
iCC 2005 CAN in Automation

05-1

Analysis of the physical layer using virtual vehicle

networks

Carsten Schanze, Volkswagen AG

Thorsten Gerke, Synopsys Inc.

Development and verification of in-vehicle networks include multiple design layers.
These layers include the logical layer represented by the software application, the
associated data link layer, and the physical connection layer containing bus
interfaces, wires, and termination. Verification of these systems in the early stages of
the design process (before a physical network is available for testing) has become a
critical need. As a result, the need to simulate these designs at all their levels of
complexity has become critically important. In-vehicle networks can be simulated on
many different abstraction levels using various model levels and modeling
technologies. Early in the development process, analyses can be performed without
having available any detailed models from the chip manufacturer or component
supplier. Later in the development process, more accurate models can be integrated
into the simulation process, including those provided by suppliers and chip
manufacturers. This paper demonstrates a portion of the development and verification
process of the physical layer of an in-vehicle CAN Bus at Volkswagen using the Saber
simulation environment. This paper also demonstrates integrating portions of the
logical layer into the simulation so both logical and physical layers can be simulated
together.

Introduction

Today’s automotive networks are very
complex and combine a couple of
networks together into one heterogeneous
network environment. Each sub- network
might use different protocols or similar
protocols with different transmission rates.
Over the past 10 years CAN has become
the standard in the automotive industry for
applications like powertrain, comfort and
infotainment. A complete CAN bus
network contains the following
components:

• CAN node

• Transmission line

• Termination

Usually the applications require additional
circuitry in order to ensure immunity
against EMC effects. As shown in Figure 1
every CAN node includes four main
components:

• CAN transceiver

• CAN controller

• µ-controller

• Interface to sensors and actuators

• EMC protection circuit

The physical layer of a CAN bus network
contains the transmission medium (wire
harness), transceiver, the physical
signaling of the CAN controller and any

A B

C D

CAN controller

Transceiver

µ-Controller

Sensor/Actuator IF

CAN bus

Tx Rx

CANH

CANL

Figure 1 CAN node

iCC 2005 CAN in Automation

05-2

additional circuitry necessary to achieve
acceptable EMC behavior. This article
describes how to model and simulate this
physical layer.

Problems when verifying the physical layer
of a CAN network

The problem of verifying the physical layer
of a CAN bus network is to guarantee
sufficient signal integrity in order to ensure
that the CAN controller always samples
the correct bit value representing the
current state on the bus. Unlike the digital
controller signals (Tx, Rx), signals on the
physical layer (CANH, CANL) are analog
quantities. The integrity of these analog
signals depend on several factors like
network topology, network interface,
transceiver etc. The topology includes the
structure of the network (e.g. a star
architecture or a linear bus with stubs), the
number of ECUs and the length of the
transmission lines. The minimum and
maximum number of ECUs are fixed for
the specific vehicle platform. However the
number between minimum and maximum
depends on the configuration of the
individual vehicle. The interface between
the ECUs and the transmission lines
consists of passive elements like
capacitors, ESD protection (e.g. varistors),
termination resistors and common mode
chokes. Each of these elements is
affected by tolerances due to
manufacturing inaccuracies or
temperature dependencies. The bit timing
configuration is one of the important tasks
of the verification process. It specifies
when the CAN controller samples the bus
and determines the transmission rate in
the network. It significantly affects the
performance of the CAN bus network
since a poorly configured bit timing can
force a CAN node to go into the error
passive state during an arbitration phase.
Unlike the digital signals of the controller
the signal behavior on the bus is analog.

The verification of the physical layer of the
CAN network must ensure that the worst
case combination of parameters and
tolerances assures sufficient signal
integrity so that each allowed bit timing
configuration leads to a correct sampled
value. Verification by measurements on
prototype vehicles is insufficient because

the worst case configuration is usually not
available during the early stage of the
development process and the values of
the tolerances are distributed randomly.
Changing an existing prototype topology
would significantly increase the
development costs and time. Therefore
the system simulation is a fundamental
requirement for the verification of this kind
of application in the early stages of a
design process.

Simulation models

The complete CAN network and its
components were modeled and simulated
in the Saber Simulation environment.
Saber is an analog/mixed signal simulator
that provides a complete environment for
modeling, simulation and post processing
in order to analyze a wide range of
applications. Designs can be created very
rapidly via schematic entry. Saber
provides both basic analysis types like
transient (time domain) and AC (small
signal) analysis as well as advanced
analysis methods like Monte Carlo, which
is very powerful for analyzing the effects of
parameter tolerances. Saber’s automation
methods have also been used in this
example in order to automate the
simulation and post processing flow. The
following sections describe the models
required for the simulation.

Overall simulation model of a CAN network

The overall simulation model contains five
CAN nodes including all required
components in order to simulate the
physical behavior of the communication

CANH CANL

3

Oscillator

4

5

1

2

Wire

Receive
Transmit

CAN
controller

Figure 2 Simulation model

iCC 2005 CAN in Automation

05-3

system. Every node includes EMC
protection circuitry, transceiver and CAN
controller. All nodes are connected via
physical wires modeling the behavior of a
twisted pair transmission line. Figure 2
shows the architecture of the overall
simulation model.

Transmission line

The transmission line is one of the critical
parts in the simulation model. It must
include effects like reflection and crosstalk
but must also achieve good simulation
speed as the overall CAN simulation
model is intended to be used in analyses
that are computationally intensive, e.g.
Monte Carlo. Figure 3 compares the
transient behavior of the simulated wire

model with experimental measurements. It
can be seen that the difference between
measurements and simulation is
sufficiently small and the model maps very
accurately the dynamic behavior of the
transmission line.

Common mode choke

The common mode choke is modeled
hierarchically with coupled inductors and
their resonance behavior. Characterization
of the model parameters is performed by
measurements in the frequency and time
domain. The input resistance (odd and
even mode) was determined in the
frequency domain by measuring the
complex resistance values (magnitude and
phase). Different common mode chokes

can be modeled by characterizing this
generic model using different parameter
sets obtained from measurements. The
model provides accurate AC and transient
behavior while exhibiting excellent
simulation speed.

Transceiver

The simulation model of the transceiver
must be very accurate as it has a
fundamental impact on the signal integrity.
Therefore it is recommended to obtain this
model directly from the semiconductor
manufacturer. This application uses the
TLE 6250 transceiver chip, a high speed
CAN transceiver from Infineon. The model
was especially developed for system
simulation and is approximately 16 times
faster than the transistor circuit model of
the entire IC. Figure 5 shows the

hierarchical architecture of the CAN
transceiver model. The model considers
all required functions like over
temperature, low supply voltage, short

circuit and real current consumption. It
covers the complete range of input and
output voltages, supply voltage and

Thermal
Network Over Temp

Transmit
Network

Receive
Network

Input
Logic

Supply

Tamb

Gnd

Vcc

Inh

Figure 5 TLE 6250 model

L1

L2

k

Figure 4 Common mode
choke

CANH

CANL

Measurement

Simulatio

Figure 3 Measurement vs.
simulation

iCC 2005 CAN in Automation

05-4

temperature limits specified in Infineon’s
data sheet for the TLE 6250. Applied in
various test benches the simulation model
has delivered both very accurate results
and good simulation speed.

Simplified CAN controller

For the verification of the physical layer
only a reduced set of the CAN controller’s
functionality is required. The simplified
model contains some functions of a CAN
controller according to CAN specification
2.0 and ISO 11989 and is intended to
simulate the timing and acknowledgement
behavior of a CAN controller. Figure 6
shows the infrastructure of the simplified
CAN controller model. The model has four
connection pins:

• Osc (Oscillator)

• CAN_state

• Tx

• Rx

The pin CAN_state shows the state that
has been sampled by the CAN controller
at its Rx pin. This determines whether the
correct value has been sampled or if the
bit timing configuration is incorrect. The
BTR parameters (TSeg1, TSeg2, Sample
mode, BRP and SJW) can be specified by
the user as model arguments of the
controller model. The timing behavior
determines the bit time (TBit), the sample
point (SP), the sample mode (single or
triple) and the SJW. In single sample
mode sampling proceeds between two tQ
at the programmed value. In triple sample
mode sampling proceeds in the previous
three tQ from the programmed value. The
valid value is calculated by majority vote.

One of the major functions of the timing
behavior is the resynchronization as
shown in Figure 7. The resynchronization
occurs at the edges from recessive to
dominant state when the CAN controller

recognizes a falling edge at its Rx pin. If
the edge occurs in TSeg1 (not in the
SyncSeg, but before the sample point) the
receiver interprets this as a delayed edge
from a slower transmitter and TSeg1 of the
receiver will be extended. If the edge
occurs in Tseg2 (between sample point
and SyncSeg), this is interpreted as early
edge of a fast transmitter and TSeg2 of
the receiver will be shortened. If the phase
error is smaller than SJW, the relevant
segment is corrected by the value of the
phase error, otherwise by SJW. In the
case that the phase error is greater then
the SJW, the CAN controller cannot
completely resynchronize the appropriate
CAN node within a single bit timing cycle.
All receivers that receive a correct
message acknowledge this by transmitting
a dominant bit. The transmitter sends a
recessive bit in the same time slot. The
bits before and after the acknowledgement
of the receiver are recessive. The
complete algorithm of the timing and the
acknowledgement behavior of the CAN
controller can be modeled as state
machine. StateAMS enables graphical
modeling of state machines containing

Tx of Transmitter

Rx of slower Receiver

Rx of faster Receiver

Sync

Sync Sync

Sync

Sync

Sync

Sync

Sync

Sync

Figure 7 Resynchronization

BRP

Timing

Osc

Figure 6 CAN controller
model

Rx

Tx

CAN_state

iCC 2005 CAN in Automation

05-5

analog and digital device behavior. The
benefit of this technology is that it frees the
user from dealing with any modeling
languages as the entire behavior is
described graphically in conjunction with
analog equations and digital assignments.
StateAMS creates the simulation model
on-the-fly based on the state diagram
information, making it easier for the model
developer to alter and maintain complex
models without hand-coding in modeling
languages like MAST, VHDL-AMS or
Verilog. Figure 8 shows a portion of

the CAN controller’s state diagram model
in StateAMS. States are represented by
circles indicating the current operating
point of the controller. The controller
changes from one operating state to
another as soon as the transition that is
connecting these states becomes true.

Simulation of the CAN network

The required simulation described
previously can be combined into a test
bench for the purpose of verifying the
behavior of an entire CAN bus network.
Figure 9 shows the test bench including
five CAN nodes connected together via
transmission lines to form a star
arrangement. Each CAN node is modeled
hierarchically, consisting of the following
components:

• CAN controller including baud rate
prescaler and bit timing state
machine

• CAN physical layer

• Oscillator

The hierarchical controller model contains

the BRP and the BTL. The state machine
of BTL has been modeled as a state
diagram and the BRP has been
implemented directly in MAST, Saber’s
modeling language. The physical layer
includes the CAN transceiver, connected
to the voltage regulator and the
appropriate termination circuits, consisting
of stabilization circuit, choke coil and
additional capacitors. The oscillator is
modeled as a digital pulse source that
samples the CAN controller.

The first test bench example illustrates
how the synchronization of the CAN nodes
works. ECU1 sends a series of 15 bits to
the bus. The bit stream contains a series
of falling edges (recessive to dominant) in
order to show the synchronization
activities of the ECUs. All ECUs are
supposed to send an acknowledgement bit
(dominant state) after receiving a series of

Figure 8 State machine
Figure 9 CAN test bench

iCC 2005 CAN in Automation

05-6

15 bits. The controllers are configured as
shown in Table 1.

Table 1

The entire bit time is divided into nine time
quanta. In conjunction with an oscillator
frequency of 9 MHz this results in a
nominal bit time of TBit=2µs and
transmission baud rate of 500 kB. Figure
10 shows the simulated differential bus
voltage of the CAN architecture measured
at ECU5. ECU1, acting as transmitter,
sends the bit stream “001010101010101”
to the bus and the other ECUs

acknowledge this bit stream by sending a
dominant bit which causes an increase of
the bus voltage. The simulation results
also allow the designer to analyze and
verify the bit timing of the ECUs. Figure 11
illustrates the bit timing of ECU5. The
upper signal “tq” indicates the time
quantum of the bit time where the CAN
controller is currently working. The middle

signal is the receive signal “rxd” which is
measured at the transceiver’s digital
receive pin connected to the CAN
controller. It shows the bus status being
detected by the receive network of the bus
driver. The lower signal “can_state_ecu5”
reflects the received bit sampled by the
CAN controller at its receive pin connected
to the transceiver output “rxd”. These
signals allow the designer to track the bit
that is sampled on the bus and follow the
synchronization of the protocol engine
during a message frame. According to
Figure 19, the controller detects a falling
edge in TSeg1 (tq=5) which means it has
to resynchronize as the falling edge has
been detected outside of the SyncSeg. As
the edge falls into TSeg1, TSeg1 is
extended and the sample point moves
automatically to the right on the time axis
and the entire bit time is extended as well.

In this example the phase error is equal to
4 tq. Due to the fact that the
synchronization jump width limits the
maximum synchronization step to 3 tq, the
CAN controller cannot completely
compensate the phase error and a phase
error of 1 tq remains. The next two bits do
not contain a falling edge, meaning that
the CAN controller has no opportunity
during this time to synchronize the CAN

Parameter Value

Frequency 9 MHz

TSEG1 5 tq

TSEG2 3 tq

BRP 2

SJW 3 tq

Sample mode Single

Default SP

Shifted SP

Tseg1 Tseg1

Figure 11 Sampling & timing

0 0 1 0 1 1 0 0 0 0 0 1 1 1 1

Figure 10 Differential voltage

iCC 2005 CAN in Automation

05-7

node. The next synchronization happens
when the fourth bit is being sent. During
this time the falling edge is detected in
tq=2 causing a phase error equal to 1 tq. In
this case the controller can compensate
the phase error completely and the CAN
node is completely resynchronized. For
this scenario the correct bit stream has
been sampled by the CAN controller,
however the frequency tolerances of the
oscillators have not been taken into
account. The following test bench applies
the same CAN network architecture with
two modifications. The oscillators of ECU1
and ECU5 are modeled with a tolerance of
2% that might be caused by manufacturing
variations or temperature dependency.
The oscillator of ECU1 is assigned a
frequency of 9.18 MHz and the oscillator
of ECU2 has a frequency of 8.82 MHz.
Another situation that must be considered
occurs when a series of five dominant and
five recessive bits (0000011111) is being
sent. This specific bit stream does not
contain a falling edge that allows the
controller to resynchronize. A series of five
equal bits in a row is the maximum
number as the controller automatically
inserts a stuff bit after five identical bits.
This bit has the inverted value of the
previous bit in order to ensure that the
controller has the chance to resynchronize
during a message frame. Figure 12 shows

the result of this scenario. The transmitter
sends the bit stream “110000011111001”.
The differential bus voltage of ECU5
shows an additional dominant status of the
bus after the acknowledgement bit. This is
not allowed as the bits prior and after the
acknowledgment must be recessive. This
indicates there is something going wrong
in the system which seems to be related to
the timing of the ECUs. Taking a deeper
look into the timing of ECU5, shown in
Figure 13, confirms this suspicion. The
first falling edge of the bit stream sent by
ECU1 is detected in the controllers
SyncSeg of ECU5. This means that no

synchronization activities are required as
the receiver is in phase with the

transmitter. During the next ten bits no
synchronization happens as there is no
further falling edge which can be applied
by the controller in order to synchronize
the appropriate node. The controller
correctly samples five dominant bits after
the falling edge. When the bus status
changes from dominant to recessive, the
controller detects four recessive bits and
then a dominant bit. Even though the
transmitter has sent five recessive bits, the
receiver detects only four of them. The
reason for this is the situation occurring
after the detection of the fourth recessive
bit, since the falling edge after the fifth

1 1 0 0 0 00 1 11 1 1 0 0 1

Figure 13 Timing

Figure 12 Acknowledgement

iCC 2005 CAN in Automation

05-8

dominant bit occurs prior to the sample
point for this bit. This means that the
controller drifted out of the synchronized
mode as no further synchronization was
possible, which is required to compensate
the oscillator tolerances and the
asynchronous behavior of the oscillators.
Figure 14 shows that the falling edge after
the fifth recessive bit is detected in the
sixth time quantum right before the sample
point. The result is that the controller
samples a dominant bit instead of a
recessive bit, resulting in a bit error. Due
to the fact that the falling edge is detected
in tq=6, the controller extends TSeg1 and
shifts the sample point to the right on the

time axis about the maximum
synchronization jump width. This shift also
explains the additional dominant bit after
the acknowledgement, as the bit timing of
ECU5 contains an additional phase error
of approximately one complete bit time.
This example clearly shows that detailed
analysis is possible when simulating the
physical layer of a communication system
like CAN. Discovering a problem is only
the first step during the verification of
these communication architectures. In

order to solve the problem properly a
deeper look into the system is required.

CONCLUSION

This paper demonstrates simulation of the
physical layer of a Volkswagen CAN bus
network using the Saber simulation
environment. It emphasizes the
importance of simulation of this type of
system at an early stage in the design
process in order to reduce the number of
prototypes. Simulation allows the analysis
of different vehicle network architectures
without having the hardware or the real
vehicle network. Required changes are
detected before the network architecture
will be delivered to manufacturing and the
simulation covers all tolerance limits and
random variants. Beside early problem
detection, a deeper understanding of the
appropriate architecture is guaranteed and
it is easier to analyze targeted network
variants. This makes the network
developer more flexible and allows faster
addressing of application-specific
problems. In addition to the examples
shown in this article, further applications
are important candidates for future
investigation. The analysis of
heterogeneous network architectures, e.g.
a combination of high speed CAN and low
speed CAN is important, in order to
simulate latencies of message frames.
The methodologies outlined in this paper
can be used for other in-vehicle network
technologies like LIN and FlexRay and will
offer similar benefits.

Carsten Schanze
Volkswagen AG
38436 Wolfsburg (Germany)
+ 49 (0) 5361 9-44218
carsten.schanze@volkswagen.de
http://www.volkswagen.de

Thorsten Gerke
Synopsys Inc.
Karl Hammer Schmidt Straße 34
85609 Aschheim/Dornach (Germany)
+49 (0) 89 99320-227
thorsten.gerke@synopsys.com
http://www.synopsys.com/saber

Default SP

Shifted SP

Figure 14 Sampling error

