
iCC 2003 CAN in Automation

CANeye - controlling and monitoring CAN via web interface

Jean Randhahn, Helmut Beikirch – Universität Rostock

In the last years Ethernet has found widespread use and acceptance in office
communications. Today it is readily available in almost every single personal computer for
very low cost. With the growth of Ethernet based networks within offices the desire to
connect to the field bus dominated production floor has grown as well. There are many
different motivations for this desire, e.g. to monitor production flow and machines over
short and medium distances or to enable the use of readily available hard- and software to
name a few.
The following paper will describe CANeye, a low cost embedded web server that is able to
connect to CAN. CANeyes position and abilities within the network and an introduction to its
hard- and software structure will be covered.

I. Introduction

The goal was to develop a device that allows
access to a field bus from Ethernet TCP/IP
networks. CAN as field bus had been chosen
since our institute has a special focus on CAN
but also for the possible applications in CAN
dominated areas. Later ones include
multimedia and motor service applications for
automobiles and medical applications that
need unobtrusive monitoring of bus activity.
Thus CANeye, a low cost embedded web
server, has been developed. It contains a full
function active CAN node and an Ethernet-
TCP/IP interface that enables communication
with the implemented HTTP server. This
CANeye is able to send and accept CAN data
dynamically as html-, text- or raw data file. To
acknowledge demands on power consumption,
size and price a microcontroller from TI's
MSP430 series is being used.

II. CANeye within the network

CANeye is meant as a connecting device
between Ethernet and CAN. Within the
networks it takes a similar position as routers
and gateways do. It includes a 10BaseT (10
Mbit/s) Ethernet interface that connects to
standard office networks via router, switch, hub
or directly to the client. For CAN the interface
can be a simple two wire connection or a
combined data power connection. For a
connector a DSUB9 is being used. 

III. Functionality

CANeye serves two main purposes, which are
receiving data from CAN and sending data to
CAN. Both actions are executed upon request
by a client. Depending on the application,
however, both actions are not always available.
Their availability depends whether CANeye is

run in active or passive mode.
The passive mode will not allow the client to
send data to the CAN. Also no data packet that
is received by CANeye from CAN is being
acknowledged. Effectively this allows the client
to unobtrusively monitor the CAN. This can be
critical in safety sensitive applications.
The active mode will allow receiving as well as
sending data to CAN. In this mode CANeye
works as a common active node on CAN. This
mode is suitable when interacting with devices
that are located on the CAN is necessary.
Data that is received from CAN can be filtered
to collect only the data the user needs. This is
done by setting up the filters in the CAN
controller or by setting software filters in
CANeyes software. Both can be set by the
user via html pages that are accessed like
pages from any other web server.
The received data is made available in
different ways. When used in conjunction with

06-1

Picture 1 CANeye in sample network configuration



iCC 2003 CAN in Automation

a standard personal computer that has a
internet browser available, the data can be
viewed in a html document that is dynamically
generated. For further text processing the data
can be viewed as text file as well, by same
means as the html file. In both cases the data
can be positioned anywhere within the html or
text document. This enables the user to
prepare a form and have the data being filled
in dynamically upon request.
For more effective further processing of
received data it can be made available as raw
data. The data will then include all known
details like length of frame, identifier, frame
type etc.
Data that CANeye is to send to CAN can be
sent through a html form. This allows the use
of the send command within CANeyes web
page as well as from other HTTP based
programs. The data needs to contain identifier
and data at the minimum, all other information
for the CAN data frame can be filled in by
CANeye with default values.
Administrating CANeye is easy by using the
built in configuration web pages. They allow
changing the CAN baud rate that is detected
automaticly on startup or upon request, as well
as setting the earlier mentioned filters. TCP/IP
parameters like IP-Address and Subnet can be
changed via the configuration pages as well.
When using CANeye manually only
infrequently, the user can read the online help

manual, that is stored in CANeye.

IV. Hardware

CANeyes hardware consists of three
controllers. For communication it uses a
standard Ethernet device, a CS8900A from
Crystal Inc., and a stand alone CAN controller,
a MCP2510 from Microchip Inc.. Since the
Ethernet controller integrates a physical
interface only a signal transformer for isolation
and a handful of passive components are
needed to enable the Ethernet interface. The
physical interface is a 10BaseT, which uses
twisted pair cable at 10 Mbit/s. To allow time
for processing frames by a microcontroller
between two arriving data frames, the Ethernet
controller has an integrated 4 kB RAM to store
unprocessed frames as well as frames
scheduled for sending. The microcontroller
interface is a 16 bit wide bus, that can be used
in 8 bit mode, too. CANeye implements the 16
bit bus and can make use of the receive
interrupts.
The stand alone CAN controller implements full
CAN 2.0 A/B at 1 MBit/s. It supports active and
passive mode, which allows its usage for
unobtrusive message reception. The controller
includes two receive and three transmit buffers
and is capable of message filtering. For
connection to the CAN it needs a standard
CAN transceiver. For interfacing to a
microcontroller it contains a Serial Peripheral

06-2

Picture 2 setup page for CAN parameters



iCC 2003 CAN in Automation

Interface (SPI).
A microcontroller, a MSP430F149 from Texas
Instruments Inc., is used as main processing
device. It is a 16 bit MCU that requires only
very little power. It includes a SPI to interface
to the CAN controller used and enough I/O
pins to interface to the Ethernet controller in 16
bit I/O mode. A RAM area of 2 kB and FLASH
program memory of 60 kB are at the very low
end of internet enabled devices but sufficient
for the task.
The low power requirement is another
distinctive feature of CANeye. All components
used run at 3.3 V and when all components
are active the whole device requires 50 mA at
the most. Because of the low supply voltage
the device can be run from a common 5 V wall
plug or it can be powered by a CAN cable that
includes 5 V supply lines. This option can be
manually jumpered and keeps external wiring
to a minimum.
The printed circuit board (pcb) that holds all
components and connectors is a simple 2 layer
pcb with a size of approximately 3“ x 2.5“. The
complete schematic is available at
randhahn.de for free download and use.

V. Software

Basic concept - The ISO/OSI model states that
communication between computers can be
defined in various layers that allow to distinct
certain features of the communication process.
These layers are often represented by one
sometimes multiple communication protocols.
In CANeye this concept has been employed to
an extend that every used protocol is
implemented seperatly. Furthermore are all
protocols realized as a finite state machine.
Finite state machines, Mealy state machines in
this case, are inherently robust and allow for
easy change and extension of functionality.
They also help to make the software easier to
read and document.

The protocols and thus the state machines
need to process and pass on the received data
frame to the next protocol. This is handled by a
simple main task that provides a mailbox like
communication system. Whenever a data
frame is received it is dropped into a free
mailbox, given a destination and signed by the
sending protocol. The main task also provides
stubs for running one or more state machines
in cycles. During one cycle all state machines
are activated at least once. Upon activation the
state machine checks the mailboxes,
processes the data frame and quits. One
advantage of this method is, that the little
memory that is available, can be used by all
state machines and be used in a very
predefined way. There is also a lot of room for
further enhancements like reseting a single
state machine upon failure, which is possible
since all state machines are independent of
one another and only share a common set of
commands and data structures, but not
actually memory space or functions.
The use of state machines and the way the
memory is provided to them makes the whole
system very predictable. In time the software
acts asynchronously, since the activation of a
single state machine in a single cycle cannot
be predefined and depends on pending
events.
Connecting to CAN - Almost all necessary
layers for CAN are implemented by the CAN
controller. There is no higher protocol like
CANopen implemented as it is not needed for
CANeyes functionality. All that needs to be
done is to transfer frames to and from the CAN
controller. Also a set of functions for initializing
and changing parameters is needed. All these
are put into a single state machine. It always
checks for new frames on the CAN controller
and for messages in the mailbox.
Upon Initialization the CAN controller is put into
passive mode and the currently active baud

06-3

Picture 3 illustrates the simplified schematic



iCC 2003 CAN in Automation

rate is obtained by changing the baud rate until
no bus errors are encountered any more. This
is a simple and fairly fast way to determine an
unknown baud rate. A drawback of this method
is that it presumes activity on the CAN that has
to be free of errors. The active mode can be
set by a switch on the configuration web
pages. Also the masks and filters can be set
this way as was earlier mentioned. Their initial
state will allow all frames to pass. The filter
scheme provided by the CAN controller used
enables the detection of single identifiers as
well as identifiers that fall through a scheme.
They are referred to as filter and mask. In a
separate memory location provided by main
the frames are stored according to their
identifier.

Connecting to Ethernet-TCP/IP - To be able to
communicate with a client via TCP/IP quite a
few layers and thus protocols need to be
implemented. A basic stack of protocols has to
contain means to address nodes, to resolve
these addresses, to open a connection to them
and to transport data. Even a basic protocol
stack allows for quite some flexibility and
different scenarios that are not needed for
creating a server in general and CANeye in
particular. For this reason only required
functionality is implemented for most protocols
in CANeye. However, CANeyes protocol stack
is conform with the internet requirements.
Ethernet is the medium used for
interconnecting clients and servers. It provides
basic data frame transport and little means to

ensure transport safety, like retransmission
and collision detection. Its carrier transmission
access protocol is CSMA/CD, which is similar
to what is used by CAN, though it does not
avoid collision but only detects them. Ethernet
is almost completely implemented in hardware.
Even though it provides a mean of addressing,
it is not used by the internet stack as this
addressing is hardware dependent. There is a
IEEE standard for Ethernet, but since the
original draft was written and maintained by a
consortium there are now two different protocol
versions available. The widest acceptance can
be claimed by the improved original draft
Ethernet V2. The IEEE standard is often
referenced by device manufacturers but not
fully implemented. CANeye works with
Ethernet V2.
The Internet Protocol (IP, version 4) supplies a
mean of addressing to the internet stack. The
addresses are hardware independent and are
split into categories. These categories are
meant for networks of different sizes and for
multicasting. To split these categories up into
even smaller nets subnet masks are being
used. They allow for a more efficient use of the
address range that is available. CANeyes
address will be set upon programming the
device. This address is not static and can be
changed to fit needs via the configuration web
pages later on. The same holds true for subnet
masks used.
Another feature of IP is its capability of
fragmenting datagrams that are too large for
the transport medium. This fragmentation
mechanism splits the datagram into smaller
chunks, sends them off and reassembles them
in correct order at the receivers end. CANeye
does not support fragmentation, as it has too
little memory available for such a task. This
does not necessarily mean that client request
with too large datagrams cannot be handled.
Keeping the datagrams to a predefined
maximum size can be handled by higher layer
protocols and will be shows later on.
The Address Resolution Protocol (ARP)
enables the internet stack to resolve IP
addresses. This is done by a broadcast on
Ethernet. Since CANeye is only meant as
server it does not need to resolve addresses
itself. All requests will already contain the
senders address. All CANeye has to support
are ARP requests towards itself, which is
simply to generate a reply. To remember
addresses used during a current connections a
table of addresses has to be kept. Addresses

06-4

Picture 5 structure of communication stacks

Picture 4 basic software concept



iCC 2003 CAN in Automation

in this ARP table need to be cleared on a
periodic basis to allow for address changes of
clients because of reboots or similar events.
This mechanism is fully implemented.
The Internet Control Message Protocol (ICMP)
is a supporting protocol to IP. This protocol is
used to exchange error and network
information. It is not necessarily part of a basic
stack, but provides some very useful tools for
network monitoring, like ping. Ping is simply a
datagram that is sent to an internet node and
has to be answered with a copy of that
datagram. Though simple it allows to gather
much information about the state of the
internet node and the network. Ping is
implemented in CANeye.
The Transmission Control Protocol (TCP)
provides all services that have not yet been
covered by the lower protocols. These are
mainly connection establishing, transport
safety, flow control and multiplexing.
Connection establishment is handled via a
three way handshake and will result in a point-
to-point connection between two processes of
two network nodes. Transport safety for the
following data exchange is guaranteed by error
checking, end to end control and flow control.
Error checking is provided by a checksum, that
is generated from the TCP header and the
data within the TCP datagram. Encountering
an error causes a retransmission of the data by
simply not acknowledging the reception of the
erroneous datagram. End to end control is
realized by acknowledging all data received.
Numbering all datagrams to ensure the right
order on the receiving node and mechanisms
to prevent receive buffers from overflowing on
both ends provide good means of flow control.
All these so far mentioned functions are
implemented in CANeye and necessary for
correct operation of the internet stack. The
mechanisms to prevent buffer overflow are
used by CANeye to keep the datagram size to
a value that can be handled with the little RAM
available. There is the maximum segment size
that is agreed upon connection establishment.
It is used to keep single datagrams small
enough for CANeye. The so called window
mechanism that is directly responsible from
keeping buffers from overflowing is used to
restrain clients from sending more than two
datagrams at a time. Thus CANeye can handle
with only little memory all data traffic and still
stay within the internet requirements.
Another service TCP provides is multiplexing
connections. That is when multiple clients want

to communicate with the same process on one
computer, e.g. a web server. For this purpose
TCP creates sockets that contain information
about the clients connection info and the
server connection info. Obviously the memory
demand of these sockets grows rapidly with
increasing connection request. For this reason
CANeye supports only one TCP connection at
a time. Theoretically this will limit data transfer
significantly. Real life experience has shown
that connection request occur seldom at
intervals that are close enough to make
multiple connections necessary. Thus even
though only one connection can be handled
multiple requests can mostly be served without
delay.
On top of this internet stack the web server is
located. It uses the common Hypertext
Transfer Protocol (HTTP) to communicate to
clients via the TCP/IP connection. In CANeyes
case the web server has to be able to serve
static as well as dynamic files. Furthermore it
has to be able to handle action requests. HTTP
version 1.0 provides a sufficient set of
commands for this purpose. HTTP/1.0 is
currently the most widespread HTTP version
and is compatible to the older version 0.9.
HTTP/1.0 also provides enough error codes to
show the client which actions are possible and
allowed and which not. HTTP is commonly
used as basis for internet browsers, but can
also be used by other programs. Because of
this CANeye can be used in conjunction with a
browser or with other programs.
Web pages that are served by CANeye reside
in its program memory. These pages can be
static and served as is or they can be dynamic.
Dynamics are created by providing a mean to
insert variable data into the page while serving
it. For this purpose Server Side Includes (SSI)
are used. SSI defines a standard of marking
the places to insert and the name of the
variable that has to be inserted. There are
many predefined variables like server IP, date,
time, but also user definable variables. These
are used to include the CAN frame information
into the web page. For each CAN frame saved
a seperat SSI variable for length, identifier,
data etc. exists. This way CAN frames can be
inserted and displayed according to their
meaning by proper design of the web page. In
this way HTML- and text-files can be served.
To create a raw data file the same mechanism
can be used, but the file has to be prepared
differently. By leaving the file blank except for
the proper SSI commands it is possible to

06-5



iCC 2003 CAN in Automation

serve raw data files.
While file requests are commonly invoked with
HTTPs GET command, action requests use the
POST command. The POST command itself is
invoked by using a form in a web page or
directly by the clients program. The actions are
identified by parameters in the POST
command, these also contain values when the
action requires one. These actions are used for
setting parameters of the internet stack and
CAN as well as for sending frames to CAN.
Since TCP supports only one connection at a
time the web server does so as well. This
greatly simplifies the server design.
Following is a list of important supported and
unsupported features :
CAN
- passive and active mode
- automatic bit rate detection
- supports basic and extended identifier
Ethernet
- packet format: Ethernet V2
- broadcast and individual addressing
IP
- version: IPv4
- no options
- no fragmentation
- broadcast, incl. in subnet
ARP
- reduced to reply
- dynamic address table
ICMP
- ping supported
TCP
- only one connection supported
- passive open/close, active close implemented
- retransmission time out in connection states
- give up time out at establishing connection
- delayed ACK during data transfer
- maximum segment size option supported
- window mechanism implemented
HTTP
- version: HTTP/1.0
- GET and POST supported
- static and dynamic file serving
- one connection at a time supported

VI. Results

CANeye is a device to make CAN data frames
available on TCP/IP networks as they are used
in office environments. It is a stand alone
device that requires no special software, but a
commonly available internet browser. Even

online help or simple documentation can be
stored on it and thus made available at the
time and place it is needed. By using already
available infrastructures and software it can be
integrated into existing structures easily and
cost effective. Being able to connect a field bus
to the office network its largest potential lies in
closing the gap between production floor and
office. Because of it small size and power
requirements it can also be used as a field
device for maintainance and monitoring tasks.
Also CANeye proves that it is possible to
enable internet communication on resource
limited platforms. It furthermore shows that no
unacceptable deviations from the internet
requirements are necessary to accomplish this
task.
All schematics and more info are available for
free download and use at http://caneye.de.

Recommended reading and sources:

[1] Stevens, W. Richard: „TCP/IP Illustrated,
Volume 1: the protocols.“ Reading, Mass.:
Addison-Wesley Pub. Company, 1994.

[2] Hein, Mathias: „TCP/IP – Internet-Protokolle
im professionellen Einsatz – 5., akt. und
erweiterte Aufl.“, Bonn: MITP-Verlag, 2000.

[3] Randhahn, Jean, „CANeye - Entwurf und
Implementierung eines aufwandsmini-
mierten embedded Web Servers in einem
CAN Knoten“, Diplomarbeit, FH-Stralsund

[4] Lawrenz, W.: „CAN Controller Area
Network“, Heidelberg: Hüthig Verlag, 1999

Dipl.-Ing.(FH) Jean Randhahn
Universität Rostock
Graduiertenkolleg „Integrierte fluidische
Sensor-Aktor-Systeme“
Albert-Einstein-Str. 2
D-18051 Rostock
Tel: +49(0)381 498 3516
Fax: +49(0)381 498 3608
Email: jean@randhahn.de
Web: http://randhahn.de

Prof. Dr.-Ing. habil. Helmut Beikirch
Universität Rostock
Fachbereich Elektrotechnik
Institut Gerätesysteme und Schaltungstechnik
Albert-Einstein-Str. 2
D-18051 Rostock
Tel: +49(0)381 498
Fax: +49(0)381 498 3608
Email:helmut.beikirch@etechnik.uni-rostock.de

06-6


