
iCC 2005 CAN in Automation

09-7

CPU-less CANopen at 200°C

D. Leu, Inicore Inc.

H. Defretin, Schlumberger Oilfield Services Inc.

This paper presents a cost effective CANopen implementation of a system to be de-
ployed in an extreme environment exceeding MIL-STD operating temperature range of
-55C to 125C. Applications such as Deep Oil Field exploration tools require robust
electronic systems that can operate at 200C and beyond which very often results in
the miniaturization of the electronics. To operate in this severe and noisy environ-
ment, a CANopen network for inter-module communication was chosen.

Contrary to a standard implementation, a CPU-less approach was selected where the
entire CANopen stack is implemented in a Field Programmable Gate Array (FPGA).
The FPGA is a System-on-Chip (SOC) integration where the CANopen stack is coupled
with a CAN controller and peripheral logic for analog and digital I/Os. This CPU-less
approach meets the size, cost, reliability, and power consumption requirements.

Introduction

To optimize hydrocarbons production and
to forecast reservoir reserves, the reser-
voir has to be characterized on a regular
interval. For this, the oil production is
stopped and a tool string is deployed into
the well to perform a variety of measure-
ments. To limit the production loss, the
measurement time should be short and
provide as much data as possible in a sin-
gle downhole trip.

Figure 1 shows a diagram of an oil/gas
well with the inserted tool string.

For the reservoir characterization, some of
the operations performed inside the well
are:

• Temperature and pressure profiles

• Reservoir and core samples

An oil/gas well can be up to 30,000 feet
(10 km) in length. Temperatures can ex-
ceed 200C. The diameter of the well var-
ies from 6 to 14 inches, which puts tight
constrains on the size of the tool string
electronics.

To increase the system response time and
reduce data bandwidth requirements,
downhole data preprocessing is desired.

Embedded Networking

The tool string is made of several modules
as described in Figure 2.

Communication
module

Power module

Probe module

Sample module

Pump module

Figure 2: Tool string

30,000 ft

Figure 1: Oil well

iCC 2005 CAN in Automation

 09-8

The electronic boards inside each module
are connected via the CAN bus. One CAN
node serves as the bridge between the
local CAN bus and the backbone, which
provides the communication link to the
surface. The other boards provide the in-
terface to sensors and other devices such
as motors, solenoids, and seal valves.

Figure 3 shows an overview of a module
with its sub modules.

CANopen was chosen as Higher Layer
Protocol (HLP) due to its simplicity and
flexibility. Using a well established stan-
dard has helped to coordinate the devel-
opment team spread around the globe.
The CANopen protocol was even embed-
ded into the proprietary surface link provid-
ing an almost transparent communication
path from the surface down to the individ-
ual sub modules.

During the development, several applica-
tion specific requirements lead to some
adaptation of the CANopen protocol to
provide better support:

PDO Packet

Several sub modules provide big data
samples which extend far beyond 8 bytes.
Since the number of local CAN nodes
never exceeds 32, two of the ID bits are
used to group several PDO objects into a
bigger PDO Packet (PDOP):

COB-ID

10 9 8 7 6 5 4 3 2 1 0

Function Code t c Node-ID

Table 1: Identifier allocation scheme

t: Toggle bit

Used for flow control in PDOP mes-
sages. This bit toggles with each PDOP

message and is always 0 for other mes-
sages.

c: Continued bit

Used for flow control in PDOP mes-
sages. Bit is one if message continues
in next PDO message.

Figure 4 shows the message flow using
the PDO Packet protocol for a receive
PDO message.

NMT dynamic node assignment

LSS would provide dynamic node assign-
ment services, but its implementation is
too complex for this system. A simplified
approach using the NMT master message
with a custom command was taken to set
or change the Node ID of a target.

Architecture and Technology Selection

To reliably design a tool to operate at high
temperature, the selection of high tem-
perature components is very challenging.
Off-the-shelf components cannot always
be used and in some cases, repackaging
is necessary to withstand extreme tem-
peratures. Since no low-cost microcontrol-
ler with an embedded CAN controller has
been identified for high temperature appli-
cation, an FPGA implementation has been
investigated as a potential alternative.

To reduce electronics size and cost, two
types of CAN slave modules are currently
implemented:

• CPU CAN gateway
The CPU CAN Gateway is made of a
CPU coupled with an FPGA that con-
tains the CAN controller plus additional

Initiater ConsumerReceive PDO Packet
Protocol

RPDO (t=0, c=1)

RPDO (t=1, c=1)

RPDO (t=0, c=1)

RPDO (t=?, c=0)

Figure 4: RPDOP Protocol

CANopen
FPGA

Application
Specific

CPU +
CAN FPGA

Application
Specific

Com
Bridge

CANbus

Device

Sensor

Communication Bus

Figure 3: Module with electronic boards

iCC 2005 CAN in Automation

09-9

application specific logic. Figure 5
shows the block diagram.

• FPGA CAN Gateway
The FPGA CAN gateway is a low cost
application solution where local data
processing is not required. Coupling the
CAN controller with additional logic
demonstrates the possibility of imple-
menting the CANopen protocol stock in
a single chip.

This CPU-less approach resulted in an
implementation with fewer components
and reduced board space, which leads to
increased reliability and reduced total sys-
tem costs.

“ Standard” CANopen Implementation

In a typical CANopen implementation, a

CPU complemented by a selection of pe-
ripheral interfaces is integrated onto a sili-
con die. Either an external or an on-chip
CAN controller provides the network inter-
face. Figure 7 shows the block diagram of
a typical CAN controller. To be opera-
tional, external data and program memory
have to be added.

In such systems, the CPU performs the
entire operation. Depending on the imple-
mentation, either a small operating system
or a simple main loop controls operation of
the different tasks. An example for the
main loop of a simple I/O controller is
shown in figure 8.

The entire main loop is a sequential proc-

ess of several individual tasks. Some sig-
nal or data processing operations might
require a lot of time and therefore delaying
all other tasks. Instead of using a simple
loop, a more advanced process queue
with selectable process priority can help to
avoid timing conflicts. Still, if certain time
critical tasks have to be performed, a
move to a more powerful CPU might not
be avoided.

CANopen in an FPGA

As shown in previous paragraph, the regu-
lar handling of the CANopen stack, CAN
controller, peripheral interfaces, and data
processing requires a certain CPU per-
formance.

Instead of having a central CPU that proc-
esses everything, a different approach has

CANbus

CAN
if

ADC

I/O
Protection

Digital
inputs

Analog
inputs

CANopen
Stack

Application
Specific

FPGA

Figure 6: FPGA CAN Gateway

Process Analog Inputs

Process Analog Outputs

CANopen Stack

Application specific

Process Digital Inputs

Process Digital Outputs

Device Initialization

reset

CANopen Initialization

Figure 8: Application main loop

SPI

GPIO

UART
Interrupt

Controller

CAN
EBI

Peripheral Bus

Memory Bus

Bus
Bridge

DMA
Controller CPU

Flash SRAM

CAN Controller

Figure 7: Typical CAN Controller

CANbus

CAN
if

ADC

I/O
Protection

Digital
inputs

Analog
inputs

CAN
Controller

Application
Specific

CPU Flash SRAM

CPUbus

FPGA

 Figure 5: CPU CAN Gateway

iCC 2005 CAN in Automation

 09-10

been chosen to implement the CANopen
stack with all the peripheral modules.

An FPGA can be thought of like a massive
parallel architecture where several en-
gines work in parallel. This parallel proc-
essing approach is shown in the block
diagram in figure 9.

Each peripheral interface is implemented
as an autonomous controller or as an ap-
plication specific state machine. They op-
erate independent of the CANopen stack.
The CANopen stack itself consists of sev-
eral independent operating modules. The
internal communication between the pro-
tocol stack and the application specific in-
terfaces happens through the Process Im-
age.

The different blocks shown in figure 9 im-
plement following functions:

– CAN Controller
This is the basic CAN protocol framer.

– Message Filter
The message filter is used to route the
received messages to the target proc-
ess and discard messages that are of
no interest for this node.

– RPDO Handler
The message content is stored in the
Process Image according to the fixed
RPDO mapping parameter.

– TPDO handler
Depending on the state of the PDO
transmission parameter state, a new
PDO message is generated using data
stored in the Process Image and trans-
ferred into the transmit FIFO.

– Tx FIFO
All outgoing messages are put into an

intermediate FIFO before being trans-
mitted.

– NMT Handler
This controller implements the NMT
state-machine and the dynamic node
assignment.

– SDO Handler
The entire Object Dictionary is hard
coded inside the SDO Handler. SDO
requests are received and executed
and the response is put into the trans-
mit FIFO. The SDO Handler also gen-
erates heartbeat and emergency mes-
sages.

– Process Image
This is the central data memory where
all the received and transmit PDO data
is stored. The Process Image contains
the application specific configuration
data too.

– Sensor Handler
Instead of having low-level peripheral
interfaces such as an SPI controller,
application controllers are used to per-
form entire data processing sequences.
The Sensor Handler performs autono-
mous data acquisition using an external
SPI based ADC. Local offset and gain
correction can be enabled to compen-
sate for ADC nonlinearity.
The Sensor Handler is configured using
an SDO object providing options such
as:

• Sampling frequency

• Enable automatic offset and gain
correction

• Enable data over sampling

• Start/stop control

– Digital I/O
The digital I/O module updates its out-
put according to the state of the Proc-
ess Image. Accordingly, the input state
is reflected in the Process Image too.
Generation of a new TPDO message
depends on the configured communica-
tion parameters.

– Motor Controller
The motor controller provides a high-
level command interface. Using RPDO
messages, a motor can be controlled
through parameters such as start, stop,
and revolutions per second.

– Debug UART
For system debugging, a communica-

CAN
Controller

TPDO
Handler

Message
Filter

RPDO
Handler

Process
Image

SDO
Handler

Sensor
Handler

Motor
Controller

NMT
Handler

Application specificCANopen protocol stack

Digital
I/O

Debug
UART

SPI

gpio

uart_tx

uart_rx

pwm

Hall Effect

FPGA

Transmit
FIFO

can_rx
can_tx

clk
reset

Figure 9: CANopen FPGA

iCC 2005 CAN in Automation

09-11

tion channel is available to report inter-
nal event information and provide ac-
cess to CANopen stack status informa-
tion.

Supported CANopen features

Having the CANopen stack integrated in
hardware leads directly to the question of
CANopen compliance. In order to leave as
much FPGA space to the application spe-
cific portion, certain CANopen features
that don't provide a direct benefit to the
application had to be sacrificed.

The current implementation supports fol-
lowing features:

• SDO (expedited access only)

• NMT

• PDO (4 RPDO, 4 TPDO)

• PDO communication parameter

• EMCY

• Heartbeat

Protocol features that were not required in
this system were waved while preserving
CANopen compliance:

• Segmented SDO

• Fixed PDO mapping parameters

• COB-IDs are fixed

To minimize overhead and processing in-
side the CANopen stack, a custom device
profile was selected.

FPGA Verification

Prior to powering up the development
board to check for proper operation, the
CANopen FPGA was verified in VHDL
simulations. The entire system was mod-
eled, as it will be used in the real applica-
tion. Figure 10 shows the block diagram of
the transaction-based verification envi-
ronment.

The testbench is structured into several
blocks each implementing a particular
function or model:

– Stimuli Generators
Several stimuli generators are used to
verify proper operation of the CANopen
FPGA. A stimuli generator controls the
entire operation of a test and verifies
that the device under test performs as
expected.

– CANopen Logger
For error analysis all CAN transactions
are reported in the context of the
CANopen protocol.

– CAN Protocol Checker
The CAN protocol checker verifies in-
tegrity of the CAN messages and re-
ports errors.

– CAN Bus Functional Model (BFM)
The CAN BFM generates and receives
CAN messages.

– CANopen Transaction Layer
The CANopen transaction layer trans-
lates CANopen function calls into
proper CAN messages. Received CAN
messages are decoded and provided
as CANopen type messages.

– GPIO BFM
Using this module, the GPIO pins of the
FPGA can be controlled from the stimuli
generator.

– ADC Model and AIN BFM
Using the AIN BFM, the analog inputs
of the ADC Model can be stimulated.
These values are returned by the ADC
Model upon receipt of the proper SPI
sample command.

Transaction-based verification uses a
higher level of abstraction. Instead of con-
trolling individual signals by setting them to
one or zero, signal operations are exe-
cuted as entire transactions. The stimuli
generator uses function calls to execute
transactions. These transactions are con-
verted into the individual bit sequences
using a Bus Functional Models (BFM).

Figure 11 shows an extract of the VHDL
stimuli generator where successive trans-
actions modeled as procedure calls are
use to read the device type entry of a par-
ticular CAN node.

This higher level of abstraction results in-
creased efficiency and enables reuse of

CAN Bus
Functional Model

 CAN Node 1 CAN Node 1 CAN Node

CANopen
FPGA

ADC
Model

CAN
Phy

SPI AIN
BFM

GPIO
BFM

CANopen Logger

CAN Protocol
Checker

CANopen
Transaction Layer

CANbus

AIN BFM
GPIO BFM

CANopen Transaction

log

log

Stimuli
Generators

Figure 10: Transaction-based testbench

iCC 2005 CAN in Automation

 09-12

the testbench environment and its compo-
nents.

Using this transaction-based testbench,
the entire FPGA functionality was verified
prior of deploying the FPGA in the lab.
This approached proved very successful
where the FPGA was fully functional upon
powering the development board for the
first time.

Conclusion

In this paper we showed that special de-
sign constrains for a CANopen implemen-
tation require a new approach. An FPGA
implementation was presented that con-
tains a hardware implementation of the
CANopen stack complemented by several
peripheral interface controllers. While still
being CANopen compliant, some of the
protocol features had to be sacrificed. This
allowed for a successful development of a
high temperature, cost, and space effec-
tive solution: a CPU-less single chip im-
plementation of the CANopen stack work-
ing at beyond 200C.

Daniel Leu
Inicore, Inc.
5600 Mowry School Rd Ste 180
Newark, CA 94560
Tel: +1 510 445 1529
Fax: +1 510 656 0995
E-mail: daniel@inicore.com
Web: www.inicore.com
Harmel Defretin
Schlumberger Oilfield Services Inc.
125 Industrial Boulevard
Sugar Land, TX 77478
Tel: +1 281285 8883
Fax: +1 281 285 7826
E-mail: defretin@slb.com
Web: www.slb.com

index := x"1000"; subindex := x"00";

tb_can_bfm_pkg.put_message(
 sdo_read(node_id, index,subindex),
 can_cmd, can_stat
);

tb_can_bfm_pkg.get_message(
 sdo_read_response(node_id, index,
 subindex, c_canopen_device_type
),
 can_obj, can_cmd, can_stat,
 "sdo: device_type error"
);

Figure 11: CANopen device type read

