iCC 2003

CAN in Automation

Implementation of the CANopen Profile for Battery and
Charger

Michel Passemard Atmel, Bob Pickering Minit-Charger, Olaf Pfeiffer Embedded Systems Academy

The growing acceptance of opportunity charging batteries while they remain in the
electric vehicle made the development of a standard means of communicating the
battery’s characteristics to the charger increasingly important.

This paper gives some background information on why such a standard is desirable,
and how CANopen provides the necessary framework for the standard. This paper
also presents an implementation of the CANopen battery profile highlighting the
battery module as well as the charger module.

Introduction

The development of fast charge algorithms
has made it practical to return a significant
amount of energy to the battery of an
electric vehicle in a relatively short period
of time, allowing vehicles to be recharged
during breaks in activity. Whereas in a
conventional charge regime, each vehicle
would have multiple batteries and a
dedicated charger, fast charge allows a
single battery which remains in the vehicle
to be recharged as opportunities arise.
With the charger no longer dedicated to a
single vehicle, it must be able to charge
any of the vehicles in the facility. A typical
facility has a variety of vehicle types, with
batteries of differing voltages and
capacities, and possibly different
chemistries. The charger must be able to
identify the battery in the vehicle to which
it is connected in order to appropriately
adjust the parameters of the charge
algorithm. Battery charger manufacturers
have developed a number of proprietary
battery modules which communicate the
necessary information to their chargers.
These solutions, however, restrict the
customer to using the modules only with
the chargers from the same manufacturer.

With the growing acceptance of
opportunity charging both for industrial fork
lifts, and for airport ground support
equipment, a need was identified for a
standard protocol for the communication

between the battery module and the
charger to allow chargers from different
manufacturers to operate with all of the
vehicles in a facility. The National Electric
Vehicle Infrastructure Working Council
(IWC) of the Electric Power Research
Institute (EPRI) (Palo Alto, CA) has a
mission to coordinate, and collaborate on
charging infrastructure issues involving
electric transportation, and to make
recommendations to standards-making
bodies. It struck a committee to develop a
recommendation for the battery/charger
protocol. The committee, which had
representatives from electric utilities,
charger manufacturers, battery
manufacturers, vehicle manufacturers and
users of ground support equipment, first
determined the data which needed to be
passed between the battery and the
charger to allow the charge to take place.
It then investigated a variety of alternative
communication standards, and decided
that CANopen provided the necessary
framework on which the protocol could be
defined.

CANopen is a widely accepted CAN
protocol stack. It offers a framework for
multiple application usages. While it could
have been seen as a European standard,
it became popular in Asia and The
Americas too. One of the key benefits of
CANopen is the concept of profiles.
System manufacturers from the same
application environment team-up to

08-14

iCC 2003

CAN in Automation

develop an agreed upon profile that will be
used in their systems, thus insuring inter-
operability. Semiconductor vendors can
propose standard products that have been
proven with such profiles. Furthermore
they can offer themselves or through
Software vendors a protocol stack that
supports the profiles.

This was viewed as the key benefit of
adopting CANopen for the battery/charger
interface; instead of developing an entire
communications protocol, it was only
necessary to specify the device profile.
The ease with which manufacturer specific
data could be incorporated was also
important, since none of the
manufacturers involved were prepared to
divulge all of their trade secrets so that
they could be included in the profile. The
fact that CANopen is an open standard
was also an important consideration.

Given below is a summary of the Device
Profiles for Battery Modules, and
Chargers, and a description of an
implementation in a Minit-Charger battery
charger system, using an Atmel
microcontroller.

Summary of the CANopen Device Profile
for Battery Modules

The CANopen draft proposal 418: Device
Profile for Battery Modules defines the
communication link between a charger
and a battery. It also defines all the
necessary information to carry out battery
charge.

The profile defines an object dictionary for
the battery. This object dictionary includes
21 indexes for a total of 49 entries.

The indexes are:

Standard Mandatory entries

* Device Type

* Error register (temperature sensor)
* |dentity object

Profile 4184

The profile entries are divided into

mandatory and optional elements.

Mandatory entries

* Battery Status

* Charger status

* Temperature

* Battery parameters (type, capacity,
max charge current, number of
cells)

Optional Entries

Battery Serial Number

Battery Identification Number
Vehicle Serial Number
Vehicle Identification Number
Cumulative total Ah charge
Ah expended since last charge
Ah returned during last charge
Ah since last equalization
Date of last equalization
Battery voltage

Charge current requested
Charger state of charge
Battery state of charge

Water level status

Mandatory entries are the minimum data
that is required to allow the charge to be
carried out. These specify the battery
chemistry, number of cells, and the
maximum current which can be carried by
the battery cables and intercell
connectors. Since all useful fast charge
algorithms use some form of temperature
compensation, the battery temperature is
also a mandatory data element. The
mandatory entries were kept to the bare
minimum to allow battery module
manufacturers the greatest possible
flexibility in choosing hardware for
implementation.

Battery chemistry is specified by the
battery type parameter. The profile defines
the following battery types:

* Lead acid battery (flooded and
maintenance free)

Nickel cadmium battery

Nickel zinc battery

Nickel Iron battery

Silver oxide battery

Nickel hydrogen battery

Nickel metal hydride battery
Zinc/Alkaline/Manganese battery

08-15

iCC 2003

CAN in Automation

Lithium ion battery

Zinc bromine battery
Metal air battery
Lithium/Iron sulfide battery
Sodium beta battery

The optional data entries may be used to
support common enhancements to the
battery charging process. The serial and
identification numbers allow fleet tracking
systems to record battery usage and
status. Data entries cumulative total Ah
charge, Ah since last equalization, and
date of last equalization record battery
history, which may be necessary to
maintain the battery manufacturer’s
warranty. The charger updates the Ah
returned during last charge value as the
charge progresses, allowing the battery
module to maintain the battery history
without requiring it to measure current
flow. More sophisticated battery modules
may provide battery voltage
measurements, and estimates or
measurements of the Ah expended since
last charge. If the battery module includes
charge algorithm software, it may request
the level of charge current desired via the
charge current requested data entry. Two
state of charge entries are defined; one
supplied by the charger, and one by the
battery module. This allows the unit with
the best data to establish the state of
charge (for example, the battery module
might estimate the state of charge during
discharge, while the charger sets it during
charge based on the progress through the
charge algorithm). Finally, a water level
status data entry is defined to allow
modules on flooded batteries to pass the
status to the charger where warning
indications may be displayed or other
action taken when the battery needs
maintenance.

The profile defines one Transmit Process
Data Object (TPDO) and one Receive
Process Data Object (RPDO) to transmit
battery status, and temperature, and
receive charger status.

The profile also defines 2 additional TPDO
and 2 additional RPDO to carry optional
information.

The profile’s object dictionary requires only
Expedited Service Data Object (Expedited
SDO) for download and upload.

The SDOs are

* Initiate SDO download (charger
request download from battery)

* Battery respond with the data to the
charger

* |nitiate SDO upload (charger upload
to battery)

* Acknowledge response from battery

The CANopen draft proposal 419: Device
Profile for Battery Charger, provides the
counterpart to the battery module profile
for the charger. PDOs mirror the PDOs of
the battery module profile. The data
dictionary defines only those entries which
are used in the PDOs. The use of other
information from the battery module is left
up to the implementer.

Mapping the CANopen Device Profile for
battery into the Atmel T89C51CC01

The Atmel Flash + CAN microcontroller is
perfectly suited for the CANopen profile for
battery and charger, with ample memory
and processing power to accommodate
the optional entries as well as the
mandatory ones.

32Kbytes of flash contains the program. It
can be reprogrammed up to 100K times.
32KB is large enough to contain the
CANopen profile plus a good size
application.

Only 30% of the extended RAM (1024
bytes) will be used to keep the object
dictionary leaving a large amount of RAM
for the user application; pointers, stack
and other variables being located in the
256 bytes regular RAM.

2Kbytes of E2PROM are available to
maintain information such as battery S/N
type etc... The E2PROM can be written by
bytes or block from 2 bytes to 128 bytes in
11mS per cycle. The controller can
operate down to 3 volts, thus a simple
supply monitoring device can be designed
to sustain Vcc >= 3 volts for enough time
to save 128 bytes or more into the
E2PROM when the power disappear.

08-16

iCC 2003

CAN in Automation

The T89C51CC01 CAN peripheral
architecture with the unique Message
Object Buffer (MOB) is perfectly suited for
the CANopen battery profile.

The chip sports 15 Message Object
Buffers with each of them programmable
as Transmitter or Receiver. Each Message
Object has an 8 byte dedicated message
data FIFO, a dedicated Message ID and
Message Mask (for receiver).

Basic implementation of the CANopen
battery profile will use 9 Message Object
Buffers:

* NMT (ID=000h)

Sync (ID=080h)

Emergency (ID=81f to FFh)

Time Stamp (ID=100h)

TPDO (ID=181h to 186h)

RPDO (ID=201h to 203h)

TSDO (ID=581h)

RSDO (ID=601h)

NMT (ID=701h to 77Fh)

Implementation of the CANopen battery
profile with optional TPDOs RPDOs will
use 12 Message Object Buffers:

* NMT (ID=000h)

Sync (ID=080h)

Emergency (ID=81f to FFh)

Time Stamp (ID=100h)

1* TPDO (ID=181h to 186h) could be
replaced by 2" TPDO (ID=281h to
287h)

3" optional TPDO (ID=381h to 387h)
1* RPDO (ID=201h to 203h)

2" optional RPDO (ID=301h to 303h)
3" optional RPDO (ID=401h to 403h)
TSDO (ID=581h)

RSDO (ID=601h)

NMT (ID=701h to 77Fh)

The Message Object Buffer structure is
given in figure 2 below

CAN Controller Registers

300 bytes total Ch. 0 - Status

Ch. 0 - Status Ch. 0 - Control & DLC

Ch. 0 - Control & DLC Ch. 0 - Data Buffer (8)

Ch. 0 - Data Buffer (8) Ch. 0 - ID Tag (4)

Ch. 0 - ID Tag (4) Ch. 0 - ID Masks (4)
Ch. 0 - ID Masks (4) Ch. 0 - TimStmp (2)

. sage
Ch. 0 - TimStmp (2) 15_\‘“\“;29c51cco1

ob“ec'ts

The controller also includes a 16-bit time
stamp timer. Each transmit messages and
receive messages can be time stamped.
This feature can be used for instance to
synchronize clock between a charger and
a battery

An Analog/Digital converter is necessary
in the battery module to measure the
temperature. This can be done using the
10-bit precision A/D included in the
T89C51CC01. The temperature
measurement is then sent with the 1%
TPDO. The A/D includes 7 more channels
to convert other signals.

The block diagram of the T89C51CCO01 is
shown on the figure below

Flash Program Flash Boot
Memory Memory EERROM
32kx 8 2K x 8 A=
RAM
1.2Kx 8 EUART
C51 X2 Interrupt Ctrl
Core
Watchdog
ADC
10bit / 8 Channels Timers 0/1/2
PCA Port 0
N 5 Channels
TxXDC + Port 1
S CAN Controller
RxDG 15 Message Objects Port 2
P
Emulation ort3
Support Logic
Packages: TQFP44, PLCC44, CABGA64

iCC 2003

CAN in Automation

Adding the CANopen bootloader to the
Device Profile for battery into the Atmel
T89C51CCo01

The Atmel Flash + CAN microcontroller
has a 2KB flash area for the bootloader. It
comes factory preprogrammed with a CAN
based or a UART based bootloader.

It is possible to include with the Device
Profile for battery, the CANopen custom
bootloader such as the Embedded System
Academy CANopen bootloader.

A CANopen Compliant Bootloader

If a CANopen device has flash memory, it
makes sense to also have a CANopen
compliant bootloader. This does not only
free the serial communication channel
from the bootloader task, it also allows
using standard CANopen configuration
tools as the communication partner
providing the new code (hex file) to be
loaded into the Flash memory.

When being in boot-mode a CANopen
node’s only purpose is to accept a hex-file
to be loaded into a Flash memory. While
being in that mode, the node does not
really need to be 100% CANopen
compliant. It just needs to provide enough
CANopen compatibility that it does not
interfere with any other communication on
the network and that it provides a fully
functional SDO server, so that SDO clients
(like Masters, Managers or Configuration
Tools) can make read and write accesses
to the Object Dictionary in the node.

So the only CANopen features and
communication channels that need to be
implemented are the SDO server and the
SDO request and response channels.

Sometimes it is desirable that the
bootloader can be activated without the
requirement to physically touch the device
(like setting a jumper, switch or button). In
CANopen the straight forward method
would be to use a selected write sequence
to an Object Dictionary entry as an
additional command to actually switch the
node into the bootloader mode.

Minimal Set of Required OD Entries

OD entry [1000,00]:
information, read-only

As there is no device type number
standardized for a bootloader, a
manufacturer specific value can be used.
The Embedded Systems Academy uses
746F6F62h (ASCII representation is
“boot”) in their bootloader
implementations.

Device type

OD entry [1001,00]: Error register, read-
only

The bootloader can use this register to
signal Flash erase or programming
failures. Setting the manufacturer specific
error bit can indicate an out-of-range error
— a try to program a memory location that
is either protected or at which there is no
Flash memory.

OD entry [1018,00-04]: Identify Object

The standard Identify Object as specified
in CANopen [CIADS301].

OD entry [1F50,XX]: Download program
data

This Object Dictionary entry is described in
[CIADSP302] and used to directly accept
the code programmed into the target
memory. Sub-index 0 is used to quantify
how many different program or Flash
memory areas are available. The following
Sub-indexes can each handle the
download to one program or memory area.
For many applications it is sufficient to
implement one area (Sub-index 1).

Although not specified by the standard, the
Embedded Systems Academy
recommends using standard ASCIlI hex
files as the files containing the program or
data. Using a hex file has two benefits: the
file contains the target address on where
the data needs to be programmed to and
the file also contains checksums making
the downloading process more secure.

Although the T89C51CCO01 flash memory
doesn't need to be erased first before

08-18

iCC 2003

CAN in Automation

being reprogrammed, Embedded System
Academy has implemented a specific
erase command. For example, an erase
could be initiated by sending the value
66726C63h (ASCII representation is “clrf”)
to the Object Dictionary entry [1F50,01] (or
other Sub-indexes to differentiate between
different blocks or segments of Flash
memory).

OD entry [1F51,XX]: Program Control
Object

This Object Dictionary entry is described in
[CIADSP302] and used to control the
program(s) downloaded to [1F50,XX]. The
essential command to implement is “Start
program” which requires writing a “1” to
the Object Dictionary entry. For example, if
a program was downloaded to [1F50,01] it
can be started by writing a “1" to
[1F51,01].

This Object Dictionary entry could also be
used to implement the activation of the
bootloader itself. So if the regular
CANopen application running on this node
supports this entry, it should activate the
bootloader upon receiving a “0” (zero
=Stop Program).

CANopen Bootloader for 89C51CCo0x

The Embedded Systems Academy
implemented a CANopen bootloader for
the Atmel 89C51CCO01 microcontroller
family. Code examples can be
downloaded from
www.esacademy.com/atmel

Michel Passemard

Atmel

BP70602 Nantes 44306 France
Phone +332 40 18 19 65

Fax +33 240 18 19 60

E-mail michel.passemard@atmel.com
Website www.atmel.com

Bob Pickering

Edison Minit-Charger

2486 Dunwin Drive

Mississauga, Ontario, Canada L5L 1J9
Phone (905)828-7700

Fax (905)828-7716

E-mail bpickering@minit-charger.com
Website www.minit-charger.com

Olaf Pfeiffer

Embedded Systems Academy
50 Airport Parkway

San Jose, CA 95110

(408) 910-7899
opfeiffer@esacademy.com
www.MicroCANopen.com

08-19

