
process var iables. Access to an object is
provided by means of an index and
subindex. All variables are placed in the
object dictionary. The structure of the
object dictionary can be represented as a
tree where each index is a node and
each subindex is a leaf. For a better
over view the indices can be grouped to
their meaning.

Fur ther nodes for hardware configuration
and EDS data can be added easily.

With the means of objects all kind of
data, simple data types, records and
arrays, can be represented. In addition
to the plain value each object possesses

Figure 2: object dictionary as tree view

attr ibutes like access rights, high/low lim-
its.
This data can be displayed in an editor.
On one side access to all values for the
object should be given, i.e. edit fields for
data needed to describe the EDS. This
can be called structure view of an
index/subindex. On the other side there
should be access based on the meaning
of the index. This can be called mask
view. The mask view depends on the
very index but is not needed for every
index. The communication profile DS301
can provide mask views for the indices:

04 - 2

iCC 2003 CAN in Automation

Index Descr iption

1000h Device type
1006h Communication cycle

per iod
1007h Synchronous window

length
100Ch Guard time
1016h Consumer heartbeat

list
1017h Hear tbeat producer

time
1028h Emergency consumer

list
1029h Error behaviour object

1200-12FFh SDO comm. param.
1300-1340h SRDO comm. param.
1340-13CFh SRDO mapping
1400-15FFh
1800-19FFh

PDO comm. param.

1600-17FFh
1A00-1CFFh

PDO mapping

1FA0-1FCFh Object scanner list
1FD9-1FFFh Object dispatcher list

Table 1: indices with mask views

Mask views can also be provided for
device profile indices. For the future
expansibility it is required that mask
views are not hard coded within the tool
but are provided by the databases.

As a third editor there is the need to offer
optimisation for an index. The optimisa-
tion relates directly to the underlying
CANopen librar y. Optimisation options
refer to:

• the index var iable and
• associated CANopen service 1

It is possible to use an already defined
variable of an existing application and to
influence the placement of var iable in
memor y (RAM, ROM).
Using an already defined var iable allows
to exchange only the communication
layer of an already existing application
that uses an other communication hard-
ware/protocol than CAN/CANopen. This
lowers implementation time and reduces

Figure 3: mask view for index 1401

costs.

Optimisation of CANopen services
always affects code and RAM size of the
CANopen librar y. The SDO service pro-
vides options for the available transfer
modes (expedited, segmented, block).
The PDO service has dynamic mapping
and RTR optimisations available. These
are two examples of optimisation. Each
communication object has its own optimi-
sation options.

An apropriate GUI element, had to be
chosen in order to switch easily between
the three editors. In this case tabs were
chosen. They have the ability to group
all elements in one view and switching
between the different views. Instead of
using a separated dialogue window that
opens on activating an index the views
are placed next to the tree.

1 only applicable for communication
parameter

04 - 3

CAN in Automation iCC 2003

Figure 4: complete GUI layout

Data model

Databases provide the infor mation used
by the tool. They contain profile defini-
tions as specified in the var ious profiles
of the CiA, like DS301 and DS401, and
hardware definitions that are used by the
CAN driver of the CANopen librar y and
that reflect the capabilities of the used
CAN controller.

The profile databases contain the object
descr iption of every index. Additionally
the database has to provide infor mation
about optimisation settings and optional
mask views. Except for the mask view all
data fields have the datatype
VARCHAR2. The mask-view-data field
uses the datatype BLOB3. In the case of
inter preted programming languages the
mask view can be stored as normal func-
tion definition. Table 2 lists the data that
is needed in addition to the data required
by the EDS.

2 str ing of var iable length
3 binar y large object

Name

C var iable name
Object description
DefineIfExists
Opt_CreateVar iable
Opt_CreateTypeDef
Opt_Memor y_Specifier
Opt_SameStr ucture
Opt_UseDefinedVar
Opt_DefinedVarName
Mask_View

Figure 2: additional data to EDS for main
index

A HLP doesn´t know anything of the
under lying hardware and shouldn´t be
restr icted to a specific hardware. This is
achieved by a well defined driver API4. A
constant driver API makes it possible
provide hardware configuration within a
tool that provides configuration of a HLP.

4 application programming interface

04 - 4

iCC 2003 CAN in Automation

The hardware database unlike the profile
database is subject to frequent changes
due to announcement of new standalone
CAN controller and new microcontroller
with a CAN interface. These changes
may not only affect the content of the
database but also the structure and lay-
out of the data model respectively. The
data model of the hardware database
has to take this into account. Changes in
the hardware database have to be
reflected within the input masks for the
hardware settings. Therefore it was nec-
essar y that the hardware database
stores the definition of the graphical user
interface of the hardware settings, too.
With this approach it was possible to pro-
vide access to hardware specific features
that are available now and will be devel-
oped in future hardware.

The internal data model of the tool has to
represent a CANopen device and must
contain all infor mation for source code
and documentation generation.

In contrast to the data model of the pro-
file database the internal structure has to
be capable of handling multiple lines in
order to support applications that have
two or more CAN controller, i.e. CAN
lines, which communicate via CANopen.

1

n

1

n

n

1

1

0x9FFF

1

256

Project

- EDS

- Hardware

- Lines

global HW
settings

Lines

- EDS

- Hardware

- Object directory

Object directory

- Main index data

- Subindices

- Optimisations

Subindices

- Subindex data

CAN controller
settings

- CPU Settings

- Compiler Settings

- Timer

- base address

- IRQ level

Figure 5: inter nal datamodell

Storage format of the databases

For the choice of the storage for mat the
CODB-databases, EDS-files, a commer-
cial database extension and eXtensible

Mar kup Language (XML) were evalu-
ated. The storage for mat had to match
the requirements:

• extensible
• human readable/modifiable
• OS independent

The CiA defined a database (CODB) for
use with its EDS checker. The storage
format used is the comma separated
value for mat where each index is written
on one line and is not allowed to span
over more lines. The database contains
only the data needed for the purpose of
checking an EDS file.

EDS files have a flat structure and are
separated into sections. Besides the
descr iption of each index it contains also
sections for file infor mation, mandator y
and optional indices. EDS files provide
the possibility of embedding comments.
Like the CODB it doesn´t allow spanning
of lines.

A commercial database extension pro-
vides all required functions and even an
SQL interface. From exper ience with
other projects the installation is almost
always a problem and makes support dif-
ficult. Especially when the underlying
operating system changes dramatically
as seen with Windows.

XML fulfils all requirements. Data is
stored as text or can be encoded if
needed. For processing XML data a
parser is needed. Parser are available
for all programming languages. Suppor t
for editing XML data is provided by many
commercial and free tools.

As a result XML was chosen for the stor-
age for mat for the profile and hardware
databases. XML also eases the imple-
mentation of third party add-ons.

Source code generation

The tool generates all source code files
required for a CANopen project. The
requirement was that the generated code
is ready to run directly after compilation

04 - 5

CAN in Automation iCC 2003

without further modification. It makes it
possible to give a first estimation of the
memor y size needed.

The application source code of a
CANopen project consists of three files:

configuration header file
contains the C defines for tailoring
the CANopen librar y i.e. activat-
ing/deactivating functionality and
configur ing the hardware i.e. set-
ting IRQ-level (Timer/CAN), base
address of CAN controller.

object dictionary definition
contains the structure definition in
C code as specified by the
CANopen librar y

CANopen service initialisation
a function that does the initialisa-
tion of the different services like
PDO, SDO, EMCY, TIME.

In addition to source code the tool gener-
ates the EDS-File, documentation and
files for an other tool that is used for con-
figuration of CANopen devices. This
guarantees that the documentation
always matches the device implementa-
tion.

Summary

A tool that abstracts from the detail
implementation of a HLP and provides
source code and documentation output
releases developers from error prone
tasks and leads to simplification and gain
of time in the development process.

The source code generation simplifies
the development to a great amount.
When adding new objects or changing
attr ibutes of objects the developer does
not have to inser t/modify elements of a
C-str ucture or C-array. All this is done
with the graphical user interface.

The same applies to adding a new
CANopen service. When the approriate
object, e.g. 0x1282 - 2nd SDO Client, is
added the service will be initialised by

the generated initilisation routine.

With the integration of hardware settings
into the tool switching between hardware
configurations is simplified, too. This is
useful when the development cannot be
carr ied out on the target hardware but on
another hardware or an operating sys-
tem.

References

1. CAN in Automation, Application
Layer and Communication Profile
DS301 (1 June 2000).

2. CAN in Automation, Electronic Data
Sheet Specification for CANopen
DS306 (4 December 2002).

3. W3C, Extensible Markup Language
(XML) 1.0 (Second Edition) (6 October
2000).

04 - 6

