
iCC 2005 CAN in Automation

07-1

Multilevel CANopen networks

Heikki Saha, Sandvik Tamrock Oy

Single-bus CANopen systems have not been enough for large systems, where
CANopen allows use of existing tools and good selection of standardized
components. Still CANopen documentation is single-bus oriented, but does not limit
the systems into single bus level. Many things, like signal oriented communications
model, support more complex systems. Typically there are more than enough
maximum supported amount of nodes and COB-Ids but not enough transmission
bandwidth to carry all signals of the system in the desired time windows.

This paper presents one solution, where every bus is still 100% CANopen conformant.
Dividing a large system into smaller subsystems makes it easier to schedule signals
into PDOs, to monitor buses by keeping subsystem specific signals local to
appropriate subsystem and to decrease the coverage of fatal bus errors. Special
gateways are introduced for signals, SDO- and EMCY-protocol. Also protocols and
services restricted into one hierarchy level and reasons for the restriction are
explained. The biggest challenges are found in EMCY-protocol and signal scheduling
over multiple independent bus segments. In those issues there are also the biggest
risk for application dependencies. Hopefully this paper is a trigger for official
documentation and advanced development of multilevel CANopen networking.

Introduction

Thanks to the development of the
CANopen standardization and increasing
selection of CANopen conformant
products, CANopen has become the
leading CAN higher level protocol in the
mobile machinery. At the same time bigger
machines with more features are needed.
Bigger systems must be divided into
smaller subsystems, which are easier to
design, diagnose and maintain. Therefore
something beyond single-bus CANopen
standardization will be needed to enable
building of those systems. Fortunately
CANopen is really open, also for this kind
of future developments. Only few
additional object dictionary entries with
some application-level software are
needed.

In practice, bus bandwidth of even 1Mbps
CANopen bus will be the most limiting
feature. That’s why two or more hierarchy
levels are absolutely mandatory to allow
division of low-level control-loops and
system-level information sharing. Also
coverage of fatal bus errors can be
reduced significantly by isolating critical
signal groups from each other when
possible.

Typically there are multiple instances of
certain subsystems in bigger machines,
which may need communication local to
subsystems. It should be possible to
support all structures simplifying the
systems design. Possibility to controlled
system boot and centralized system
administration are the most important
system level basic features.

Before starting the protocol by protocol
analysis of CANopen, following generic
terms must be defined:

Gateway node: A node connected to both
upstream and downstream buses and
forwarding data between them.

Gateway process: Software in the
gateway node forwarding data between
upstream and downstream buses.

Backbone : The topmost bus in the
system containing one or more bus
hierarchy levels beneath.

System master: A node acting as NMT
master of the topmost CANopen bus
(backbone) in the system. It may also
contain several centralized system-level
functions, like event logging, onboard
system configurator, user interface, host
communication interface, etc.

iCC 2005 CAN in Automation

07-2

Processing platform: Processing
platform is an application platform
consisting of electronics HW and one or
more finite state machines or software
layers at top of hardware. The main
purpose of software layers between
applications and hardware is to provide an
abstract, hardware-independent API to
applications and hide the complexity of the
underlying system from application
programmer(s).

System boot-up and NMT

The system boot must be performed from
bottom to up to ensure that the system
master node automatically gets the correct
boot status by using standardized
CANopen boot-up routine /2/ including
LSS /3/. One must notice, that in a system
with multiple hierarchical buses, boot time
of upstream bus must contain also the net
boot time of the downstream network
structure to enable error free boot of the
undamaged system.

Every bus has its own NMT-master
containing the description of the
underlying bus structure in the objects at
indexes 0x1F81, 0x1F84 - 0x1F89 /2/.
That will enable full access from the
backbone bus to the whole system
structure with standard SDO accesses.
The access is needed for both system
master contro l ler and external
configuration tool.

For diagnostic purposes, it is absolutely
necessary to keep buses independent,
because standard NMT-commands can
not address more than 127 nodes. There
is object Request NMT at index 0x1F82,
which can be accessed with SDO to
request the appropriate NMT master send
an NMT command /2/. NMT requests are
typically used to turn the single bus into
pre-operational state before starting the
configuring and to resetting the bus after
completing the configuring /2/.

Mandatory downstream bus: I f
mandatory slaves don’t exist or they fail
during boot, the upstream CANopen stack
will go to the stopped mode via operational
mode, when NMT-master tries to turn the
upstream CANopen stack into operational
state and upstream bus boot will also fail.
The mandatory gateway node is in
operational state only during transmission

of the EMCY telegram in case of failed
boot of downstream bus.

SM

1.31.21.1

321

BOOT FAILURE

EMCY
NMT STOP STATE
OCCURRED

Figure 1: Boot failure of mandatory sub-
bus

Optional downstream bus: After the
upstream CANopen stack is turned into
operational state, EMCY telegram is sent
to upstream bus to inform the incomplete
boot of the downstream bus.

SM

1.31.21.1

321

BOOT FAILURE

EMCY

Figure 2: Boot failure of optional sub-bus

Additional object into upstream object
dictionary is needed for selection of
downstream bus type.

Another boot-related object needed,
especially in large systems is hardware
version number and HW version check for
specified nodes. Currently the hardware

iCC 2005 CAN in Automation

07-3

version object at index 0x1009 is visible
string type and it can not be checked
during boot flow according to the DSP 302
/2/. The location for numeric format HW
version could be i.e. at index 0x1018 sub-
index 0x05 in the slave nodes and as
array type at index 0x1F90 in the master
nodes.

Heartbeat

According to the development of CANopen
standardization, only heartbeat has
included as a node monitoring protocol.
Thanks to its multicast nature, it is
extremely powerful protocol for node
existence and NMT state monitoring /1/.

0 1 2 3 4 5 6 7

NMT
STATE

Figure 3: Single data byte heartbeat
telegram

In a system with multiple independent
networks, every bus must have its own
node-monitoring domain to keep the whole
system fully CANopen conformant and
heartbeat transmission overhead in
minimum. Depending on the application,
heartbeat status of the downstream bus
may affect on the NMT-state of the
upstream bus in conjunction with Error
behavior object at index 0x1029, /4,5,9/.
The only mandatory action in case of
downstream heartbeat exception is
transmission of EMCY telegram into
upstream bus to inform the system master
node about the communication problem.
This feature translating cyclical HB
transmissions into event-based EMCY
transmissions can be mentioned as
heartbeat gateway.

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

SUB
NET1
NODE

ID

0 0
EXITING
CODE

COB-ID TO
NODE-ID

CONVERSION

0 1 2 3 4 5 6 7

NMT
STATE

WATCHDOG
AND STATE

CHECK

Figure 4: Heartbeat gateway operation

It is recommended that one sub-index
between 0x02 and 0xFE of object 0x1029
will be standardized for configuration of
sub-bus heartbeat error control.

EMCY gateway

Emergency telegrams are needed globally
for event logging and monitoring purposes.
Fortunately there are 5 bytes reserved for
application specific use in the CANopen
EMCY telegram /1/.

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

0 0 0 0 0

Figure 5: Plain EMCY telegram

The predefined fields indicate the pending
error status, but some important
information must absolutely be added:

EMCY code of exiting failure: If more
errors are pending simultaneously and one
of them exits, there must be a way to
signal that transition into event log. After
this 2 bytes addendum there are only 3
bytes left.

Source sub-bus information: EMCY
cob-id identifies only the node-id of the
topmost bus. In every EMCY gateway
process, downstream node-id must be
stored into one free byte of the telegram.

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

0 0 0
EXITING
CODE

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

SUB
NET1
NODE

ID

0 0
EXITING
CODE

COB-ID TO
NODE-ID

CONVERSION

Figure 6: EMCY gateway operation

Based on the node-id information the
EMCY consumers can decode the
telegram producer unambiguously as long
as default connection set is used.
Otherwise a special conversion table
between cob-ids and node-ids is needed.

If all optional bytes of the EMCY-telegram
were used for producer addressing,
maximum 6 hierarchical bus levels and
4195872914689 nodes total could exist.

iCC 2005 CAN in Automation

07-4

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

SUB
NET1
NODE

ID

SUB
NET2
NODE

ID

SUB
NET3
NODE

ID

SUB
NET4
NODE

ID

SUB
NET5
NODE

ID

Figure 7: EMCY telegram with source
information only

With mandatory and exit information there
are 3 bytes left for producer information.
That means maximum 4 hierarchy levels
and 260144641 nodes total.

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

SUB
NET1
NODE

ID

SUB
NET2
NODE

ID

SUB
NET3
NODE

ID

EXITING
CODE

Figure 8: EMCY telegram with source and
exiting information

In case of I/O-slave node, 1-2 more bytes
could be used to identify source port and
signal information to be accurate enough.
That will limit hierarchy levels into 2 and
total node count to 16129.

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

SUB
NET1
NODE

ID

SRC
PORT

ID

SRC
SGN

ID

EXITING
CODE

Figure 9: EMCY telegram with complete
source information

EMCY code decoding is more painful and
multiple string decoding tables and device
profile indexing are needed because of the
overlapping codes defined in the device
profiles /4,5,6,7,8,9/. Figure 10 presents a
mechanism, by which both event producer
and type can unambiguously be decoded.

0

EMCY
CODE

1 2 3 4 5 6 7

ERR
REG
OBJ

SUB
NET1
NODE

ID

SRC
PORT

ID

SRC
SGN

ID

EXITING
CODE

COB-ID TO
NODE-ID

CONVERSION

ERROR LOCATION INFORMATION (WHERE?)

ERROR STATUS INFORMATION (WHAT?)

DEVICE
PROFILE

INDEX TABLE

DEVICE PROFILE SPECIFIC
EMCY CODE DECODING

TABLES

Figure 10: Decoding EMCY telegram

SDO gateway

In CANopen SDO protocol is used for all
node configuration and other parameter
accesses /1/. Those actions must cover
the whole system, which is not included
into SDO protocol. In multilevel CANopen
networks, a special SDO gateway process
is needed to forward SDO request into and
reply from downstream bus.

An SDO access needs target node-id,
command specifier, multiplexer and data.
The data is needed only in write
operations. In the SDO gateway process,
those values must be written to upstream
object dictionary with 3 consecutive SDO
writes. Specifying command specifier and
multiplexer object to trigger the
downstream SDO will significantly save
bandwidth during massive accesses.

TGT NODE-ID

DATA

CCS+MULTIPLEX
CONTROLLED
TRIGGER

SDO
REQUESTS

DOWN-
STREAM

TRANSMIT
PROCESS

SDO
REQUEST

CCS + MULTIPLEX

UPSTREAM
RECEIVE
PROCESS

UPSTREAM
TRANSMIT
PROCESS

DOWN-
STREAM
RECEIVE
PROCESS

SDO
REPLY

SDO
REPLY

UPSTREAM
OBJECT

DICTIONARY

COB-ID
UPDATE

UL

UL

DL DL

Figure 11: SDO GW

The first downstream SDO download
needs 3 upstream SDO downloads to
perform a download operation.

SDO
CLIENT

2

SDO
SERVER

SDO
GATEWAY

1

3

4

5

6

9
8

7

10

Figure 12: SDO download

1. SDO download call from the
application to the SDO client service.

2. SDO download request of the
downstream node-id.

3 . SDO download reply of the
downstream node-id

4. SDO download request of the data
bytes

5. SDO download reply of the data bytes

iCC 2005 CAN in Automation

07-5

6. SDO download request of the
command specifier + multiplexer,
which triggers the downstream
download request.

7. Downstream SDO download request

8. Downstream SDO download reply,
which triggers the upstream SDO
download reply.

9. SDO download reply, which is equal
to the downstream reply, except cob-
id.

10. The application in the upstream SDO
client gets the original reply or abort
code with minimum amount of
standard SDO transactions.

Next downstream SDO downloads to the
same node need only 2 upstream SDO
downloads for data and command
specifier + multiplexer.

SDO uploads also need three upstream
transactions or otherwise the abort codes
may not be according to the client
command specifier.

SDO
CLIENT

2

SDO
SERVER

SDO
GATEWAY

1

3

4

5
7

6

10
9

8

Figure 13: SDO upload

1. SDO upload query from the
application to the SDO client service

2. SDO download request of the
downstream node-id

3. SDO download reply of the
downstream node-id

4. SDO download request of the client
command specifier + multiplexer,
which triggers the downstream SDO
upload

5. SDO download reply of the client
command specifier + multiplexer

6. Downstream SDO upload request

7. Downstream SDO upload reply

8. SDO upload request

9. SDO upload reply. Like in the SDO
download, also downstream SDO
upload reply will be forwarded as is,
except the cob-id of the telegram.

10. Uploaded data or abort code to the
application.

After first access to the same node, only
one upstream SDO upload and download
are needed for command specifier +
multiplexer and data.

In multilevel CANopen system, presented
SDO gateway process must run in all
nodes acting as a gateway. The only
drawbacks coming from the increased
hierarchy levels are:

• Increased amount of needed SDO-
transactions per one object access

• Need for 3 additional object entries into
upstream object dictionary

• Additional SDO client and gateway
software modules

On the other hand, following benefits are
found:

• 100% CANopen conformant SDO
accesses in all buses

• No limitations for number of hierarchy
levels

Signal gateway

CAN device driver A

A to B gateway

CAN device driver B

CANopen stack B

R
ou

tin
g

da
ta

ba
se

A
pp

lic
at

io
n

CAN interface A

CAN interface B

CANopen stack A

Object dictionary A

B to A gateway

Object dictionary B

Figure 14: Signal gateway block diagram

Because o f the s igna l -based
communications model of CANopen,
PDOs, MPDOs and SRDOs can not be
forwarded as is. They must disassembled
into signals and only wanted signals must
be forwarded between object dictionaries
and respective data objects transmitted
according to the pending transmission
types. All signals are defined by the
application and therefore application must
have full control over forwarding, which

iCC 2005 CAN in Automation

07-6

can also be modal at runtime. Still
mapping configuration of the signals must
be independent of application.

Routing database is an abstract name
indicating well-organized data describing
the forwarding conditions. It’s main
purpose is to isolate gateway engine and
application from each other, because
gateway engine may be executed in kernel
or user-space, depending on the
performance requirements.

Safety is the most important issue -
forwarding is allowed only after complete
start-up of the system and if application
level safety conditions are fulfilled.

Net delay caused by the signal gateway
process, CANopen stacks and CAN
device drivers is the second most critical
issue in signal forwarding. The maximum
allowed forwarding delay is defined by the
application and inside the application there
will be different requirements for different
signals. Typically, due to a tight delay
budget of only few signals forces to the
design of high-performance signal
gateway process. In most machine control
system applications the critical forwarding
is unidirectional - manual drive commands
from user interface to subsystems.

Reliability. In case of signal gateway,
reliability mostly deals with proper
scheduling of the gateway process. The
gateway process must have high enough
priority to be able to provide 100%
forwards in specified time. On the other
hand, the processing platform must be
able to run all software, including
operating system, fast enough and have
some spare resources, just in case.

Conclusions

Single-level basic CANopen networks can
easily be combined to form complex
multilevel structures without breaching any
CANopen standard. NMT- and boot
protocols are local to every network and
don’t need any gateway processes. SDO-
protocol requires gateway process to allow
centralized access to every node in the
system. EMCY-protocol gateway enables
global visibility of EMCY-telegrams. SDO-
gateway concept allows infinite amount of
hierarchy levels, but EMCY gateway limits
hierarchy levels to 2 to 6, depending on
the detailed requirements. Signal gateway

is the only gateway process, which may
require real-time performance, depending
on the delay budget of application signals.

In addition to the some software
processes, multilevel support will require
some new standardized object entries into
NMT master nodes:

• Expected HW versions in array format
for enhancement of boot-up checks

• Subnet mandatory/optional selection
for subnet boot-up process

• Sub-index of Error control object for
subnet heartbeat failures

And NMT slave nodes:

• Hardware version in numeric format

• 3 entries for SDO gateway

References

/1/ Application Layer and Communication
profile, CiA DS 301 rev. 4.02, 13.02.2002

/2/ Framework for Programmable
CANopen Devices, CiA DSP 302 rev. 3.0,
29.06.2000

/3/ Layer Setting Services and Protocol
(LSS), CiA DSP 305 rev. 1.1, 09.02.2002

/4/ Device Profile for Generic I/O Modules,
CiA DSP 401 rev. 2.1, 17.05.2002

/5/ Device Profile Measuring Devices and
Closed-Loop Controllers, CiA DSP 404
rev.1.2, 15.05.2002

/6/ Interface and Device Profile for IEC
61131-3 Programmable Devices, CiA DSP
405 rev. 2.0, 21.05.2002

/7/ Device Profile for Encoders, CiA DSP
406 rev. 2.0, 11.05.1998

/8/ Device Profile Proportional Valves and
Hydrostatic Transmissions, CiA DSP 408
rev. 1.5, 23.10.2001

/9/ Device Profile for Inclinometer, CiA
DSP 410 rev. 1.0, 01.09.2000

Heikki Saha
UG Automation
Sandvik Tamrock Oy
P.O. BOX 100, 33311 TAMPERE, Finland
Tel: +358 (0)205 444 592
Fax: +358 (0)205 44 120
Email: heikki.saha@sandvik.com
http://smc.sandvik.com/

