iCC 2005 CAN in Automation

CANopen on general serial networks

Olaf Pfeiffer, Christian Keydel, Andrew Ayre, Embedded Systems Academy

One of the challenges in today’s communication applications is that more and more
different network technologies need to be interfaced to another. A machine might use
an RS-485 or other general serial network and also requires access to a higher control
level via networks such as CANopen. The interfacing between those networks is
especially challenging if not only different communication technologies but also
completely different network protocols are used. Gateways interfacing such different
networks need to process data through all protocol layers — in each direction in and
out of the gateway — making this a higher-end application in terms of MCU
performance, memory requirements and software development.

Interfacing between networks would greatly be simplified if the same network
protocol would be used on the various communication technologies as illustrated by
figure 1. Instead of complex gateways, simpler bridges could be used requiring far
less resources and development work.

High-end PC Plant
One of the few n.etwork protoco.ls tr.uly gh-end P or Vanacement
open to multiple communication
technologies and applications is PC or Plant
CANopen. It was originally developed Workstaton Contra

Ethernet

to operate on CAN, however it was | .. comomr
Powerlink

always kept open enough to be used EmbeddedPCor
on multiple communication
technologies and with any application.
This paper and class examines the
core features of CANopen and how
they can be adopted to other
communication technologies

Process
Control

Controller
Coupler
CAN
CANopen Sensors
Actuators

Figure 1: Communication in the automation pyramid

16 to 32 bit

MicroMessaging

1. About Repeaters, Bridges and Gateways 1.1 Repeater

As soon as interfaces between different As shown in figure 2, repeaters only act on
network architectures are required, a the physical layer of a network. They are
variety of methods can be used to inter- independent of the protocols running on
connect these networks. higher layers as they primarily build an

interface on the signal level. Interfacing
happens on the signal or bit level.

1.2. Bridge
A y 4 Bridges act on the lower protocol levels as
ical Layer Physical Layer illustrated by figure 3. They receive

messages entirely before forwarding them
to another network segment. In order to
Figure 2: Repealters act on the physical layer use bridges, networks need to use the
same messaging system on the lowest
levels of the network protocol used. Where
regular bridges simply forward all
messages between network segments, so-
called smart bridges have a basic

SEGMENT A SEGMENT B

12-15

iCC 2005

CAN in Automation

understanding of some of the higher-
layers in a network protocol and only
forward those messages that require
forwarding. At this level a smart bridge
would need to be able to know which
nodes are on which network segment and

H“sma Layer

SEGMENT A SEGMENT B

Figure 3: Bridges act on the data link layer

also know the destination for messages
received so that it can make a decision to
which segment this message needs to be
forwarded.

1.3. Gateway

Gateways as shown in figure 4 act on the
highest protocol levels and have detailed
knowledge about the network protocols
used. In large networks they also have
more knowledge about the entire network
structure, supporting optimized long-
distance routing of messages. Gateways
could also operate on different network
protocol stacks allowing data exchange
between completely different network
technologies such as CAN with CANopen
and Ethernet with TCP/IP.

Hita Link Layer /7
Mlucal oyer

SEGMENT B

SEGMENT A

Figure 4: Gateways act on higher fayers

1.4. Comparison of Complexity

In terms of hardware and software
requirements, including the development
and configuration the differences between
repeaters, bridges and gateways are
immense. A repeater can be developed

without microcontroller and software. A
bridge requires a medium performance
microcontroller/microprocessor with
software that is aware of selected network
protocol features. A gateway however,
requires a high-end
microcontroller/microprocessor with an
extensive software package. It needs to
have a full understanding of ALL network
protocols connected to it and requires
extensive configuration information about
ALL transferred data. Only with that
information can a gateway make decisions
about which data is forwarded how to
where.

2. Drastically reduce Complexity

In applications where multiple
communication technologies are used (for
example any combination of RS-485, 12C,
CAN and Ethernet), the overall time used
for development, test, integration and
maintenance can be reduced drastically if
a common network protocol is used across
all the communication technologies.

Not only does one reduce the overhead of
developing, testing and maintaining a
variety of network protocols. The
interfaces between the network
architectures do not need to be gateways
anymore. In most cases a bridge or smart
bridge would be sufficient to interface
between the different communication
technologies, if they use the same network
protocol.

By using a common network protocol such
as CANopen on two different
communication technologies, the overall
project complexity can typically be
reduced by far more than 50%. The entire
overhead for developing, testing and
maintaining that second network protocol
is removed, including the complex
gateways required to handle the
interfacing between the two.

3. Choosing CANopen as a Common
Protocol

CANopen variations have already
successfully been used on several serial
busses (MicroMessaging) and on Ethernet

12-16

iCC 2005

CAN in Automation

(Ethernet-Powerlink). Other arguments
that make CANopen a first-choice
candidate for a common network protocol
are:

* |Its openness in regards to
availability of the standard
(specification available for free
from the CiA — CAN in Automation
User’'s and Manufacturers Group)

* Its openness in regards to its ability
to be customized for deeply
embedded applications (can be
optimized towards application
requirements)

* Its minimal form factor, minimal
implementations fit into some of the
smallest 8-bit microcontrollers

* Its application independence (not
designed for a specific, limited
usage)

* Large number of suppliers for
development tools such as
configuration tools, monitors,
analyzers, libraries, source codes
and off-the-shelf products.

In summary, CANopen is very suitable to
be used on multiple communication
technologies, as long as those
technologies provide some basic, common
requirements.

3.1. Basic Requirement: Message Oriented

A communication network must fulfill the
following basic requirement to be usable
for CANopen: It must provide a message-
oriented communication system that
allows giving messages transmitted a
message identifier. In case of very simple,
byte-oriented serial communications a
message system would need to be defined
that uses a message identifier (preferably
in the range of 8 to 16 bits) followed by a
specified number of data bytes (at least a
message size of 8 bytes must be
supported).

In regards to bus arbitration (how is it
decided which node may when access the
bus and write something) a multi-master
access system is preferred, but not
required. In case of a multi-master system
multiple nodes may write messages at the

same time and collisions get resolved by
the communication technology.

In case multi-master access is not
available, a polling/synchronization
mechanism is used where nodes are
polled individually.

3.2. General CANopen Methodologies

When looking at CANopen a little closer,
one realizes that many techniques used
are completely independent in regards to
the specific messaging or networking
system used.

3.2.1. The Object Dictionary Concept

The CANopen Object Dictionary concept
of identifying configuration parameters as
well as process data used by an index and
subindex is independent of the physical
layers used and can be directly used with
other data link layers.

For operation on lower-performance
microcontrollers it may be considered to
limit the size of Object Dictionary entries to
a total of 32-bit. If all entries are of 32bit or
less, segmented SDO transfers do not
need to be implemented and only the
simpler expedited SDO transfer is used.

3.2.2. Access to the Object Dictionary with
Service Data Objects

The message contents used during SDO
data transfer shall directly be adopted
when using CANopen on other serial
networks. This requires that single
messages on these serial networks can
store at least 8 data bytes.

The actual length of an SDO message
may be optimized. In traditional CANopen
SDO messages always contain 8 data
bytes, even if some of them are unused.
When using CANopen on other general
serial networks, unused bytes may be
omitted.

In order to provide this standardized
access to the OD of a node, each node
must implement at least one SDO server
that uses a default set of message
identifiers for the SDO request sent to it

12-17

iCC 2005

CAN in Automation

and the SDO response it uses to reply to
such requests. The specific message
assignment is part of the pre-defined
connection set explained further on.

3.2.3. Process Data Object Mapping

Although the SDO accesses theoretically
allow access to all configuration and
process data of all nodes, the SDO
communication method is not suitable for
real-time process data. Using a node to
node communication method involving a
polling mechanism makes this a very
inefficient communication method needing
at least one pair of messages must to get
a single variable transmitted from one
node to the other.

The Process Data Object (PDO) is a
method of allowing multiple OD entries to
be transmitted within one message. The
transmission is always a broadcast, so any
nodes connected to the network can
consume this data. In addition there are a
variety of triggering mechanism depending
on the communication system used.

When using CANopen on general serial
networks, the existing PDO mapping
mechanism is directly used. This again
requires that the data link layer used
supports message sizes with up to 8 data
bytes. The PDO communication
parameters are interpreted slightly

3.2.4. Default Connection Set

Any CANopen like network system shall
have a default connection set. This is the
default assignment for the usage of the
message identifiers. Although some
identifiers might be re-configured and used
differently after initialization, there are
some that must not be changed to ensure
that the basic communication channels
always work. The message identifiers that
may not change during operation are
those used for the default SDO accesses
(one message each for request and
response), the NMT Master message
(broadcast from the Network Management
Master to all nodes) and the NMT control
messages (boot-up and heartbeat
messages from the nodes).

In traditional CANopen the message
identifier is divided into a function code of
4 bits and the node ID field of 7 bits.

For common serial networks, different
default connection sets are defined
depending on the number of bits provided
by the message identifier field.

Lowering the number of bits in the
message identifier field to 8, 7 or 6 bits
also results in smaller function code fields
and in a smaller amount of node IDs
supported. The following table
summarizes the different pre-defined
connection sets used.

Bits in | Bits in | Bits in | Maximum

Msg Fct. Node number of

ID Code ID Nodes per
segment

11 4 7 127

8 3 5 31

7 3 4 15

6 3 3 7

The usage of a 3-bit Function Code is
illustrated by the following table

Function | Node Function Code
Code ID field | assignment

0 0 NMT Master message
0 >0 Transmit Heartbeat

1 0 SYNC message

1 >0 EMCY message

2 0 TIME message

2 >0 Transmit PDO 1

3 0 Reserved

3 >0 Receive PDO 1

4 0 Reserved

4 >0 Transmit PDO 2

5 0 Reserved

5 >0 Receive PDO 2

6 0 Reserved

6 >0 Receive SDO

7 0 Reserved

7 >0 Transmit SDO

3.2.5. Bus Arbitration and Message
Triggering

The recently introduced, enhanced

synchronization method of CANopen can

12-18

iCC 2005

CAN in Automation

easily used for an individual polling of
nodes, independent of the communication
technology used. This method enhanced
the SYNC signal by one byte, the SYNC
counter. Depending on configuration, this
signal can now also be used to poll
individual nodes.

Such a system assumes that there is one
node responsible for assigning the bus to
a node ensuring that only one node at the
time has the permission to speak. In
general two methods can be implemented:
* Single SYNC producer: a polling
mechanism where one node is in
charge of cyclically polling all
nodes connected
e Multiple SYNC producer: A token
passing mechanism where one
node is in charge of starting and
monitoring a token that is passed
on from node to node

Both mechanisms allow the reduction of
the amount of messages produced by
each node when being polled (lower
priority messages might need to wait until
the next cycle) making this communication
method very deterministic and suitable for
real-time applications.

It should be noted that PDO data
transmission can still be combined with the
triggering methods event driven (COS:
change-of-state) or time driven. Meaning
that only if the data changed and/or a
timer expired does data actually get
transmitted in the next poll cycle.

3.2.6. Single SYNC producer

In this communication model a single node
is responsible for polling all nodes
connected. It does this by producing
SYNC messages with a one-byte counter
used as a node identifier. Nodes receiving
a SYNC message with its own node ID in
the counter now have an assigned time
window to make their transmissions. In
case the window is not big enough for all
transmissions queued, only the higher
priority transmissions (those with the
lowest message identifier) are made,
others will have to wait until the next cycle.
In this communication mode defining the

length of the window is a crucial
parameter. If it is too long, bandwidth is
wasted. If it is too short, even important
data messages might get delayed.

SYNC

SYNC SYNC
Producer

ISYNC
N1 N2

SYNC
N3

N1

Node 1 Poo |

PDO
2

Node 2 PI:O ‘

Node 3

" SYNC window N1 ' 'SYNC window N2 'SYNG window N3

Figure 5: One SYNC producer polis all CANopen nodes

3.2.7. Multiple SYNC producer

In this optimized communication model
each node automatically produces the
SYNC signal for the next node upon
completion of its transmissions. This
method makes better use of the available
total bandwidth as individual nodes are not
assigned fixed time windows for their
transmissions. These windows still exists,
but only as a maximum. If a node has
nothing to transmit, the time window is
automatically shortened and the next node
gets polled. In this communication mode
the length of the window can be kept
larger as in the single SYNC producer
mode as a window gets “terminated” if no
further transmissions are pending.

It should be noted that one node would still
be responsible for creating the initial
SYNC signal and that needs to monitor if
the SYNC gets lost or needs to be
replaced because of gaps in the chain
(maybe node 3 polls node 4, but there is
no node 4 in the network).

SYNC SYNC SYNC|
Producer N1

Node 1 HIY ‘

FDO ‘SYNC
1

2 N2

Node 2 1 N3

PDO ‘SYNC ;

Node 3

" SYNC window N1 i 'SYHC window N3'

—
'SYNC window N2

Figire 5: SYNC “token” passing between multiple CANopen nodes

3.2.8. Simplified Bridges

The method introduced in this paper also
drastically reduces the complexity of
bridges between multiple network

12-19

iCC 2005

CAN in Automation

segments, even if they use different data
link layers. As long as the default pre-
defined connection set is used a smart
bridge looks at the message identifier and
divides it into the function code and the
node ID field. Depending on the segment
a message is forwarded to, the function
code gets translated using a simple lookup
table and the node ID might be expanded
adding an offset. Figure 7 shows a simple
example how multiple networks with an 8-
bit message ID can be bridged to a
standard system with 11-bit message IDs.

Traditional CANopen System with 11-bit MsglD
Node IDs supparted: 1-127

1I

Olaf Pfeiffer

Embedded Systems Academy
Giesener Str. 14

31157 Sarstedt

Germany

Christian Keydel

Embedded Systems Academy
50 Aiport Parkway

SAN Jose, 95110

USA

Andrew Ayre

Embedded Systems Academy
50 Airport Parkway

San Jose, 95110

USA

| CANopen Nodes 1-31, 33-63 and 65-35
£

E 3

Nodes
|1t0 31 | 33 to 63 | 65 to 95

Nodes Nodes

Bridge

| W=sglD Translation ‘ ‘ WsglD Translation | | M=glD Translation

U U U

CAMopen System CAMopen System CAMapen System
with 8-bit MsglD with 8-hit MsglD with 8-hit MsglD
Node 1Ds: 1-31 Node IDs: 1-31 Node IDs: 1-31

Figure 7: A CANopen bridge

4. Summary and Outlook

Minimizing the complexity of today’s
embedded systems is a general goal. If
multiple embedded networks are used, a
common network protocol used across
different communication technologies
greatly simplifies the overall
implementation and maintenance effort.
For existing systems abandoning currently
used protocols might not always be
possible and sometimes customer
demand might require the implementation
of specific network protocols. However, for
new developments and implementations a
common network protocol must be
seriously considered to keep development
times and system complexity in check.

12-20

