iCC 2003

CAN in Automation

CANopen virtual device architectures

Holger Zeltwanger (CAN in Automation)

In order to standardize network system applications independently of the device im-
plementation it is necessary to introduce the concept of virtual device interfaces. Sev-
eral CANopen application profiles using the concept of virtual devices will be intro-
duced briefly. In particular, there are methods how to define virtual device interfaces
and how to describe a default PDO communication scheme allowing peer-to-peer data
transmission. Hints are given on how to overcome the limitations regarding the num-

ber PDOs and object dictionary entries.

In industrial network technology it is com-
monplace to specify the OSI lower-layer
and the higher-layer protocols in order to
achieve the coexistence of devices in the
same physical network. Normally this in-
cludes a network management. In order to
achieve inter-connectability, inter-
workability, or even inter-operability of de-
vices, additional definitions of data access,
data types, and parameter semantics are
required.
The IEC device profile guideline defines
the following levels of functional compati-
bility:
* Coexistence: lower-layer protocols
(Tolerance: higher-layer protocols)
Interconnection: data access
Inter-workability: data types
Interoperability: parameter seman-
tics and application functionality
Interchangeability: dynamic be-
havior.

b Compativility levels Interchangesble

Interoperable

Interworkable

Interconnectable

Device Coexistent

feature
Dynamic Behavior

Incompatible

Application Functionality

Parameter Semantics

Data Types

Data Access

Communication Interface part

Communication Protocol

P< <

P< P X

P< P XX XX
P< P PP

X

Fig. 1: IEC compatibility definitions

In CANopen technology, standardized and
proprietary device profiles define data ac-
cess (object dictionary entries), data types,
parameter semantics and application
functionality. For more sophisticated pro-
files this includes device-specific state-

Device Profile
Application part

Device profile
Communication

machines. In all generic device profiles,
the PDO communication as well as the
emergency transmission is pre-defined.
There are only up to four TPDOs with valid
COB-IDs and up to four RPDOs with valid
COB-IDs. The default TPDOs transmitted
by the NMT slave devices are received by
the NMT master device. And the default
RPDOs consumed by the NMT slave de-
vice are produced by the NMT master de-
vice. The reason is that generic CANopen
devices will provide only a plug-and-play
function with a default PDO master/slave
communication capability. If the user likes
to have plug-and-play systems with pre-
defined PDO cross communication be-
tween NMT slaves, he has to define an
application profile.

Using different generic device profiles lim-
its not only the PDO communication to
master/slave behavior, but also requires
configuration effort in order to integrate the
network system. This is due to the fact that
the CANopen dictionary entries differ from
one profile to another. Depending on the
device type object (1000;), the object en-
tries from 6000, and following have a spe-
cific meaning. This may require PDO
mapping configuration as well as PDO
linking.

Network classification definition

There are different requirements regarding
plug-and-play capability, flexibility, and
configurability in automation, embedded
and deeply embedded networks. Deeply
embedded networks are highly optimized
requiring very high communication flexibil-
ity by means of PDO configuration (linking

02-17

iCC 2003

CAN in Automation

and mapping). Designers of deeply em-
bedded systems should have a deep
knowledge of the communication system.
Embedded networks are not visible for the
end-user. Designers of embedded net-
works like to use standardized profiles in
order to limit the configuration effort. Off-
the-shelf plug-and-play capability is re-
quired. In those embedded networks it is
acceptable that specific communication
functionality needs configuration of the
PDO parameters. Automation networks
are designed by end-users. The demand
on off-the-shelf plug-and-play capability is
very high.

[
P

[

Automation Network

Modular
b

Fig. 2: Networking architecture for modular
machines

In modern modular machine systems, the
machine module manufacturer uses
deeply embedded networks. The machine-
system builder implements embedded
networks, and the production line designer
utilizes automation networks. In deeply
embedded networks, it is commonplace to
integrate devices implementing proprietary
and standardized device profiles. In em-
bedded networks, a pre-defined PDO
broadcast and peer-to-peer communica-
tion may be required. In addition, the de-
signer of embedded networks may request
a higher granularity of devices not related
to the physical implementation. CANopen
provides the possibility, to implement up to
eight devices in one physical device. This
means also up to eight motion controllers
may reside in one physical CANopen de-
vice. However, not all CANopen device
profiles allow this possibility. For example,
the one device compliant to the CANopen
profile for measuring devices and closed-
loop controllers may need the entire object
dictionary address space.

Device definitions

According to the ISO 15745 international
standard, a device is an entity that per-
forms control, actuating and/or sensing
functions and interfaces to other such en-
tities within an automation system. The
IEC 61499-1 uses another device defini-
tion: Networked independent physical en-
tity of an industrial automation system ca-
pable of performing specified functions in
a particular context and delimited by its
interfaces.

The IEC device profile guideline describes
additionally a device interface model. Us-
ing this model, the internal structure is not
relevant to the application. The following
interfaces are defined:

Control interface

Process interface

Configuration interface

Diagnostics interface

Process interface

Device ‘

FE

Control
Interface

FE

>

Parameterisation [Configuration
Interface

Fig. 3: IEC device interface model

The device profile guideline also describes
a modular device structure. This hierarchi-
cal device structure regards the modules
as resources (e.g. in IEC 61131-3 and IEC
61499) or logical devices or virtual de-
vices, which can be subdivided into func-
tional elements. “Functional element” may
be described as parameter list members,
function blocks and objects. In CANopen,
the parameter list members are defined by
several attributes (e.g. index and sub-
index, data type, category, access type,
value range, default value). Parameter list
members may be variables, array, or re-
cords.

02-18

Diagnostics
Interface

iCC 2003

CAN in Automation

The concept of virtual devices

The concept of virtual devices allows de-
fining a granularity of functionality that is
optimized for the application field. A virtual
device is a set of application functions.
Several virtual devices may reside in the
very same physical device. However, a
virtual device shall not be distributed to
several physical devices. Depending on
the required granularity of functions, the
defined virtual device provides one or
more process data and additional configu-
ration parameters.

Gateway

Device 1
Functionality
[TBevicez |
Functionality

Device 3
Functionality

Device 1

Device 2

Device 3
[wirtual)

Device 1
(wvirtual)

Device 1
(wirtual)

Device 2
Device 3
[virtual)

Producing VD
Consuming VD

Fig. 4: Network transparent gateways us-
ing the concept of virtual devices

The concept of virtual devices allows de-
signing transparent gateways. In one sys-
tem design, the user may integrate just
one CANopen physical device to a gate-
way representing all the other virtual de-
vices. In another implementation, the sys-
tem designer may connect just one virtual
device via the gateway and a proprietary
interface to the CANopen network. Or he
may do something in between.

It is also possible to split the logical
CANopen network into different physical
segments. This allows application-specific
network topologies and architectures de-
pending on timing, busload, and other re-
quirements.

Profile for passenger information

The first CANopen application profile was
specified for public transportation passen-
ger information systems. This profile was
defined jointly with the VDV (German non-
profit organization for public transportation
systems) and the Finnish Buslan project.

In the meantime, the profile has been
submitted for European standardization.
The profile defines several virtual devices.
Each virtual device supports a number of
mandatory and optional application ob-
jects. All virtual devices share the same
object definitions meaning that the object
entry definitions in the area from 6000, to
9FFFy, are unique for all devices compliant
to this application profile. Some of these
entries are related to the physical device,
e.g. object 6000, that indicates the sup-
ported virtual devices.

There are two pre-defined PDO connec-
tion sets. In the typical configuration, the
main on-board computer virtual device
transmits PDOs to the destination indicator
virtual device, the next stop indicator vir-
tual device, the ticket canceller virtual de-
vice, and the ticket printer virtual device.
The main on-board computer virtual de-
vice receives PDOs from the identification
device. If both of these virtual devices re-
side on the very same physical device,
CAN communication is not necessarily
required. The application profile defines
the PDO COB-IDs and the PDO mapping.
The PDO COB-IDs do not depend on the
CANopen node-ID as they do in generic
device profiles. The system designer can-
not integrate un-configured generic
CANopen devices due to the risk of doubly
used CAN identifiers.

This default minimum and typical configu-
ration does not satisfy more complex pas-
senger information systems. In this case,
the system designer has to configure
dedicated PDOs regarding communication
and mapping parameters. The configura-
tion effort is still high.

Profile for lift control systems

In the application profile for lift control
systems, all physical devices may support
MPDOs to be received and to be trans-
mitted. Some virtual devices specify pre-
defined PDO with COB-IDs depending
form the physical device’s node-ID. In ad-
dition, the physical device has to support
those PDOs with virtual device-specific
COB-IDs. For example: The call controller
virtual device for lift 1 transmits the PDO
with the CAN identifier 400y, the call con-
troller for lift 2 transmits the PDO with the

02-19

iCC 2003

CAN in Automation

CAN identifier 401, etc. The CANopen
application profile for lift control systems
can run eight single lift control systems
each for up to 254 floors.
In this application profile,
TPDO and 512 PDOs
are used. For non pre-
defined PDO communi-
cation, the optional

most of the 512

Sub-Index

calculated and filled in by API

Profile for door control systems

The application profile for door control
systems specifies a high granularity of

virtual devices.
filled in bx API

UNSIGNED8

Transmit Data Buffer:

MPDOs may be used.

Each physical device
may support up to 127
MPDOs to be received.
The MPDO transmitted
in Destination Address
Mode (DAM) is received
by all physical devices
that implement the cor-
responding MPDO con-
sumer. Depending on
the multiplexer (corre-
sponding to index and sub-index) the
MPDO consumer stores the received data
into its object dictionary or it ignores the
received data.

Basic function Byte 0 LSB
Sub function Byte 1
Source lift Byte 2
Source panel Byte 3
Source door Byte 4
Function data Byte 5 MSB

Fig. 5: Input multiplexer for lift panels

In order to overcome the limitation in the
object dictionary with respect to the sup-
ported PDOs, the application profile uses
not only MPDOs but also other multiplex-
ing objects. The virtual input mapping ob-
ject (6010y) and the virtual output mapping
object (6020,) contain one of the digital
input or output group objects (6100, to
611F;, respectively 6200, to 621F;,). The
application profile defines a similar multi-
plexing object for sensors, the virtual sen-
sor mapping object (6012,) containing one
of the sensor group objects (6500, to
651Fh).

The Unsigned48 virtual input mapping
objects contain function data, source door,
source panel, source lift, sub function, and
basic function information. The Un-
signed48 virtual output mapping objects
and the sensor group objects are struc-
tured similar.

4} Byte N up to 4 Byte 2 Byte 2 Byte
A »> -

T N
Object Mapping of the data Transmit Data Random No. Object Index.
(only for SDO access)

TPDO 1 Mapping Parameter
(1) 16 Bit (2) 16 Bit (3) 32 Bit
PDO + Object Random :
TPDO 1 Node ID Index Number Transmit Data
i 123an R B | |

>
-

8 byte datafield
Fig. 6: Door profile transmit object

Each virtual device producing data uses
just one or two 32-bit objects for process
data. The corresponding virtual device
consumers provide one or two 32-bit ob-
jects for the received process data. The
process data objects to be transmitted are
mapped into the transmit data buffer’'s ap-
plication data sub-object (6001). This sub-
object is mapped into the standard
TPDO_1 of the physical device.

All physical devices consume by default all
TPDOs. The physical device that sup-
posed to process information from a spe-
cific virtual device will store the received
application data in the appropriate collec-
tion object. Of course, it is also possible to
configure a different behavior using a con-
figuration tool. In particular, the user may
like to disable RPDOs that are not re-
quired. The node-ID of the physical de-
vices may also be assigned automatically
by means of a node-claiming procedure. It
was the intention of this application profile
to unburden the system designer from any
PDO configuration.

Profile for road construction machinery
The application profile for road construc-

tion machinery was developed by the
OSYRIS (Open System for Road Informa-

02-20

iCC 2003

CAN in Automation

tion Support) research project. It defines
the CANopen communication in several
road construction machines. The sensor
functionality object (6010,) specifies,
which sensors are implemented in this
physical device. The required information
object (6410,) describes, which sensor
signals are necessary to be received by
this physical device. The NMT master de-
vice reads all this information, in order to
configure automatically all TPDOs and
RPDOs in the NMT slave physical de-
vices. Each sensor object entry (e.g. angle
position or paver speed) can be regarded
as virtual device.

Activation of the CANopen Manager

all available node-IDs from 1 to 127

Response to SDO read of object 1000h?

—

Repsonse to SDO read of object 6010h?
SDO read of each entry of functionality
Creation of PDO mapping

Repsonse to SDO read of object 6410h?
SDO read of each entry of req. information

Creation of PDO mapping

start remote node(s)

send data status request

start application

Fig. 7: CANopen boot-up procedure for
virtual road construction machine devices

Summary

The CANopen application layer provides
the possibility to sub-divide a physical de-
vice into virtual devices. An option is to
split the standardized device profile area
(6000;, to 9FFF}) into eight 800, segments
using each for one standardized device
profile. In addition, it is possible to de-
scribe virtual devices in application profiles
using a number of object entries. In ex-
treme, a virtual device supports just one
object. In to order to overcome the
CANopen dictionary limitations regarding
the number of PDOs and the number of
object entries, it is possible to use several
multiplexer techniques.

The virtual device concept allows the de-
vice manufacturer to implement several

functions in one physical device. The
granularity of physical devices may differ,
so that there may be physical devices pro-
duced embedding just one virtual device
whereas other physical devices may sup-
port several virtual devices. In addition,
this concept allows manufacturing network
transparent gateways. Those gateways
may be used to sub-divide one physical
CANopen network into several segments
in order to overcome CAN bandwidth
limitations or to overcome number of node
limitations.

References

[11 CANopen application layer and communication
profile (CiA DS 301:2002)

[21 CANopen application profile for passenger
information (CiA DSP 407:2002)

[31 CANopen application profile for road construc-
tion machinery (CiA DSP 415:2003)

[4] CANopen application profile for building door
(CiA DSP 416:2003)

[51 CANopen application profile for lift control
systems (CiA DSP 417:2003)

[6] Device profile guideline (IEC 65/314A/NP:
2003)

[7]1 Industrial automation systems and integration
— Open systems application integration frame-
work — Part 1: Generic reference description
(ISO 15745-1:2002)

[8] Industrial automation systems and integration
— Open systems application integration frame-
work — Part 2: Reference description for ISO
11898 based control systems (ISO 15745-
2:2003)

Holger Zeltwanger

CAN in Automation (CiA)

Am Weichselgarten 26

D-91058 Erlangen

Phone +49-9131-69086-0

Fax +49-9131-69086-79

E-mail: headquarters@can-cia.org
Website: www.can-cia.org

