
iCC 2005 CAN in Automation

04-16

A CAN hub with improved error detection and isolation

Manuel Barranco1, Julián Proenza1, Guillermo Rodríguez-Navas1 and Luis Almeida2

1DMI - Universitat de les Illes Baleares, Spain,

2LSE-IEETA/DET – Universidade de Aveiro, Portugal

Distributed embedded systems that require real-time performance need a network
capable of deterministic access delay. CAN is one such network that became
widespread in recent years due to its electrical robustness, low price, and priority-
based access control. However, its use in safety-critical applications has been
controversial mainly due to dependability limitations that arise from its bus topology,
e.g. the existence of many possible points of failure. In this paper we propose and
present a star topology that exhibits improved fault diagnosis and isolation
mechanisms with respect to other commercially available hubs. Our hub1 is fully
compatible with existing CAN controllers but requires double links. The paper
presents a prototype implementation configurable with 4 to 16 ports, describes its
architecture and presents some performance results.2

1 The contents of this article have been the subject of a patent filing submitted on the 16th of September of 2004.
2
 This work was partially supported by the European Commission through the Network of Excellence ARTIST2 (IST-004527).

1. Introduction

The Controller Area Network (CAN)
protocol is a fieldbus that fulfills the
communication requirements of many
distributed embedded systems. In
particular, CAN provides high reliability
and good real-time performance with very
low cost. Due to this, the CAN protocol is
nowadays used in a wide range of
applications, such as factory automation or
in-vehicle communication.

Nevertheless, since CAN relies on a bus
topology, the structure of a CAN network
presents multiple components that are
connected to each other without proper
error containment. Therefore, a bus
topology presents multiple components
such that a single fault in any of them may
make impossible the communication with
more than one node. In particular, note
that a bus topology presents multiples
single points of failure. In this way, it is
enough that one of them fails to lead to an
entire network failure. For the objective of
our work, we define severe points of
failure (which include single points of
failure) as those ones whose failure
permanently affects the communication
capabilities of two or more nodes, i.e.
whose fai lure causes a severe

communication failure. We have designed
and implemented a new star topology
(CANcentrate) whose central element, a
hub, is provided with the proper error-
containment mechanisms for making
impossible the occurrence of severe
communication failures. With our star, we
reduce all the multiple severe points of
failure present in a bus to one single point
of failure: the hub. Even so, we consider
our star topology a good solution since it is
easier to deal with one single point of
failure than with many of them.

In the following section we discuss the
properties of existing solutions to improve
the dependability properties of CAN,
focusing on the advantages of a simplex
star topology with respect to simplex and
replicated bus topologies. Moreover,
existing work on star topologies for CAN is
also presented. Section 3 presents the
architecture of CANcentrate. A prototype
implementation of CANcentrate is
described in Section 4. Section 5 presents
future work and Section 6 summarizes the
paper.

2. Bus versus star topology

In order to better understand how our star
topology prevents the existence of multiple

iCC 2005 CAN in Automation

04-17

components in the network such that a
single fault in any of them may cause a
severe communication failure, it is
necessary to specify the different kinds of
faults that may happen in the components
of a CAN network. These kinds of faults
are three. On the one hand, stuck-at-
dominan t faults and stuck-at-recessive
faults that occur whenever a given
element (a node or a medium) issues a
constant dominant bit or a constant
recessive bit respectively. Notice,
however, that only stuck-at-dominant
faults may cause a severe failure. On the
other hand, bi t - f l ipping faults occur
whenever a given element has an
uncontrolled behavior in the value domain
and constantly sends arbitrarily erroneous
sequences of bits. See [1] for a thorough
discussion about these faults.

Some of these faults can be confined in
bus-based CAN systems, up to a certain
extent, using techniques that are already
known. These techniques rely on the use
of replicated transmission media (like the
one proposed in [2]) as well as on the use
of bus guardians [3]. However, even if
these solutions are used together in the
same system, they still allow multiple
components to cause severe failures of
the communication system. This is
because common mode failures may
affect both replicated media, as well as
any bus guardian and its node. Thus,
alternat ive solut ions have been
researched, namely those based on a star
topology.

In a star topology, each node is connected
to a central element, the hub, by its own
link. The hub is a natural element to
enforce the necessary error containment
by isolating the appropriate hub's port
when detecting a faulty link or a faulty
node. Furthermore, the independence
between the hub and the nodes is
completely ensured. However, even
though the star topology provides a good
basis to improve the dependability of the
communication system, the adoption of
such a topology is not enough. Additional
mechanisms should be included in the hub
in order to diagnose and isolate faulty
components that may cause a severe
communication failure.

Some star topologies for CAN can be
found in the literature, namely passive star
topologies [4] [5], active star topologies [4]
[5] [6], as well as the StarCAN protocol [7].
However, any of these available star
topologies for CAN either do not address
severe communication failures [4][5][7] or
deal only with stuck-at-dominant faults [6].
Thus, almost all these star topologies
behave as a bus with enhanced resilience
to spatial proximity faults. Moreover, they
present additional drawbacks. First, some
of them impose strong bit rate and cabling
length limitations (mainly passive stars
and the stars presented in [6]). Second,
StarCAN is not compatible with
Commercial Off-The-Shelf components
(COTS) and does not preserve the
dependability properties of the CAN
protocol. Third, the active star topologies
presented in [6] even though addressing
stuck-at-dominant faults, need a significant
amount of time for diagnosing them.

In contrast, we have designed and built a
new star topology, called CANcentrate,
that overcomes these drawbacks and
which focuses on achieving the goal
specified above, i.e. to detect and isolate
faulty components that may cause a
severe communication failure.

3. Design of CANcentrate

In the CANcentrate architecture, each
node is connected through a dedicated
link to a different port of a central hub. In
this way, a node together with its
dedicated link constitute an error-
containment region. From the hub
perspective, a permanent fault within a
given error-containment region manifests
as a permanently faulty port. Therefore,
the hub can prevent a severe failure by
diagnosing and isolating any permanently
faulty port. It is worth noting that the hub
only diagnoses and isolates the kind of
faults that may provoke a severe failure
(stuck-at-dominant faults and bit-flipping
faults). In addition, it is also able to detect
stuck-at-recessive faults and includes a
reintegration policy for re-enabling each
port (previously isolated) after a period of
inactivity is observed in this port.

Additionally, the preservation of all the
CAN specifications is a requirement that

iCC 2005 CAN in Automation

04-18

was imposed on the design of the hub.
The preservation of the CAN specifications
allows keeping all the CAN properties
related to dependability, as well, as the
use of COTS components.

The hub is divided into three modules,
namely the Input/Output Module, the
Coupler Module, and the Fault-Treatment
Module. T h e s t r u c t u r e a n d
interconnections of these modules are
depicted in Figure 1.

Figure 1. Internal structure of the hub

In order to preserve the CAN
specifications, the hub replaces the wired-
AND functionality of the CAN bus by an
AND gate included in the so-called
Coupler Module. This AND gate couples
all the nodes contributions, B1..n, and then
the resultant coupled signal, B 0 , is
broadcast to all nodes.

In what concerns the fault-diagnosis
mechanisms and the fault-isolation
mechanisms, they are basically included in
the Fault-Treatment Module. On the one
hand, these mechanisms require the
identification of the contributions from
every node as well as to be able to
independently isolate each contribution.
On the other hand, in order to correctly
understand (and thus to evaluate) the
contribution of each node, the fault-
diagnosis mechanisms also need the hub
to be synchronized with the CAN nodes at
both bit level and frame level.

The identif ication of each node
contribution as well as the capability to
independently isolate ports is achieved by
using two independent links for each node.
One uplink that carries the signal from the
node to the hub, and one downlink that
carries the coupled signal from the hub to

the node. As depicted in Figure 1, the
Input/Output Module includes two
transceivers for each node that translate
the physical signal into a logical form and
vice versa.

Regarding the other requirement needed
by the fault-treatment mechanisms of the
hub, namely the synchronization at both
bit level and frame level, the Fault-
Treatment Module basically includes the
Rx_CAN Module and the Error Flag
Generator Module (errorFlagGenerator in
the Figure 1). The Rx_CAN Module uses
the basic reception mechanisms of a CAN
controller [8] for allowing the hub to keep
the synchronization at both levels. It
generates the reception and the
transmission clocks (clkR and clkT in
Figure 1 respectively), as well as a set of
signals, C , that describes the bit that is
currently being observed at the coupled
signal (e.g. whether the bit is a stuff bit or
not; the location of the bit inside the frame,
etc). Furthermore, in order to keep the
synchronization in spite of errors that are
detectable in the coupled signal by means
of the error detection mechanisms of CAN,
the Rx_CAN Module detects and forces
the globalization of the same errors that
would be detected by a CAN receiver. The
error globalization is performed by the
Error Flag Generator by means of an
active error flag through the dedicated
signal hubTx.

The fault diagnosis and fault passivation
are carried out by the Enabling/Disabling
units (Ena/Dis in Figure 1). On the one
hand, each one of these units has a
dedicated event counter and an
associated manager module for each type
of fault that must be detected (see Figure
2): the Dominant Bit Counter (DBC) and
the DBC Manager Module for stuck-at-
dominant faults; the Non-Acknowledge
Coun te r (NACKC) and the N A C K C
Manager Module for the stuck-at-
recessive; and the Bit-Flipping Counter
(BFC) and the BFC Manager Module for
the bit-flipping faults. Each management
module basically analyzes the coupled
signal, B 0 , its corresponding port
contribution, Bi, and the state signals, C
from Rx_CAN, in order to decide how to
increase or decrease its corresponding
event counter.

iCC 2005 CAN in Automation

04-19

On t he o the r hand , each
Enabling/Disabling Unit has a Threshold
Control Module that is aimed at declaring
the port as permanently faulty when
appropriate as well as to isolate its
contribution. The Threshold Control
Module takes into account the value
registered by each of its corresponding
event counters and is programmed with a
specific threshold for each of them: the
Dominant Bit Threshold (DBT), the Non-
Acknowledge Threshold (NACKT) and the
Bit-Flipping Threshold (BFT). Whenever
any of the event counters exceeds its
corresponding threshold, the Threshold
Control Module removes the contribution
of this port from the system by issuing a
logical '1' to the corresponding
Enabling/Disabling signal, ED1..n, which is
connected to the OR gate (included in the
Coupler Module) that corresponds to the
faulty port. In general, this isolation
mechanism based on the use of OR gates
is similar to the one proposed in [2] to
manage, locally in each node, the media
redundancy in a replicated bus topology.

Figure 2. Internals of Enabling/Disabling Unit

Additionally, in order to increase the
tolerance to transient errors, the Threshold
Control Module may use a specific
reintegration policy to re-enable the port
contribution and to allow the operation of
all managers again, after a given period of
inactivity is observed at the port. As
depicted in Figure 3, a port is in the idle
state after the initialization of the hub or
when the port is diagnosed as being stuck-
at-recessive. When a port in the idle state
sends any dominant bit during the
arbitration, in the ACK slot or issues an
active error flag, it enters the active state.
The contribution of a port in the idle or in

the active state is enabled. Note that a
port diagnosed as being stuck-at-
recessive enters into the idle state and its
contribution is not isolated. This is
because it does not generate errors that
propagate to other ports. In contrast,
whenever the port is declared as
permanently being stuck-at-dominant or
bit-flipping, the port enters the disabled
state and its manager modules are reset.
This actually implies that the port is
isolated, as well as that the event counters
are also reset. However, if during the
disabled state, 127 bus free occurrences
are detected, the port enters again the idle
state and its contribution is re-enabled.

Figure 3. Reintegration policy

4. CANcentrate prototype implementation

This section is aimed at describing the
basics of the first prototype of
CANcentrate. The experimental platform
that has been set up in order to test this
prototype is also discussed. Finally the
main results of these tests are presented.

4.1. Description of the prototype

The prototype is divided into several parts.
Each of them corresponds to a given part
or parts of the CANcentrate architecture.
When building our prototype, we
differentiated the following parts: the
Coupler and the Fault-Treatment modules
(referred hereafter as the internal part of
the hub), the Input/Output Module, the
links, and the CAN nodes. Next, a general
description of the characteristics of each
part of the implementation is given.

The internal part of the hub has been
implemented using the VHSIC Hardware
Description Language (VHDL) and the
Xilinx Virtex XCV300-PQ240 Field

iCC 2005 CAN in Automation

04-20

Programmable Gate Array (FPGA), which
is placed in the Xilinx prototype board
PQ240-100 Prototype Platform (HW-AFX-
PQ240-100 version).

A dedicated board has been used for
implementing the Input/Output Module.
This board mainly contains four pairs of
Philips PCA82C250 high-speed CAN
transceivers and four RJ45 plugs (one
plug for each pair of transceivers), so that
up to four CAN nodes can be connected to
the hub at the same time. The pin CANL
(LOW level CAN voltage input/output) and
the pin CANH (HIGH level CAN voltage
input/output) of each transceiver are then
connected to the appropriate pins of the
corresponding RJ45 plug. The
interconnection between the Input/Output
Module and the internal part of the hub is
made by means of a flat cable, which
connects the specific reception and
transmission pins of the CAN transceivers
with the corresponding pins of the Xilinx
prototype board.

One UTP (Unshielded Twisted Pair)
Category 5/5e/6 Ethernet cable is used for
implementing each link, which is
constituted by an uplink and a downlink
(as explained in Section 3). Both the uplink
and the downlink use two-wire differential
lines. The uplink uses the Transmit pair
while the downlink uses the Receive pair
of the Ethernet cable.

The CAN nodes have been implemented
using CANivete boards, which are a
previous development of the Universidade
de Aveiro (UA) for standard CAN
applications and implements a typical CAN
node based on the Philips 82C592 micro-
controller. A small modification was carried
out to adapt the standard CAN interface of
the CANivete to the double links of
CANcentrate, adding a Phi l ips
PCA82C250 high-speed CAN transceiver
and a RJ45 plug.

4.2. Experimental platform

The prototype of CANcentrate was tested
to check its correct operation under error-
free conditions and in the presence of
faults, as well as to measure its
performance. To perform these tests, an
experimental platform was buil t .
Specifically, the issues that were taken

into account when devising this platform
are the configuration of the application that
is executed at the CAN nodes, the
configuration of the network and the fault-
injection mechanisms. Additionally, two
requirements are imposed on this
experimental platform: to achieve the
maximum network utilization with a given
bit rate, and to force an arbitration at the
beginning of the transmission of each
frame.

The f irst issue concerning the
experimental platform is the configuration
of the application that the CAN nodes
execute. All CAN nodes run the same
program, but with different sets of CAN
identifiers. The program is constantly
trying to send data frames with different
identifiers and different data lengths, in
order to test different frames. In addition,
for fulfilling the requirement of achieving
the maximum network utilization with a
given bit rate, the program follows two
basic rules: it must trigger a new
transmission whenever it successfully
transmits a frame and it must restart the
CAN controller whenever, due to errors, it
reaches the bus-off state.

With regard to the second issue of the
experimental platform, namely the
configuration of the network, it covers
several aspects that are related to the
nodes, to the links and to the bit rate.

Concerning the nodes, it is worth noting
that at least three CANivete nodes are
needed for fulfilling the requirement of
forcing arbitration to take place in the
transmission of each frame. This is
because of the CAN controller within the
82C592 micro-controller.

The 4th port of our hub was used for fault-
injection purposes as will be explained
later in this section. Therefore, the network
is configured with three non-faulty CAN
nodes plus a port for fault injection.

Regarding the other aspects covered in
the network configuration, the links and
the bit rate, several Ethernet cables of
different lengths, as well as different bit
rates have been used in order to measure
the performance of the network depending
on the star diameter and the bit rate.
Nevertheless, due to implementation
limitations on the clock oscillators of the
CANinvete nodes, the maximum bit rate

iCC 2005 CAN in Automation

04-21

that has been used for testing the
performance is 690kbit/sec.

Finally, the last issue related to the
experimental platform is the set of fault-
injection mechanisms that are used to
validate the fault-treatment capabilities of
the hub. As explained in Section 3, the
hub is able to detect permanently faulty
ports which present stuck-at-recessive
faults, as well as to diagnose and isolate
permanently faulty ports which present
stuck-at-dominant or bit-flipping faults.
Stuck-at-recessive faults can be easily
injected by disconnecting the link of an
operational CAN node from the hub.
However, a more complex fault-injection
mechanism is needed for stuck-at-
dominant and bit-flipping faults.

For injecting these faults, a signal
generator device was used to generate
different bit stream patterns. Specifically,
each bit stream pattern consists of a
periodic signal that alternates from the
recessive to the dominant value with a
given frequency, thus injecting stuck-at-
dominant and bit-flipping faults as
explained in the following Section.

4.3. Functional tests

The correct operation of the prototype
under error-free conditions, as well as in
the presence of faults was checked by
means of several functional tests. The
aspects that have been tested under error-
free conditions are the correctness of the:

• Operation of the different state
machines that constitute the hub.

• Calculation of the coupled signal upon
all node contributions.

• Correct synchronization at bit level and
at frame level.

• Assignation of the roles of the nodes
after the arbitration phase.

In contrast, the aspects that have been
tested in the presence of faults are the
correctness of the:

• Increase and decrease of the different
event counters during different fault
scenarios.

• Detection of ports suffering stuck-at-
recessive faults, as well as the isolation

of ports suffering stuck-at-dominant or
bit-flipping faults.

• Reintegration of ports.

All the issues indicated above were tested
at two different levels: at the level of the
VHDL design of the hub and at the level of
the physical network. However, each one
of these two levels imposes different
limitations. Thus, the different aspects
listed above have been tested in different
depths at the two levels.

The first level of testing, i.e. the functional
test of the VHDL design of the hub, was
done by means of the simulation tool
ModelSim XE II 5.7g (provided by Mentor
Graphics Corporat ion) . Severa l
simulations were done in order to check all
the issues specified above and, in all
cases, the operation of the hub was
correct. Special attention has been paid to
check the correct operation of the different
state machines that constitute the hub, as
well as their correct mutual interaction.

In what concerns the second level of
testing, physical limitations in the layout of
the FPGA board discourage an exhaustive
test of all the state machines that
constitute the hub. In contrast, many more
fault scenarios can be injected at physical
level than at simulation level.

For this physical level of testing different
parts of the physical network have been
observed by means of a logical analyzer
and a digital oscilloscope. In particular, the
ports of the hub were observed in order to
know which is the contribution of each
node as well as the value of the coupled
signal. Since the Rx_CAN Module and the
Enabling/Disabling units are key modules
for synchronizing the hub at bit level and
at frame level, as well as for diagnosing
and isolating faulty ports respectively, they
have also been observed.

For physically testing the correct operation
of the network under error-free conditions
(like during the phase of the tests of the
VHDL design), the correct calculation of
the coupled signal, the correct
synchronization at bit and at frame level
and the correct roles assignment during
the arbitration phase have been checked.

With regard to the physical testing of the
fault-treatment mechanisms the hub
implements, extensive tests that include

iCC 2005 CAN in Automation

04-22

stuck-at-recessive, stuck-at-dominant, bit-
flipping faults and the reintegration policy
have been performed.

Specifically, in order to physically test the
actions carried out by the hub in the
presence of stuck-at-recessive faults, the
link of a previously operating node has
been mechanically disconnected. When
the link is disconnected a transient bit-
flipping behavior is observed in its
corresponding port. However, these
erroneous bits are not enough for leading
the hub to isolate the port. In contrast the
contribution of the port quickly stabilizes to
the recessive value and then, the hub
indicates that it is stuck-at-recessive.

For physically testing the operations the
hub performs in the presence of stuck-at-
dominant faults, the signal generator was
used to transmit a periodic signal that
keeps the dominant value during many
frames. It was observed that the hub
correctly increases the appropriate event
counter and isolates the corresponding
port whenever the pertinent threshold is
exceeded.

In what concerns the fault-diagnosis and
fault-isolation operations the hub performs
in the presence of bit-flipping faults, two
kinds of techniques for injecting them have
been used. On the one hand, a bit stream,
which has random values, was injected by
m e a n s o f m e c h a n i c a l l y
connecting/disconnecting a given link into
its plug. On the other hand, the signal
generator was used for injecting a bit
stream that changes from the recessive to
the dominant value with different
frequencies that do not match with the bit
rate the nodes use for communicating. In
both cases, the beginning of the bit-
flipping injection was randomly chosen.
Many tests were performed with both
techniques and in all situations the results
were correct.

Finally, for the physical testing of the
reintegration policy, the state of a given
port was observed in different situations.
After this port was isolated due to a stuck-
at-dominant or a bit-flipping fault, a
recessive value was forced in this port by
disconnecting its link or by compelling its
node to send recessive bits. In these
cases, the hub re-enabled the contribution
of the port, which agrees with the

expected behavior related to the
reintegration policy.

4.4. Performance measurements

In what concerns the performance tests,
some measurements have been made.
The values of the FPGA device utilization
needed for implementing the hub
prototype (with 4 ports) are: 758 out of
3072 slices, 278 out of 6144 Flip-flops,
1396 out of 6144 LUTs, 91 out of 170
IOBs, 4 out of 4 GLCKs. The extra delay
introduced by the internal part is 35 ns,
whereas the average value of the extra
delay introduced by the entire hub is 155
ns. Notice that the value of the extra delay
introduced by all the hub is of the order of
1/6 of the bit time when operating at the
higher bit rate allowed in CAN [10]
(1Mbit/sec). In addition, the internal part of
the hub has been also built with 16 ports.
The values of the FPGA device utilization
in this case are: 2534 out of 3072 slices,
869 out of 6144 Flip-flops, 4662 out of
6144 LUTs, 91 out of 170 IOBs, 4 out of 4
GLCKs. It has been observed that the
extra delay introduced by the internal part
of the hub does not visibly depend on the
number of ports it is provided with. Finally,
several Ethernet cables of different
lengths, as well as different bit rates have
been used in order to measure the
performance of the network depending on
the star diameter and the bit rate. As said
before, due to implementation limitations,
the maximum bit rate that has been used
is 690kbit/sec. At this bit rate, the
maximum star diameter that was used
without generating errors is 70 meters
which implies a negligible reduction in
length when compared with a CAN bus
operating at the same bit rate (maximum
length of approximately 80 meters) [10].
Moreover, remember that in a star the
maximum length applies only to every pair
of links, thus the star increases the
capacity to interconnect nodes when
compared with the bus topology [1].

5. Future work

Currently, there is on-going work to
improve the fault-tolerant characteristics of
CANcentrate. Specifically, we are

iCC 2005 CAN in Automation

04-23

addressing both the issue of the
replication of the hub to eliminate the
single point of failure, as well as the
integration of more fault-diagnosis
mechanisms in the hub that may allow
further restricting the failure semantics of
CAN-based communication systems.

6. Conclusions

The use of CAN in safety-critical
applications has been a controversial
topic. This is due to a few factors such as
the bus topology. In fact simplex bus
topologies suf fer f rom several
impediments to enforce error containment
while replicated buses may exhibit
common mode and spatial proximity faults.
On the other hand, star topologies may
represent a positive step due to the key
role that the hub can perform to diagnose
and passivate faults. In fact, it allows
reducing the number of components
whose failure can cause a severe failure of
the communication system, to a unique
single point of failure, i.e. the hub.

We have designed and implemented an
active star topology, called CANcentrate,
that makes impossible the occurrence of
severe failures. Additionally, our star is
compatible with off-the-shelf CAN
controllers and can be used with any CAN-
based protocol (e.g. TTCAN [11], FTT-
CAN [12], Timely CAN [13], MajorCAN
[14], etc).

We briefly described the architecture of
the central device of CANcentrate, a hub,
which can be built using off-the-shelf
FPGA technology.

Finally, we explained the implementation
of a first prototype of CANcentrate. We
checked the correctness of the fault-
treatment mechanisms of the hub
prototype and we evaluated the
performance of CANcentrate. In particular,
it has been observed that the extra delay
introduced by the hub does not depend on
the number of ports. Moreover, this extra
delay implies a negligible reduction of
length when compared with a CAN bus
operating at the same bit rate.

References

[1] M. Barranco, G. Rodríguez-Navas, J. Proenza, and
L. Almeida, “CANcentrate: An active star topology for
CAN networks”, WFCS'04. IEEE Workshop on

Factory Communication Systems, Vienna, Austria,
2004.

[2] J. Rufino, P. Veríssimo, and G. Arroz, “A Columbus'
Egg Idea for CAN Media Redundancy”, FTCS-29.
The 29th International Symposium on Fault-Tolerant
Computing, Winconsin, USA, June 1999.

[3] I. Broster and A. Burns, “An Analyzable Bus-
Guardian for Event-Triggered Communication”, in
Proceedings of the 24th Real-time Systems
Symposium (RTSS), University of York, UK. Cancun,
Mexico: IEEE, Dec 2003, pp. 410.419.

[4] M. Rucks, “Optical layer for CAN”, 1st International
CAN Conference, November 1994.

[5] CiA, “CAN physical layer”, CAN in Automation (CiA),
Am Weichselgarten 26, Tech. Rep. [Online].
Available: headquarters@can-cia.de.

[6] IXXAT, “Innovative products for industrial and
automotive communication systems”. 2005. [Online].
Available: http://www.ixxat.de/index.php.

[7] G. Cena, L. Durante, and A. Valenzano, “A new
CAN-like field network based on a star topology”,
Polytechnic Institute Torino Std. 23, July 2001.

[8] ISO, “ISO11898. Road vehicles - Interchange of
digital information - Controller area network (CAN)
for high-speed communication”, 1993.

[9] I. XilinX, “Virtex 2.5v field programmable gate array
(product specification)”, 2001.

[10] CiA, “CAN data link layer”, CAN in Automation (CiA),
Am Weichselgarten 26, Tech. Rep. [Online].
Available: headquarters@cancia.de

[11] H. Kopetz, “Time-Triggered Protocols for Safety-
Critical Applications”, Presentation, Vienna
University Of Technology, TU Wien, Karlsplatz 13,
1040 Vienna, Austria, March 2003.

[12] L. Almeida, P. Pedreiras, and J. A. Fonseca, “The
FTT-CAN Protocol: Why and How”, in IEEE
Transactions on Industrial Electronics – special issue
on Factory Communication Systems, vol. 49, no. 6,
December 2002.

[13] I. Broster and A. Burns, “Timely use of the CAN
protocol in Critical Hard Real-time Systems with
Faults”, in Proceedings of the 13th Euromicro
Conferencs on Real-time Systems (ECRTS). IEEE,
2001, pp. 95.102.

[14] J. Proenza and J. Miro-Julia, “MajorCAN: A
modification to the Controller Area Network to
achieve Atomic Broadcast”, IEEE Int. Workshop on
Group Communication and Computations, Taipei,
Taiwan, 2000.

Manuel Barranco, mbarranco@det.ua.pt
Julián Proenza, julian.proenza@uib.es
Guillermo Rodríguez-Navas,
guillermo.rodriguez-navas@uib.es
Systems, Robotics and Vision Group
Dep. Ciències Matemàtiques i Informática,
Universitat de les Illes Balears,
Palma de Mallorca (SPAIN)

Luis Almeida, lda@det.ua.pt
Dep. de Electrónica e Telecomunicações,
Universidade de Aveiro,
Aveiro (PORTUGAL)

