iCC 2005

CAN in Automation

A CANopen compliant bootloader for Atmel’s
AT90CAN128

Damien Grolleau, Atmel and Christian Keydel, Embedded Systems Academy

In-system programming (ISP) of flash memory in an embedded microcontroller is the state-of-
the-art method for updating program code and application parameters

This paper gives some background information on why a standard method for reprogramming
via CAN bus is desirable, and how CANopen provides the necessary framework for it.

This paper also presents an existing implementation of a CANopen bootloader. The CANopen
bootloader is compatible with CiA standard DSP-302 which means that any master node or an
SDO client or CANopen configuration tool running on a PC can update the firmware of such a
node, using SDO write access to an Object Dictionary domain entry.

Introduction

Many microcontrollers on the market today
have flash memory on-chip and offer in-system
programming. Quite frequently, the vendors
offer proprietary software tools that run on PCs
and communicate with the chip over a serial
interface, and, in some instances, also via CAN.
In cases where it is not desirable to have a non-
standard protocol being used on the CAN bus,
or where the downloading is not being initiated
by a PC, it is beneficial to have a standard-
based bootloader that offers more flexibility.
Sometimes these nodes are deeply embedded
inside a machine so mechanisms to remotely
control the bootloading process are required as
well.

Summary of the CANopen Framework DSP-
302

The CANopen Communication Profile (DS-301)
defines the basic communication mechanisms
for exchanging data via a CANopen-based
network. This includes the structure of the
object dictionary, the network management and
boot-up as well as communication objects like
PDO, SDO, SYNC and time stamp. The object
dictionary provides a standard interface for
accessing communication parameters as well
as process data. The part of the object
dictionary which describes the general device
and communication parameters is common for
all devices types.

Application specific functionalities which are
provided by certain device types are detailed in
specific device profiles. A device profile is

always based upon the definitions in the
communication profile.

In general the mechanisms which are specified
in the communication profile are sufficient for the
definition of profiles for devices which, on the
application level, provide some kind of /O
functionality.

Example devices include I/0O modules, drives
and regulators. These devices whilst they may
be complex are not termed ‘intelligent’ as they
do not run an application level program.

For the description and operation of intelligent
devices further mechanisms are necessary
which are specified in DSP-302. DSP-302 has to
be regarded as a framework for the definition of
device profiles for intelligent or programmable
devices in form of an extension to the
communication profile DS-301. The additional
mechanisms specified in DS-302 are useful
especially for intelligent devices like PLCs, HMIs
or CANopen tools.

DS-302 comprises the following mechanisms
and definitions:

The term CANopen Manager is introduced
to specify the functionality of a network
controlling device more clearly.

Definition of the boot-up process and related
objects.

A possibility for configuration of
unconfigured nodes during system boot-up
by means of a Configuration Manager.

The dynamic establishment of SDO
connections between devices. Dynamic
SDO connections are handled by the SDO
Manager.

11-16

iCC 2005

CAN in Automation

* The definition of dynamically allocated
entries in an object dictionary which can be
used for the representation of /O data e.g.
on programmable nodes like PLCs.

* A general mechanism for downloading
program data and functions for the control
of programs on a device.

Some of these new mechanisms are also useful
for intelligent or programmable devices.

Overview of the Atmel AT90CAN128

The Atmel Flash + CAN micro controller is
perfectly suited for a CANopen application, with
ample memory and processing power to
accommodate the optional entries as well as
the mandatory ones.

128Kbytes of flash contains the program. It can
be reprogrammed up to 100K times. 32KB is
large enough to contain the CANopen protocol
stack (MicroCANopen: Only 4-5Kbytes) plus a
good size application.

Depending on the configuration and the
protocol stack used, only between 100
(MicroCANopen small configuration) and 450
bytes of the RAM (4Kbytes) will be used for
the CANopen stack, leaving a large amount of
RAM for the user application; pointers, stack
and other variables.

4Kbytes of E2PROM are available to maintain
information such as S/N, configuration data etc.

The AT90CAN128 CAN controller supports 15
Message Object Buffers with each of them
programmable as Transmitter or Receiver.
Each Message Object has an 8 byte dedicated
message data FIFO, a dedicated Message ID
and Message Mask (for receiver).

This is ideal for CANopen slave nodes where
MOBs can be dedicated to CANopen objects
for both receive and transmit. An example
implementation of a CANopen slave node with
optional TPDOs RPDOs shall illustrate a
possible allocation of 12 of the 15 total
Message Object Buffers:

e NMT

e Sync

* Emergency

* Time Stamp

« 1% TPDO could be replaced by 2™ TPDO
+ 3" optional TPDO

+ 19 RPDO

« 2" optional RPDO

« 3" optional RPDO

« TSDO
e RSDO
e NMT

The Message Object Buffer structure is given in
figure 1 below.

CAN Controller Registers
300 bytes total

Figure 1 : Message Object Buffer structure

The block diagram of the AT90CAN128 is shown
on the following figure 2.

The AT90CAN128 is manufactured using
Atmel’s high-density nonvolatile memory
technology. The On-chip ISP Flash allows the
program memory to be reprogrammed in-system
through an SPI serial interface, by a
conventional nonvolatile memory programmer,
or by an On-chip Boot program running on the
AVR core. The boot program can use any
interfaces to download the application program
in the application Flash memory. Software in the
Boot Flash section will continue to run while the
Application Flash section is updated, providing
true Read-While-Write operation. By combining
an 8-bit RISC CPU with In-System Self-
Programmable Flash on a monolithic chip, the
Atmel AT90CAN128 is a powerful
microcontroller that provides a highly flexible and
cost effective solution to many embedded
control applications.

11-17

iCC 2005

CAN in Automation

Flash & Boot
Memory
128kB

EEPROM
aKB

SRAM
4KB

AVR sPI
O Qre Interrupt Ctri
ABE Prog. Watchdog

Timer
10bit i 8 Channels

8 PWM QOutput
USART (2)

CAN
Controller

15 Channels

JTAG Emulation
Support Logic

Packages: TQFP64, QFN64, CA-BGA64*

Figure 2 : AT90CAN128 Block Diagram

A CANopen Compliant Bootloader

If a CANopen device has flash memory, it
makes sense to also have a CANopen
compliant bootloader. This does not only free
the serial communication channel from the
bootloader task, it also allows using standard
CANopen configuration tools as the
communication partner providing the new code
to be loaded into the flash memory.

Since the bootloader's task is to download a
new application, including the CANopen stack
into flash memory, the bootloader has to be
separated from the regular application and we
will have two different modes: The boot mode
and the application mode.

When being in boot-mode a CANopen node’s
only purpose is to accept a hex file to be loaded
into a flash memory. While being in that mode,
the node does not really need to be 100%
CANopen compliant. It just needs to provide
enough CANopen compatibility that it does not
interfere with any other communication on the
network and that it provides a fully functional
SDO server, so that SDO clients (like Masters,
Managers or Configuration Tools) can make
read and write accesses to the Object
Dictionary in the node.

So the only CANopen features and
communication channels that need to be

implemented are the SDO server and the SDO
request and response channels.

Sometimes it is desirable that the bootloader can
be activated without the requirement to
physically touch the device (like setting a
jumper, switch or button). In CANopen the
straightforward method would be to use a
selected write sequence to an Object Dictionary
entry as an additional command to actually
switch the node into the bootloader mode.

Minimal Set of Required OD Entries

OD entry [1000h,00]: Device type information,
read-only

As there is no device type number standardized
for a bootloader, a manufacturer specific value
can be used. The Embedded Systems Academy
uses 746F6F62h (ASCII representation is “boot”)
in their bootloader implementations by default.

OD entry [1001h,00]: Error register, read-only

The bootloader can use this register to signal
flash erase or programming failures. Setting the
manufacturer specific error bit can indicate an
out-of-range error — a try to program a memory
location that is either protected or at which there
is no flash memory.

OD entry [1018h,00-04]: Identify Object

The standard lIdentify Object as specified in
CANopen DS-301.

OD entry [1F50h,XX]: Download program data

This Object Dictionary entry is described in DSP-
302 and used to directly accept the code
programmed into the target memory. Sub-index
0 is used to quantify how many different program
or flash memory areas are available. The
following Sub-indexes can each handle the
download to one program or memory area. For
many applications it is sufficient to implement
one area (Sub-index 1). The download
subentries are of the data type domain, i.e. data
of unspecified length. Even though SDO block
transfer mode could be used for this, SDO
segmented transfer is more practical. It keeps
the required RAM for buffering and the
complexity and size of the code low. Also, it
provides for a relaxed timing: The SDO client of
the communication (=the loading program or
node) will always wait for the bootloader node to
send the SDO response before it sends the next
packet of data. Therefore, even if some lengthy
function has to be executed in between (e.g.
erasing of a new flash page) no overflow or
communication backlog can happen. This
improves the reliability of the whole process.

11-18

iCC 2005

CAN in Automation

Although not specified by the standard, the
Embedded Systems Academy recommends
using standard ASCII hex files as the files
containing the program or data. Using a hex file
has two benefits: the file contains the target
address on where the data needs to be
programmed to and the file also contains
checksums making the downloading process
more secure. To reduce the amount of data and
improve download speed, a binary hex format
can be also supported where ASCII hex bytes
are replaced with binary bytes. This reduces the
file sizes by about 50%. To further improve
download speed, the SDO response for the
individual segments can be shortened from 8 to
1 byte since it doesn't contain any payload. This
is no longer 100% standard-conform, so the
user has to make sure that the tool or code
library and CAN controller that acts as the SDO
client for the communication tolerates the short
SDO response. The speed gain depends on the
baud rate, processor speed, and other factors,
but can be typically around 30%.

Although the AT90CAN128 flash memory
doesn't need to be erased first before being
reprogrammed, Embedded System Academy
has implemented a specific erase command.
For example, an erase could be initiated by
sending the value 6D726C63h (ASCII
representation is “clrm”) to the Object Dictionary
entry [1F50h,01] (or other Sub-indexes to
differentiate between different blocks or
segments of flash or other non-volatile
memory).

To signal erase or programming errors the SDO
abort option is used. Hereby the programmed
node responds to the SDO download (write)
request with a suitable SDO abort code that can
be either a standard or manufacturer-specific
code, for example:

20000008h: "Data cannot
or stored to the application"

be transferred

Using SDO abort codes, the SDO client device
doesn't need to poll object 1000.

OD entry [1F51h,XX]: Program Control Object

This Object Dictionary entry is described in
DSP-302 and used to control the program(s)
downloaded to [1F50h,XX]. The essential
command to implement is “Start program”
which requires writing a 01h to the Object
Dictionary entry. For example, if a program was
downloaded to [1F50h,01] it can be started by
writing a 01h to [1F51h,01].

This Object Dictionary entry could also be used
to implement the activation of the bootloader
itself. So if the regular CANopen application

running on this node supports this entry, it
should activate the bootloader upon receiving a
00h (zero =Stop Program).

Security checksum and protection

Two challenges are
bootloader:

inherent to using a

Assuring the loaded

application

integrity of the

Protecting the bootloader code

In order to assure the integrity of the loaded
application the checksum that is included in
each data record of the hex file is not sufficient:
While it can be used to verify the integrity of
each record during programming, these
checksums are not stored in the device and a
later alteration of the code ("flipping bit")_cannot
be detected. So an additional checksum for the
whole application is needed. To accomplish this,
an external tool provided along with the
bootloader code calculates a checksum (e.g. 16-
bit "TCP/IP checksum") and adds it to the load
file so that it gets programmed at a well-defined
address into the flash memory along with the
application. On startup, the bootloader always
executes first, calculates the application
checksum using the same algorithm and
compares it with the stored one. If they match,
the application is started. If they don't, the
bootloader starts in bootloader mode, i.e. sends
its CANopen bootup message and waits for
SDO requests.

The bootloader itself needs to make sure that it
can't get erased or partially overwritten by
accident. Therefore, it must have a write
protection built into it that guarantees that in no
case it will ever erase or program a byte in it's
own code space area.

CANopen Bootloader for AT90CAN128

The Embedded Systems Academy has
implemented a CANopen bootloader for the
Atmel AT90CAN128 microcontroller, written in
C. HYPERLINK

Since only the SDO server needs to be
implemented for bootloader mode, only two out
of the 15 Message Object Buffers are used.

The bootloader flash area of the AT90CAN128
can be configured from 0 up to 8Kbytes. The
bootloader fits comfortably into this space, using
only little more than half of this memory and
leaving enough room for a secondary bootloader
or functional extensions. The bootloader flash
area can be hardware-protected using an AVR
fuse, further improving overwrite protection

11-19

iCC 2005

CAN in Automation

beyond the software mechanism outlined
above. Also, the movable interrupt vector base
implemented in the AT90CAN128 is supported
to guarantee safe and reliable operation at all
times.

The fact that the AVR allows a program in the
boot flash area to run while the application flash
memory is written greatly simplifies the
programming process.

The bootloader and checksumming tool
understand and process extended hex files
(HEX86, type 2) needed for the larger address
space of the AVR architecture with up to
128kBytes and typically generated by all
compilers for the AVR.

It should be noted that with 128KB flash, one
can have a DSP-302 bootloader of 8KB flash
and 2 flash memory areas of 60KB each able to
contain 2 different version of the user software.
One can download an new update and save the
previous one if needed.

Conclusion

In conclusion, CANopen DSP-302 based
reflashing is possible in embedded applications
with flash microcontrollers. The boot program
can use the CAN interface to download the
application program in the application flash
memory. The CANopen standard provides the
framework to make this happen with a wide
variety of tools, or through an embedded
CANopen Master/Manager node with an off-
the-shelf CANopen stack with SDO client. The
AT90CAN128, with its powerful bootloader
features and strong CAN support, is an ideal
candidate for CANopen nodes that need to be
updated in the field, with maximum reliability.
Embedded Systems Academy's implementation
demonstrates how this can be achieved
efficiently and with minimal resource
requirements.

Damien Grolleau

Atmel

BP70602 Nantes 44306 France
Phone +33 240 18 16 11

Fax +33 240 18 19 60
damien.grolleau@atmel.com
www.atmel.com

Christian Keydel

Embedded Systems Academy
50 Airport Parkway

San Jose, CA 95110

(408) 910-8418
ckeydel@esacademy.com
www.esacademy.com
Www.microcanopen.com/

11-20

