
iCC 2005 CAN in Automation

10-16

Thread prioritization for an embedded CANopen master
stack with web interface

D. M. Armenis and J. S. Smith
Department of Electrical Engineering and Electronics

The University Of Liverpool

As Tele-robotics continuously receives industrial attention, an embedded CANopen
Master Stack, accessible via the Internet, is proposed. A configurable real-time
operating system permits multi-threaded development whilst PLD technology ensures
system evolution. The impact thread prioritization has on system performance is
investigated, whilst initial design considerations are also presented.

Introduction

Mult i- threaded, real-t ime, control
processes introduce synchronization
and timing issues, unknown to many
embedded applications [1,2]. The scope of
the presented work is both to identify the
reasons for prioritizing control over safety
threads and to determine their minimum
request period during normal operation of
an embedded CANopen Stack with Web
Interface. The results of this study provide
a clear indication of the schedulability of
the proposed system. The determinism of
the stack can also be improved, a required
property for bridging real-time Ethernet [3]
with CAN. Initially, the Stack was
composed of two transceiver threads,
three communication threads and two
databases implemented in eCos [4,5].
Three monitoring threads, for guarding the
functionality of the two required Motor
CANopen (Drive) Slave Nodes and the
optional CANopen Encoder Slave Node
[6,7,8], were added to the second version.
In its current version three control threads
and two user interface threads, were
added as shown in figure 1. The
developed system has been applied to an
Unmanned Underwater Vehicle (UUV) [9].

Timing Issues

Extension of the system to accommodate
more slave devices, raise some very
interesting synchronization questions.
Suppose that a network is composed of
slave nodes incapable of serving more
than two interrupts levels (e.g. slave nodes
based on PIC18F453 devices). In the two
mandatory slave (Drive) nodes, the higher

priority interrupt is used as a pulse
generator. It is responsible for distributing
a pulse, with fixed width, to the stepper
motors commanding them to advance.
The lower priority interrupt is used to
transmit the EMCY PDO during an
emergency. In the Encoder Node, the last
slave node in the system, the higher
priority interrupt is used as the SYNCH
producer for the network. The lower
priority interrupt is used for the EMCY
event as in the Drive Nodes. As a result,
both time depended protocols and CAN
bus receivers are left unsupported. While
the CAN bus registers can be monitored
by a polling procedure, the mandatory
Error Control Services can only be
realised by the CANopen Master under the
Node Guarding Protocol. As expected, the
Node Guarding event can be attained
by a timed, interrupt-based operation.
Nevertheless, the delay introduced by the
pooling procedure, at the slave nodes, will
manifest certain jitter effects during control
directives, which deem this approach
inappropriate for the proposed system.
Consequently, the Node Guarding
Protocol was accommodated in the stack,
implemented under the one-thread-per-
slave philosophy, with a lower priority than
the control threads. Explicitly in this case,
the designer is facing periodic, hard,
real time schedulability issues as a
consequence of delays introduced by the
control threads duration throughout normal
manoeuvring. It is therefore vital to identify
the relationship between the Guard Slave
Thread Priority (GSTP) and Life Time
Value (LTV) [8] in an attempted to
decouple the system control effort from the
Node Guarding Protocol.

iCC 2005 CAN in Automation

10-17

Guard Slave n

PDO attributes access [1:1]

Communication
Web Page

SDO Serving
Thread

PDO producer
Serving Thread

SDO commands PDO Commands

MASTER OBJECT
DICTIONARYSDO write to MASTER OD

SDO read MASTER OD

PDO static LIST

PDO variables access [1:2]

Translate RPDO

SDO Slave acknowledgment

Read/Write Slave OD

Send PDO

CAN bus

CANopen Slave

CANopen Slave

CANopen Slave

CANopen Slave

1

PDO consumer
Serving Thread

Start Stop Reverse
Thread

Direction Thread Distance Thread

Controls Web Page

Guard Slave 2

CAN Receive
Thread

CAN Send Thread

Guard Slave 1

Figure 1: Run-Time Threads

Leung [10] states that a decrease in the
GSTP (priority) can be achieved by
increasing the LTV (deadline) under
the notion of the deadline monotonic
scheduling scheme. As such, a
considerable increase in the Node
Guarding Time (period) would have been
able to accommodate the maximum
system delay. Then again, a defective
node must be identified instantly, in an
attempt to contain the problem and ensure
the system’s graceful degradation, this is
provided by a small Node Guarding
period. In the current stage of the
UUV development, where there is no
Deliberative Module, the user can send
low level commands to the robot on an
irregular basis making the whole system
sporadic. Assuming a fixed time interval
where at least one command will be
issued, the system becomes periodic.
Therefore the proposed work differentiates
slightly from the Node Guarding Protocol
by permitting the Node Guarding Remote

Transmit Requests to occur at random
intervals during the Node Life Time. This
optimizes the Node Guarding time to the
best functional time interval. In the
following sections, two guarantees are
proposed that ensures at least one
Remote Transmit Request before the
Node Life Time expires. Both approaches
try to minimize the LTV until the system
reaches the CPU’s maximum utilization
limit.
The remainder of the paper is organized in
the following manner. Synchronization
Techniques for the Node Guarding
Threads are identified in the next section.
This is followed by the Priority
Assignment Calculations section where
the schedulability of the system is tested.
The methodology for the proposed tests is
then presented. Subsequently, in the
Discussion section, the worst case results
are considered. The paper concludes by
highlighting the importance of this work to
the field of UUVs.

iCC 2005 CAN in Automation

10-18

Synchronization Techniques

Assuming one or more slave nodes, the
developer might face the dilemma of
organizing the Node Guarding Threads in
one of four different ways as described in
table 1.

Table 1: Synchronization Methods

Synchronization
Methods

Same
GSTP for
all slaves

Same
LTV for
all slaves

I
II _
III _
IV _ _

 I. In this method, the GSTP can be
decreased by increasing the LTV
individually for each node. Neither the
priority nor the LTV is the same for any
slave as shown in figure 2. Assuming
that the constant C guard, is the time
necessary for a guard slave thread to be
completed. If no higher priority thread is
active this is subject only to code length
and the processor speed,. It is also the
same for all guard slave threads. Let n
be the number of all mandatory Node
Guarding Threads during the application.
The minimum period for the highest

priority thread is guard
min C⋅= nT so that

there is enough time for every thread to
be completed before the first thread is
overdue. Let D be an unexpected system
delay (i.e. a higher priority thread
becomes ac t i ve) such tha t

minTDCguard << . Then for every thread

p with:

DCpCn guardguard +⋅>⋅ (1)

where]..1[np∈ , the minimum LTV can
be equal to the minimum period Tmin.
Alternatively, the minimum LTV is:

guardp CpnDLTV ⋅−++=)1(min
(2)

This equation is subject to the time the
delay occurred. As the delay approaches
the lowest priority threads, the minimum
LTV increases for all the system except
for those threads that satisfy relationship
(1).

GSTP 1

GSTP n

L
TV

 n

LT
V

 1

Figure 2: Sync method I
 II. In this scenario the nodes all have the

same LTVmin but a different GSTP. This
case is illustrated in figure 3. The
difference from method I is that all
threads must satisfy equation (3), to
ensure normal operation during a delay.

guardCnDLTV ⋅−+=)12(min
(3)

Although (3) makes the system
independent of the time the delay occurs,
it introduces a uniform approach for the
LTV which might not be desirable in
some implementations.

GSTP 1

GSTP n

LT
V

 1

LT
V

 n

Figure 3: Sync method II

 III. In the third method all the threads have
the same priority. Again the minimum
LTV is

guardCnLTV ⋅=min
 but many

threads do accommodate larger values
as shown in figure 4. In an event of a
system delay only the threads that have

DaCLTV guard +⋅< will fail regardless

of the time that the delay occurred.

G
S

T
P

 n

G
S

TP
 1

LT
V

 n

LT
V

 1

Figure 4: Sync method III

iCC 2005 CAN in Automation

10-19

 IV. In the last method, all the threads are
sharing both the same priority and the
same LTV as illustrated in figure 5. If the
delay satisf ies the relationship

DCn guard <⋅ , all threads will fail but if

DCn guard ≥⋅ all threads will succeed.

T
hr

ea
d

1

LT
V

 n
LT

V
 1

Figure 5: Sync method IV

Priority Assignment Calculations

Timing trials of the control application
determined the direction deadline on the
UUV system. This is the maximum time of
processor usage from the higher priority
threads. It was found that 4350 ms was
necessary for the UUV robot to execute a
turn of 45 degrees from rest. This is the
maximum permitted rotation angle for the
vehicle due to its dynamics constraints.
The two graphs shown in figure 6 illustrate
the introduced delays. The worst case
scenario is covered under the assumption
that the CAN bus is inaccessible to the
Guard Slaves Threads for the duration of
the turn. In any other case the delay is
reduced considerably but jitter effects may
appear to the Drive Nodes. The timing of
the deadline is mainly related to the
acceleration and deceleration coefficients
of the motor drives. Figure 6 depicts the
calculated time duration for turning the
vehicle with the current settings of the
acceleration and deceleration coefficients.
There are two main characteristics in such
a system that must be accounted for in an
accurate schedulability analysis.
1. There are only two groups of threads

running during normal operation, the
control threads and the Guard Slave
Threads. They are not related and their
access to the CAN bus is buffered
under a FIFO policy, therefore they are
asynchronous.

2. They are both sporadic in the sense
that their execution interval is related to
the user’s unpredictable input but they

will not be executed more than once
during their deadline.

0

500

1000

1500

2000

2500

3000

5 15 25 35 45 55 65 75 85 95

Degrees to turn

T
im

e
(m

s)

0

1000

2000

3000

4000

5000

5 15 25 35 45 55 65 75 85 95

Degrees to turn

T
im

e
(m

s)

Figure 6: Turn duration travelling at
full speed (top) and from rest (bottom)

Methodology

To obtain the necessary values for the
tests, a hardware timer, normally the one
used to drive the real-time clock, was
used. Generally, this timer can be read
with a resolution typically in the range of a
few _s. For each measurement, the
operation was repeated a number of
times. Time stamps were obtained at the
beginning and at the end of each thread
and they were analyzed, generating
average (mean), maximum and minimum
values. The sample variance (a measure
of how close most samples are to the
mean) was also calculated.

According to [11,12] the schedulability of a
system can be measured by simple
procedures, based upon the concept of
critical instants [1]. Namely, they represent
the times when all processes are released
simultaneously. For a system, this is the
time of the worst-case processor demand.
If all threads can meet their deadlines at a
critical instant then the system is said to
be schedulable. For the system to be

iCC 2005 CAN in Automation

10-20

schedulable any of the following equations
must hold.

1
00

0

≤+
t

C

t

I guard
t
guard (4)

where guarddir CCt +=0

1
11

1

≤+
t

C

t

I guard
t
guard (5)

where guard
t
guard CIt += 0

1

With dir
dir

x
guard C

T
x

I ⋅







= (6)

and],[10 ttx∈

Where x is the space of critical instances,
the times when the threads are being
released.

Given that the Direction Thread must have
a higher priority than the Guard Slave
Threads, if the later is not to interfere with
the control procedure, the deadline of the
Direction thread must be less than the
deadline of the Guard Slave Threads. The
following properties were therefore
assigned to the study:

For the Direction Thread:

Direction Thread Computation Time
(Cdir) = deadline (Ddir) < period(Tdir)

Cdir = 4350ms,
Cdistance= 50ms,

Tdir = (Cdir + Cdistance)

By incrementing the period of the Direction
Thread beyond its deadline, by a time
equal to the Distance Thread computation
time, distance commands can be issued
between turns.

For the Guard Slave Thread:

Guard Thread Computation Time
(Cguard) < deadline (LTV) = period

Cguard = 40ms

Substituting the above values into
equation (4) and (5) proves that the
system satisfies the equality for one Guard
Slave Thread, therefore it is schedulable

with its current priorities assignment. If
more slaves are added to the system then
for n Guard Slave Threads we have:

dir
sys

x
guard C

T
x

I ⋅











=

where))1((guarddistancedirsys CnCCT ⋅−++=

Combining the above equations with
equations (4) and (5), the schedulability of
the system is proved once more.

Discussion

With reference to the aforementioned
synchronizat ion techniques, the
advantages of having the same priority
and different life time values can be
clarified. When the Guard Slave Threads
have different priorities, the system is
prone to the duration of the delay as well
as to the time the delay occurred. On the
other hand when the same priorities
are assumed the system performance
depends solely on the duration of the
interrupt.

In real-time operating systems, such as
eCos [5], it is possible to calculate the
maximum delay of the system but it is
impossible to determine the time of the
occurrence due to user unpredictability.
Addit ionally, devices of different
functionality often have different
requirements for their life circle, thus each
thread can be tailor-made to map the
requirements of the relative slave node.
Following the worst case delay of the UUV
system and assuming full exploitation of
the CAN bus with 127 slave nodes, the
calculated LTVmin is given by:

sec47.14min =LTV for n = 127 (7)

In any case this is the theoretically
maximum delay. If the acceleration and
declaration coefficients were increased
then the LTV will be reduced due to the
quicker response from the slave. Similarly
if they were decreased, the improved idle
time for the direction thread could result in
a lower bus load, therefore permitting the
Guard Slave Threads to run even sooner.

iCC 2005 CAN in Automation

10-21

Conclusion

The work presented was motivated by
research in the autonomous UUV field. In
such systems the early diagnosis of faulty
nodes can result in quick recovery
procedures thus avoiding damaging the
vehicle or losing it into the sea. Several
threads with different priorities are
common to this kind of embedded
application so precise timing is always a
concern. Consequently a customized
CANopen Mater Stack was developed and
implemented by means of both PLD
technology and a real-time, multi-threading
operating system. Industrial CANopen
Master Stacks [13], can benefit from the
functionality introduced by this approach.
Among other developmental variations,
the Node Guarding capabilities were
realized as individual threads, sharing the
same priority but with distinctive tailor-
made Life Times as is dictated by the
second synchronization paradigm. It is
believed that in the near future similar
applications will appear in the emerging
field of Tele-embodiment [14,15].

References

1. Liu, J. and Lee, E. (2003): “Timed
multitasking for real-time embedded
software”, IEEE Control Systems
Magazine, 23:1.

2. Wittenmark B., J. Nilsson and M. T
rngren. (1995) “Timing Problems in
Real-Time Control Systems”. Proc. Of
the American Control Conference.
US.

3. Schneider S. Making Ethernet work
real-time. Sensors Magazine, 2000.

4. Dallaway, J., Garnett, N., Larmour, J.,
Lunn, A., Thomas, G., Veer, B.,
(2004), “RedBoot User's Guide”, Red
Hat Inc.

5. Garnett, N., Larmour, J., Lunn, A.,
Thomas, G., Veer, B., (2003), “eCos
Reference Manual”, Red Hat Inc.

6. CAN in Automation e.V., “CANopen-
Device Profile for Encoders”, CiA
Draft Standard Proposal 406, Version
2.0.

7. CAN in Automation e.V., “CANopen-
Device Profile for Drives and Motion
Control”, CiA Draft Standard Proposal
DSP-402, Version 1.1.

8. CAN in Automation e.V., “CANopen-
Application Layer and Communication
Profile”, CiA Draft Standard 301,
Version 4.01.

9. Evans J.C., Smith J.S., Martin P., and
Wong Y.S. “Beach And Near-Shore
Crawling UUV for Oceanographic
Measurements” IEEE Int. Conf.
Oceans '99 Seattle, USA. pp 1300-6

10. Leung, J.Y.T., and J. Whitehead.
(1982). “On the Complexity of Fixed-
Priority Scheduling of Periodic, Real-
Time Tasks.” P e r f . E v a l .
(Netherlands), 2, pp. 237-250.

11. Audsley, N.C., Burns, A., Richardson,
M.F., and Wellings, A.J., (1991) “Hard
RealTime Scheduling: The Deadline
Monotonic Approach.” In Proc. of the
Eighth Workshop on Real-Time
Operating Systems and Software,
pages 133--138, Atlanta, GA, USA.

12. Audsley, N.C. (1990). “Deadline
Monotonic Scheduling.” YCS 146,
Dept. of Comp. Sci., Univ. of York.

13 . Etschberger K., Schlegel C.
CANopen-based distributed intelligent
automation systems, Proceeding of
the 8th International CAN Conference,
Las Vegas, USA, 2002.

14. Goldberg K., Siegwart R., Beyond
Webcams: An Introduction to Online
Robots, MIT Press, 2002.

15. Goldberg K., The Robot in the
Garden : Te le robo t i c s and
Telepistemology in the Age of the
Internet, MIT Press, 2000

Dimitris Armenis
Department of Electrical Engineering and
Electronics.
The University of Liverpool
Brownlow Hill
Liverpool, L69 3GJ, UK
Tel: 44 151 794 4602
Fax: 44 151 794 4540
E.Mail: D.Armenis@liverpool.ac.uk

Jeremy S. Smith
Department of Electrical Engineering and
Electronics.
The University of Liverpool
Brownlow Hill
Liverpool, L69 3GJ, UK
Tel: 44 151 794 4514
Fax: 44 151 794 4540
E.Mail: J.S.Smith@liverpool.ac.uk

