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This paper presents a cost effective CANopen implementation of a system to be de-
ployed in an extreme environment exceeding MIL-STD operating temperature range of 
-55C to 125C. Applications such as Deep Oil Field exploration tools require robust 
electronic systems that can operate at 200C and beyond which very often results in 
the miniaturization of the electronics. To operate in this severe and noisy environ-
ment, a CANopen network for inter-module communication was chosen. 

Contrary to a standard implementation, a CPU-less approach was selected where the 
entire CANopen stack is implemented in a Field Programmable Gate Array (FPGA). 
The FPGA is a System-on-Chip (SOC) integration where the CANopen stack is coupled 
with a CAN controller and peripheral logic for analog and digital I/Os. This CPU-less 
approach meets the size, cost, reliability, and power consumption requirements. 

Introduction 

To optimize hydrocarbons production and 
to forecast reservoir reserves, the reser-
voir has to be characterized on a regular 
interval. For this, the oil production is 
stopped and a tool string is deployed into 
the well to perform a variety of measure-
ments. To limit the production loss, the 
measurement time should be short and 
provide as much data as possible in a sin-
gle downhole trip. 

Figure 1 shows a diagram of an oil/gas 
well with the inserted tool string. 

For the reservoir characterization, some of 
the operations performed inside the well 
are: 

• Temperature and pressure profiles 

• Reservoir and core samples 

An oil/gas well can be up to 30,000 feet 
(10 km) in length. Temperatures can ex-
ceed 200C. The diameter of the well var-
ies from 6 to 14 inches, which puts tight 
constrains on the size of the tool string 
electronics. 

To increase the system response time and 
reduce data bandwidth requirements, 
downhole data preprocessing is desired. 

Embedded Networking 

The tool string is made of several modules 
as described in Figure 2.  
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The electronic boards inside each module 
are connected via the CAN bus. One CAN 
node serves as the bridge between the 
local CAN bus and the backbone, which 
provides the communication link to the 
surface. The other boards provide the in-
terface to sensors and other devices such 
as motors, solenoids, and seal valves. 

Figure 3 shows an overview of a module 
with its sub modules. 

CANopen was chosen as Higher Layer 
Protocol (HLP) due to its simplicity and 
flexibility. Using a well established stan-
dard has helped to coordinate the devel-
opment team spread around the globe. 
The CANopen protocol was even embed-
ded into the proprietary surface link provid-
ing an almost transparent communication 
path from the surface down to the individ-
ual sub modules. 

During the development, several applica-
tion specific requirements lead to some 
adaptation of the CANopen protocol to 
provide better support: 

PDO Packet 

Several sub modules provide big data 
samples which extend far beyond 8 bytes. 
Since the number of local CAN nodes 
never exceeds 32, two of the ID bits are 
used to group several PDO objects into a 
bigger PDO Packet (PDOP): 

COB-ID 

10 9 8 7 6 5 4 3 2 1 0 

Function Code t c Node-ID 

Table 1: Identifier allocation scheme 

t: Toggle bit 

Used for flow control in PDOP mes-
sages. This bit toggles with each PDOP 

message and is always 0 for other mes-
sages. 

c: Continued bit 

Used for flow control in PDOP mes-
sages. Bit is one if message continues 
in next PDO message. 

Figure 4 shows the message flow using 
the PDO Packet protocol for a receive 
PDO message. 

 

NMT dynamic node assignment 

LSS would provide dynamic node assign-
ment services, but its implementation is 
too complex for this system. A simplified 
approach using the NMT master message 
with a custom command was taken to set 
or change the Node ID of a target. 

Architecture and Technology Selection 

To reliably design a tool to operate at high 
temperature, the selection of high tem-
perature components is very challenging. 
Off-the-shelf components cannot always 
be used and in some cases, repackaging 
is necessary to withstand extreme tem-
peratures. Since no low-cost microcontrol-
ler with an embedded CAN controller has 
been identified for high temperature appli-
cation, an FPGA implementation has been 
investigated as a potential alternative. 

To reduce electronics size and cost, two 
types of CAN slave modules are currently 
implemented: 

• CPU CAN gateway 
The CPU CAN Gateway is made of a 
CPU coupled with an FPGA that con-
tains the CAN controller plus additional 

Initiater ConsumerReceive PDO Packet 
Protocol

RPDO (t=0, c=1)

RPDO (t=1, c=1)

RPDO (t=0, c=1)

RPDO (t=?, c=0)

 

Figure 4: RPDOP Protocol 
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application specific logic. Figure 5 
shows the block diagram. 

• FPGA CAN Gateway 
The FPGA CAN gateway is a low cost 
application solution where local data 
processing is not required. Coupling the 
CAN controller with additional logic 
demonstrates the possibility of imple-
menting the CANopen protocol stock in 
a single chip. 

This CPU-less approach resulted in an 
implementation with fewer components 
and reduced board space, which leads to 
increased reliability and reduced total sys-
tem costs. 

“ Standard”  CANopen Implementation 

In a typical CANopen implementation, a 

CPU complemented by a selection of pe-
ripheral interfaces is integrated onto a sili-
con die. Either an external or an on-chip 
CAN controller provides the network inter-
face. Figure 7 shows the block diagram of 
a typical CAN controller. To be opera-
tional, external data and program memory 
have to be added. 

In such systems, the CPU performs the 
entire operation. Depending on the imple-
mentation, either a small operating system 
or a simple main loop controls operation of 
the different tasks. An example for the 
main loop of a simple I/O controller is 
shown in figure 8. 

The entire main loop is a sequential proc-

ess of several individual tasks. Some sig-
nal or data processing operations might 
require a lot of time and therefore delaying 
all other tasks. Instead of using a simple 
loop, a more advanced process queue 
with selectable process priority can help to 
avoid timing conflicts. Still, if certain time 
critical tasks have to be performed, a 
move to a more powerful CPU might not 
be avoided. 

CANopen in an FPGA 

As shown in previous paragraph, the regu-
lar handling of the CANopen stack, CAN 
controller, peripheral interfaces, and data 
processing requires a certain CPU per-
formance.  

Instead of having a central CPU that proc-
esses everything, a different approach has 
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Figure 6: FPGA CAN Gateway 
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been chosen to implement the CANopen 
stack with all the peripheral modules. 

An FPGA can be thought of like a massive 
parallel architecture where several en-
gines work in parallel. This parallel proc-
essing approach is shown in the block 
diagram in figure 9.  

Each peripheral interface is implemented 
as an autonomous controller or as an ap-
plication specific state machine. They op-
erate independent of the CANopen stack. 
The CANopen stack itself consists of sev-
eral independent operating modules. The 
internal communication between the pro-
tocol stack and the application specific in-
terfaces happens through the Process Im-
age. 

The different blocks shown in figure 9 im-
plement following functions: 

– CAN Controller 
This is the basic CAN protocol framer. 

– Message Filter 
The message filter is used to route the 
received messages to the target proc-
ess and discard messages that are of 
no interest for this node. 

– RPDO Handler 
The message content is stored in the 
Process Image according to the fixed 
RPDO mapping parameter. 

– TPDO handler 
Depending on the state of the PDO 
transmission parameter state, a new 
PDO message is generated using data 
stored in the Process Image and trans-
ferred into the transmit FIFO. 

– Tx FIFO 
All outgoing messages are put into an 

intermediate FIFO before being trans-
mitted. 

– NMT Handler 
This controller implements the NMT 
state-machine and the dynamic node 
assignment. 

– SDO Handler 
The entire Object Dictionary is hard 
coded inside the SDO Handler. SDO 
requests are received and executed 
and the response is put into the trans-
mit FIFO. The SDO Handler also gen-
erates heartbeat and emergency mes-
sages. 

– Process Image 
This is the central data memory where 
all the received and transmit PDO data 
is stored. The Process Image contains 
the application specific configuration 
data too. 

– Sensor Handler 
Instead of having low-level peripheral 
interfaces such as an SPI controller, 
application controllers are used to per-
form entire data processing sequences. 
The Sensor Handler performs autono-
mous data acquisition using an external 
SPI based ADC. Local offset and gain 
correction can be enabled to compen-
sate for ADC nonlinearity. 
The Sensor Handler is configured using 
an SDO object providing options such 
as: 

• Sampling frequency 

• Enable automatic offset and gain 
correction 

• Enable data over sampling 

• Start/stop control 

– Digital I/O 
The digital I/O module updates its out-
put according to the state of the Proc-
ess Image. Accordingly, the input state 
is reflected in the Process Image too. 
Generation of a new TPDO message 
depends on the configured communica-
tion parameters. 

– Motor Controller 
The motor controller provides a high-
level command interface. Using RPDO 
messages, a motor can be controlled 
through parameters such as start, stop, 
and revolutions per second. 

– Debug UART 
For system debugging, a communica-

CAN
Controller

TPDO
Handler

Message
Filter

RPDO
Handler

Process
Image

SDO
Handler

Sensor
Handler

Motor
Controller

NMT
Handler

Application specificCANopen protocol stack

Digital
I/O

Debug
UART

SPI

gpio

uart_tx

uart_rx

pwm

Hall Effect

FPGA

Transmit
FIFO

can_rx
can_tx

clk
reset

Figure 9: CANopen FPGA 

 



iCC 2005  CAN in Automation 

09-11 

tion channel is available to report inter-
nal event information and provide ac-
cess to CANopen stack status informa-
tion. 

Supported CANopen features 

Having the CANopen stack integrated in 
hardware leads directly to the question of 
CANopen compliance. In order to leave as 
much FPGA space to the application spe-
cific portion, certain CANopen features 
that don't provide a direct benefit to the 
application had to be sacrificed. 

The current implementation supports fol-
lowing features: 

• SDO (expedited access only) 

• NMT 

• PDO (4 RPDO, 4 TPDO) 

• PDO communication parameter 

• EMCY 

• Heartbeat 

Protocol features that were not required in 
this system were waved while preserving 
CANopen compliance: 

• Segmented SDO 

• Fixed PDO mapping parameters 

• COB-IDs are fixed 

To minimize overhead and processing in-
side the CANopen stack, a custom device 
profile was selected. 

FPGA Verification 

Prior to powering up the development 
board to check for proper operation, the 
CANopen FPGA was verified in VHDL 
simulations. The entire system was mod-
eled, as it will be used in the real applica-
tion. Figure 10 shows the block diagram of 
the transaction-based verification envi-
ronment. 

The testbench is structured into several 
blocks each implementing a particular 
function or model: 

– Stimuli Generators 
Several stimuli generators are used to 
verify proper operation of the CANopen 
FPGA. A stimuli generator controls the 
entire operation of a test and verifies 
that the device under test performs as 
expected. 

– CANopen Logger 
For error analysis all CAN transactions 
are reported in the context of the 
CANopen protocol. 

– CAN Protocol Checker 
The CAN protocol checker verifies in-
tegrity of the CAN messages and re-
ports errors. 

– CAN Bus Functional Model (BFM) 
The CAN BFM generates and receives 
CAN messages. 

– CANopen Transaction Layer 
The CANopen transaction layer trans-
lates CANopen function calls into 
proper CAN messages. Received CAN 
messages are decoded and provided 
as CANopen type messages. 

– GPIO BFM 
Using this module, the GPIO pins of the 
FPGA can be controlled from the stimuli 
generator. 

– ADC Model and AIN BFM 
Using the AIN BFM, the analog inputs 
of the ADC Model can be stimulated. 
These values are returned by the ADC 
Model upon receipt of the proper SPI 
sample command. 

Transaction-based verification uses a 
higher level of abstraction. Instead of con-
trolling individual signals by setting them to 
one or zero, signal operations are exe-
cuted as entire transactions. The stimuli 
generator uses function calls to execute 
transactions. These transactions are con-
verted into the individual bit sequences 
using a Bus Functional Models (BFM). 

Figure 11 shows an extract of the VHDL 
stimuli generator where successive trans-
actions modeled as procedure calls are 
use to read the device type entry of a par-
ticular CAN node. 

This higher level of abstraction results in-
creased efficiency and enables reuse of 
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Figure 10: Transaction-based testbench 
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the testbench environment and its compo-
nents. 

Using this transaction-based testbench, 
the entire FPGA functionality was verified 
prior of deploying the FPGA in the lab. 
This approached proved very successful 
where the FPGA was fully functional upon 
powering the development board for the 
first time. 

Conclusion 

In this paper we showed that special de-
sign constrains for a CANopen implemen-
tation require a new approach. An FPGA 
implementation was presented that con-
tains a hardware implementation of the 
CANopen stack complemented by several 
peripheral interface controllers. While still 
being CANopen compliant, some of the 
protocol features had to be sacrificed. This 
allowed for a successful development of a 
high temperature, cost, and space effec-
tive solution: a CPU-less single chip im-
plementation of the CANopen stack work-
ing at beyond 200C. 
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index := x"1000"; subindex := x"00"; 
  
tb_can_bfm_pkg.put_message( 
 sdo_read( node_id, index,subindex),   
 can_cmd, can_stat 
); 
 
tb_can_bfm_pkg.get_message(  
 sdo_read_response( node_id, index, 
   subindex, c_canopen_device_type 
 ), 
 can_obj, can_cmd, can_stat,  
 "sdo: device_type error" 
); 

Figure 11: CANopen device type read 


