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Fault-Tolerant Clock Synchronisation with Microsecond-
Precision for CAN Networked Systems

Dongik Lee, Jeff Allan

A fault-tolerant clock synchronisation technique is presented. In a distributed system
the discrepancy between a node’s view of current time and the rest of a system can
cause critical deadlines to be missed. It may also be the cause of many unknown
system errors. In fact, many real-time applications, such as redundancy management,
synchronous data acquisition and simultaneous triggering of actuators at several
nodes, are impossible without such a global reference time. DRTS Ltd have developed
and have protected a software-based fault-tolerant clock synchronisation technique
for broadcast networks such as CAN. It provides a predictable and reliable service
that enables networked system synchronisation to micro-second precision using
negligible network bandwidth.

1. INTRODUCTION

Distributed real-time systems are now
found in many industrial fields, such as
process automation, oil and gas
production, and automobiles. However,
distr ibuted environment presents
significant challenges to the system
designers:

•  Communication networks inevitably
introduce delays due to limited
bandwidth and overhead; and

•  It is difficult to achieve synchronised
temporal behaviour and  data
consistency between computing nodes
which are physically separated.

The key to solving these problems is the
unification of the various representations
of time across the system. For example,
the former problem can be solved by using
time-triggered communication protocols,
such as TTCAN and TTP/C, where
synchronised clocks are the fundamental
requirement.

The quartz oscillators used in computers
and networking equipment change with
age and are affected by environmental
variables, such as mechanical vibration
and temperature. Consequently, clocks
can drift up to several seconds per day.
The discrepancy between a node’s view of
current time can cause critical deadlines to

be missed leading to system failure. It may
also be the cause of many unknown
system errors.

In this paper, a software-based fault-
tolerant clock synchronisation algorithm for
CAN networked systems is presented. The
proposed algorithm is based on a master-
slave structure and the well-known a
posteriori technique (Gergeleit & Streich,
1994).  The proposed algor i thm
deterministically guarantees an upper-
bound for the clock skew and the number
of messages required for synchronisation.
The key advantage of the proposed
method is the capability to tolerate faulty
master clocks in a systematic and
predictable way.

2. THE BENEFITS OF SYNCHRONISED
CLCOKS

The benefits of synchronised clocks for
commercial computer networks, such as
financial transactions and stock trading,
have been understood well. Skoog (2001)
described clock synchronisation as "a key
factor in success or failure of a networked
system". As a result, most of computer
networks are equipped with time servers
and synchronisation algorithms, such as
Network Time Protocol (NTP).

Clock synchronisation techniques are also
beneficial for many industrial applications:



iCC 2003 CAN in Automation

07-2

Time-Triggered Communications

In safety-critical applications, such as X-
by-wire cars, randomly varying message
latency causes significant concern. In
response to this concern, time-triggered
protocols based on scheduling of the
communication resources are becoming a
common solution for safety-critical and
hard real-time systems. For the correct
operation of a time-triggered network, it is
essential to provide a system-wide time
reference to enable a consistent
identification of the time at which timeslots
trigger.

Control Systems

A distributed control system may suffer
significant time-varying delays (i.e., jitter)
between the sampling of the sensors and
the reaction of the actuators. This jitter
influences the system’s stability as well as
changes the system characteristic into a
time-varying one for which theoretical
results for time-invariant systems cannot
be used. A main cause for the jitter is
polling of the sensors by the controller
(Eidson & Cole, 1998).  Using
synchronised clocks the control objective
can be achieved at a lower sampling rate
and communication bandwidth.

Redundancy Management

In safety-critical applications, some degree
of hardware redundancy is commonly
used to meet the system requirement.
Usually, the redundancy management
strategy is based on a voting mechanism
requiring high degree of data consistency.
Without synchronised clocks, voting
cannot work properly.

Synchronous Data Acquisition

The existence of global time reference is
the fundamental requirement for data
acquisition systems (DAQs) for distributed
environment. For instance, many DAQs
use timestamps to induce a total ordering
on the events that occur at different nodes.
If the clocks in the system are not
synchronised, it is possible for the event to
be seen as like affected by the causes
from the "future".

3 .  AN OVERVIEW OF CLOCK
SYNCHRONISATION TECHNIQUES

3.1. Clock Synchronisation Blocks

Clock synchronisation is a technique to
generate an approximate system-wide
time reference, the so called “approximate
global time”, using local clocks, so that at
any instant any two non-faulty clocks
agree on the current time within a known
bound. Several researchers (Schneider,
1986; Anceaume & Puaut, 1998) stressed
that any software clock synchronisation
algorithms consist of the three blocks for:

•  The detection of resynchronisation
time—to trigger each node to start the
clock synchronisation algorithm;

•  Reading remote clock values—to
obtain information about the remote
clock values; and

•  Clock correction—to establish an
approximate global time reference, and
to calculate the correction term.

A clock synchronisation algorithm having
these three blocks can be implemented as
in figure 1, where Fc is a “convergence
function” to bring clocks closer together.

1+k
padj  is the amount by which the

requesting clock p  differs from correct
value at the resynchronisation round of
(k+1). Different choices for these blocks
result in different clock synchronisation
algorithms. For the surveys on various
techniques to implement these blocks, see
Schneider (1986), Ramanathan et al
(1990), and Anceaume & Puaut (1998).

k=0;

adjp
0=0;

do forever

 detect resynchronisation event at time Rk+1;

 adjp
k+1= Fc(p,x1

k+1,..., xN
k+1) - p;

 k=k+1;

end

Figure 1. Clock synchronisation blocks.
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3.2. CAN-Based Algorithms

Different clock synchronisation algorithms
can be designed according to the network
used. CAN has a number of unique
characteristics. In particular, a set of error
handling facilities and simultaneous
delivery offer the potential for achieving
precise clock synchronisation. On the
other hand, it has relatively low bandwidth
which favours simple algorithms.
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Figure 2. Clock synchronisation based on
the a posteriori technique.

Gergeleit & Streich (1994) proposed a
clock synchronisation technique based on
a master-slave structure and a simplified
“a posteriori” agreement technique (see
figure 2). A clock in the system is
designated as the master, which
periodically broadcasts a synchronisation
message that provides a reference time
value. In this method, timestamps are
taken right after a message is delivered,
rather than before broadcasting the
message. In the synchronisation round k,
the master broadcasts a synchronisation

message km  which contains its timestamp

taken at 1
2,
−k

mT  when the previous

synchronisation message 1−km  was
delivered to the slaves. Every slave in the
system simultaneously receives this

message at k
sT 2,

, and takes a timestamp

right after the reception. Each slave clock
then calculates a correction term using the

difference between the timestamps 1
2,
−k

sT

and 1
2,
−k

mT . The key advantage is the high

precision that does not depend on
message latency. However, the lack of
capability to tolerate a faulty master is the
major concern.

Eriksson et al. (1996) proposed a token-
based approach to provide a fault-
tolerance capability with Gergeleit &

Streich (1994). In each resynchronisation
round a different clock is designated as
the master, and then the other clocks
synchronise to the selected master.
However, it uses no mechanism to detect
faults in the current master. In addition, if f
successive clocks are faulty, then the
system can be left without synchronisation
during the period of fR.

The a posteriori technique proposed by
Verissimo & Rodrigues (1992) has also
been applied to CAN networked systems
(Rodrigues et al., 1998). This algorithm is
based on a fully distributed structure which
is inherently fault-tolerant. However a
drawback is the complexity resulting from
the distributed structure. The number of
messages required is N(N+2) for an N-
node system.

4 .  F A U L T - T O L E R A N T  CLOCK
SYNCHRONISATION FOR CAN
NETWORKED SYSTEMS

As discussed in the previous section, a
major concern with typical synchronisation
algorithms for CAN is the vulnerability to a
faulty master clock. This section describes
a novel CAN-based clock synchronisation
algorithm which is capable of tolerating
faulty clocks with relatively simple
structure.

Table 1. Summary of CAN properties
relating to the clock synchronisation (taken
from the work by Rodrigues et al., (1998).

A1: Validity—If a correct node broadcasts
a message, then the message is
eventually delivered to a correct node.

A2: Best-effort agreement—If a message
is delivered to a correct node, then the
message is eventually delivered to all
correct nodes, if the sender remains
correct.

A3: Simultaneous agreement—If the
sender remains correct, the last
retransmission of the same message is
delivered to all correct nodes at real time
values that differ, at most, by a known
interval.
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4.1. CAN Properties and Assumptions

The algorithm is based on the CAN
properties in table 1. These properties,
which are achieved by the built-in error
handling mechanism of the CAN protocol,
provide fault-tolerant broadcast. That is,
within a CAN network a message is
accepted either by all nodes or by no
node. Property A3 is crucial for achieving
a high precision of synchronisation using
the a posteriori technique. Properties A2
and A3 remove the possibility of Byzantine
faults.

4.2. Outline of the Proposed Algorithm

The main feature of the proposed
algorithm is outlined as follow:

Centralised structure: A master-slave
structure is employed in order to create as
simple algorithm as possible. The master-
slave structure can drastically reduce the
number of messages if a broadcast
network is used.

Multiple-master: A multiple-master method
is used to tolerate a faulty master. The
novelty of the suggested method lies in the
use of two groups of master
candidates—‘Master Candidates Group’
(MCG) and ‘Substitutes Group’—to reduce
bus traffic caused by a master selection
process.

Resynchronisation detection: A start
message is used for triggering a
synchronisation round.

Clock correction: All clocks in the system
synchronise to the time of a selected
master clock. The a posteriori technique is
used.

4.3. Subsets of Clocks in the System

The major drawback with a multiple-
master technique is the need for a master
selection mechanism. Selection algorithms
are usually complicated and introduce
extra loading on the system in terms of the
number of messages and the processing
time. The number of messages required
for the selection mechanism increases

with the size of the multiple-master cluster.
The larger size of the multiple-master also
leads to the higher complexity in the
selection mechanism, which is not
desirable.

Substitutes Group
Master Candidates

Group (MCG)

Slave Clocks

Figure 3. Subsets of clocks in the system.
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Master Candidates
Group (MCG)

C3 C2 C1C4

C5

CNs+3

CNs+2

C7

C6

faulty

Figure 4. Replacement of a faulty
candidate clock.

In this work, to overcome these problems,
all clocks in the system are divided into
three subsets (figure 3). At each
synchronisation round, only clocks in the
MCG take part in the selection of a
master. Clocks in the substitutes group do
not take part in the selection, and are only
for replacing faulty clocks in the MCG. The
rest of the clocks in the system are
considered to be slaves, which have to
synchronise to the selected master clock
and are not required to broadcast any
message for clock synchronisation.

An example given in figure 4 explains how
the MCG and the substitutes group work in
order to update the MCG. Each node of
the MCG examines its clock value by
comparing with the current master clock
time. When a clock in the MCG is found to
be faulty, a non-faulty clock in the
substitutes group becomes a new member
of the MCG. In figure 4, for example, the
faulty candidate C 3 is replaced with C4.
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Figure 5. A timing diagram model of the synchronisation algorithm.

Clock C3  takes the place of C4, rather than
being removed from the system.

The number of clocks for each group can
be chosen by the system designer to
achieve the desired level of fault-
tolerance. The size of MCG to tolerate mf
faults is given by

12 += mm fN           (1)

Note that mf  denotes the maximum
number of new faulty clocks of the MCG
that can arise in a single resynchronisation
round. Thus, the complexity of the
selection mechanism is not directly
proportional to the total number of faulty
clocks assumed in the system. On the
other hand, the size of the substitutes
group, sN , depends on the total number of
faulty clocks, f, to be tolerated in the
system. It seems useful to choose sN  as a

multiple of mf , to achieve η-modular set of
redundant clocks to substitute for faulty
master candidates; that is,

1,2,...  , == ηη ms fN         (2)

Since ffm << , the proposed algorithm
can achieve a desirable degree of fault-

tolerance using a simple selection
mechanism and a lower number of
message exchanges.

4.4. Master Clock Selection

Figure 5 shows the entire steps for the
suggested algorithm. It is assumed that at
most 1=mf  new faulty clock can be found
in the MCG in a single synchronisation
round, and thus three clocks (C1, C2  and
C 3) for the MCG are needed. In this
example clocks C1 and C3  are assumed to
be the best and the faulty, respectively.
Arrows represent a broadcast of message
with unknown latency.

Selecting a master is performed in the first
two steps of figure 5. The selection
function (Fv) is based on the timestamps
(T1, T2, T3) taken by each candidate clock
on the arrival of a start message (mstart).
The CAN properties described in table 1
guarantee that all the candidates receive
the start message simultaneously. As
soon as a timestamp has been taken,
each candidate, including the sender of
start message, broadcasts a time
message that contains its timestamp, and
then waits for other candidate’s time
messages. According to A2 in table 1, all
the correct candidates will obtain an
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identical set of timestamps, and thus, will
vote for a common clock as the master.

In addition to the selection of a master, the
selection mechanism also identifies any
faulty clocks in the MCG. Any candidates
whose time differences with the median
value are larger than a predefined
threshold will be considered faulty. The
faulty clocks abandon themselves as
candidates for a master and move to the
substitutes group, whilst the selected
master builds a list of new candidates for
the following synchronisation round.

A key advantage with the proposed
selection mechanism is its robustness.
Since all the timestamps needed for
selection are taken at once, any delays (or
even missing deadlines) in sending them
do not lead to synchronisation failure. On
the start messages, the fastest clock in the
MCG may broadcast a start message.
However, the selection mechanism still
gives a correct result even though the
resynchronisation round starts earlier due
to the fastest clock (or a faulty clock in the
worse case), since the selection algorithm
relies on the fact that a start message has
arrived rather than the time when it was
generated.

4.5. Clock Correction

Except for the selected master, all clocks
in the system synchronise to the master
clock. Step3 and step4 in figure 5 are
related to the clock correction mechanism.
The correction term is calculated in a
similar way to the master selection
mechanism. In this work two messages,

αM  and βM , are successively broadcast.

4.6. Substitution of Faulty Candidates

Each synchronisation round ends by
updating the MCG with a set of non-faulty
clocks (step5). The key to this process is
the acknowledgement messages sent by
the substitutes. Only the substitutes
requested by the current master send the
acknowledgement messages containing
binary information, i.e., accept or refuse
depending on the sender’s clock status.

4.7. Analysis

It is not feasible to describe in this paper
the details of analysis on the achievable
synchronisation precision and the number
of messages. To summarise, the worst
case synchronisation skew between any
two clocks is given by:

ξρδ += R4          (3)

where, ρ, R, and ξ  denote drift rate,
resynchronisation period, and reading
error, respectively. To tolerate mf  faulty
candidates in a single resynchronisation
round, the total number of messages for
the synchronisation algorithm is given by:

4)2(42 ++≤≤+ mmsgm fnf η        (4)

where, η=1,2,…is a parameter to be
selected by the system designer according
to the desired degree of fault-tolerance.
Note that eqn (4) represents the number of
messages rather than the number of bits.
Therefore, the maximum bandwidth used
by the synchronisation messages can be
obtained by assuming every message has
8 bytes of data.

5. EXPERIMENTAL RESULTS

The performance and effectiveness of the
suggested method have been assessed
and demonstrated on a test system. See
figure 6 (a) and (b). It consists of a set of
micro-controllers, a CAN network, DRTS
X-View monitoring software, and a three-
actuator r ig. I n  t h i s  wo rk ,
resynchronisation period (R ) and bus
speed are chosen by 1sec and 250Kbps,
respectively.
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Figure 6(a) Schematic overview of the
experimental setup.

Figure 6(b) Picture of the three-actuator
rig.

5.1. Synchronisation Precision

The drift rate of a physical clock used in
this experiment is ρ≈1.5µsec. The best
synchronisation precision can be seen at
the time when every node adjusts its local
clock, that is δ=ξ with R=0 and ξ=4µsec. ξ
can be reduced to 1µsec at bus speed
1Mbps. The worst case clock skew is seen
at the right before starting a new
resynchronisation cycle. Figure 7 shows
that the worst case clock skew is
approximately δ=10µsec.

δδδδ

Figure 7. Screen shot of the oscilloscope
showing the worst clock skew between
two clocks is δ=10µsec.

5.2. Fault-Tolerance

The main issue with the fault-tolerance
mechanism of the suggested algorithm is
replacement of a faulty candidate clock
with a non-faulty substitute clock. The
ability of tolerating faulty clocks is
illustrated in figure 8 by showing the
transitions of each clock status, which are
Master, MCG, or Substitute. At t=12sec,
the manual reset button of clock 1 is
pressed, and as result its clock status
changes from MCG to Substitute. On the
other hand, clock 4, of which status was
Substitute, becomes a new member of the
MCG instead of clock 1. Faults are

injected to the rest of clock nodes in the
similar way.
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Figure 8. Transitions of clock status.

5.3. Deterministic Communications with
Standard CAN

The CAN with over 250 million nodes
installed world-wide has achieved
widespread acceptance. Basing a time-
triggered strategy on this protocol that can
use established technical resources and
also existing hardware, is seen to have
enormous advantages.
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Figure 9. Profile of background bus
loading used to measure the worst case
latency at load level 90%.

0 10 20 30 40 50 60 70 80 90
Bus Loading (%)

0.60

0.65

0.70

0.75

0.80

W
or

stc
as

e 
La

te
nc

y 
(m

s)
 

Msg 0x200

Msg 0x300

Msg 0x400

Msg 0x500

Msg 0x600

Msg 0x700

Figure 10. Worst case message latency
using the clock synchronisation technique.

This experiment demonstrates the latency
with a time-triggered strategy where a
unique time slot is designated for each
message to broadcast (see figure 9).
Background bus loading of 90% is
eliminated during these timeslots. If any
clock among either the load generators or
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the message senders fails to synchronise
with the rest clocks in the system, the
message latencies must vary depending
on the bus load conditions and the priority
position.

As illustrated in figure 10, applying the
suggested synchronisation technology to a
standard CAN network enables
deterministic communication. A typical true
latency of message with 8-byte data at bus
speed 250Kbit/sec is 520µsec. Adding to
this value with the total processing delay
(180µsec with this experimental setup)
gives the latency around 700±20µsec.
Jitters by ±20µsec are mainly due to the
granularity of logical clocks used for the
measurement. The jitters mostly do not
exceed the clock granularity at the higher
bus loading, indicate that any single
message has not violated the predefined
time slots designated for other messages.
As result, even under high bus loads (i.e.,
90%) every message is delivered with a
latency equal to the time taken by the
highest priority message (i.e. as if there
was no bus load).

5.4. Synchronised Motion Control

One of the most important aspects of safe
design is simplicity. The reliable and
accurate clock synchronisation technique
results in a very simple control system
since the complex mechanism to deal with
the jitter in control delays are avoided by
using a time-triggered architecture based
on synchronised clocks.

In this example, the control objective is to
control the three motors (see figure 6a)
such that they follow the demand positions
with a highly synchronised motion. Each
motor is controlled by its local controller.
To achieve this objective, each controller
needs to compare the actuator positions
measured simultaneously. Therefore, in
addition to the message latencies, data
consistency errors on sampling of the
sensors can also be a critical problem. In
this work, the feedback loop is
implemented by a simple Proportional (P)
control law with a sampling period of
40msec. The background bus load level is
90%.

The results in figure 11 indicates that each
actuator moves very closely from each
other when clocks are synchronised. In
contrast, the result without clock
synchronisation illustrates that the
excessive disagreement on the actuator
positions led to the actuators being stuck.
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Figure 11. Step responses of the actuators
with/without clock synchronisation.

6. CONCLUDING REMARKS

A deterministic and fault-tolerant clock
synchronisation algorithm has been
presented. The algorithm exploits a unique
clustering method and the a posteriori
technique. This approach is easy to
implement. It can be used immediately
and no new hardware is necessary. The
experimental results demonstrate that the
proposed approach enables time triggered
communications that can be implemented
in standard CAN nodes. It has also been
demonstrated that the synchronised clocks
can achieve the three-actuator control
requirements with a simple P-controller at
a lower sampling rate.

The key features of this algorithm are
summarised as follow:

•  Precision: Approximately 1µsec at
1Mbps, or 4µsec at 250Kbps.
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•  Simplicity: A master-slave structure
which is simple to implement in any
embedded real-time applications using
CAN.

•  Robustness: Synchronisation services
remain available in the presence of
clock faults or a partly disconnected
network.

•  Network load efficiency: Low bus
bandwidth is used; e.g., <0.1% at
1Mbps,  <0.4% at 250Kbps.

•  Predictability: The key parameters
can be precisely determined in the
design phase.

•  Flexibility: Slave nodes as well as
master candidate nodes can be added
to or removed from the network on-fly.

•  Low cost: A software based algorithm
implemented on standard CAN that
can provide a cost-effective solution to
safety-critical applications.

Note that the proposed algorithm can be
applied to any broadcast protocols as long
as the assumptions described in table 1
are satisfied. For example, the proposed
technique, especially the fault-tolerance
mechanism, can be used for
sensors/actuators complying with the
IEEE-1588 standard to improve the
reliability of the global time reference
(Allan & Lee, 2003).
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