
iCC 2005 CAN in Automation

08-9

UML-based framework for simulation of distributed ECU
systems in automotive applications

Frank Steinert • proTime GmbH • Prien • Germany

A UML based framework for the simulation of distributed systems of embedded
control units (ECUs) has been developed by proTime. This framework generates at its
runtime an executable model of a system, described by an editable system
description. Thereby this simulated system can be used for tests and analysis.

A basis for this UML based framework are executable models of different field busses.
Currently models exists for CAN and FlexRay, Wakeup Line and a real-time control
bus for simulation control purposes. These field bus models will be used (even
simultaneously) to connect the modeled ECUs while the modeled system is under
simulation.

This UML based framework allows both the simulation of communication processes,
and the simulation of functionality depending on these communication processes all
with the correct timing.

The main advantage of this UML based framework is the testability of communication
dependant functionality like gateways, control loops and network management
without an expensive test environment.

The principal theme of this speech will be the CAN bus model, its integration into the
runtime-created system model and the resulting (almost boundless) possibilities.
Currently automotive systems are the focus of our modeling and simulation, but the
applicability of this UML based framework is not restricted to these tasks.

1. The CAN Bus Model

1.1 The Basics

The occasion for the development of the
UML based CAN bus model was a
concrete problem from the domain of
board net communication in automobiles.
There was a matter of coupling the CAN
based protocols for the network
management of two communication nets
by using a gateway. There were already
drafts for the functionality of such a
coupling, but the different operating
conditions under which the system should
operate reliably, were not to be completely
grasped analytically. A realization in
hardware seemed too luxurious, which is
why the new way of a modeling and
simulation was considered. The modeling
should be implemented using UML. For
various reasons Rhapsody by I-Logix (see

www.i logix.com) was selected which
comes with an excellent code generator
and allows the easy execution of the
models.

One can summarize the essential
requirements of the CAN bus model as
follows:

• The transmission of the CAN
telegrams on the CAN bus should be
able to be simulated as far as possible
with chronological correctness.
Besides, the main focus does not
c o n s c i o u s l y b e c o m e t h e
chronologically correct mapping of the
bus states (sample points, bit times
etc.).

• The arbitration is to be modeled
correctly.

iCC 2005 CAN in Automation

08-10

• The CAN bus model can be simply
reconfigured for the simulation of
different scenarios

• The CAN bus model is to be able to
simulate several instances of the
model at the same time.

• A model of a CAN controller is to be
provided which allows the very simple
b ind ing o f ex is t ing d r i ve r
implementations. This model must be
able to be instantiated several times at
the same time.

The CAN bus model simulates the CAN
bus in terms of functionality, so that the
modeling of the CAN bus can be
abstracted from many of its aspects.

1.2 Modeling Of Time

An essential problem of the behavioral
modeling is the mapping of the timeline.
Taking into account the purpose for which
the model should be developed the
following decisions were met:

• The time behavior of the modeled
CAN bus triggers all the other
functions of the model (e.g., the
modeled CAN controllers).

• Only the transmission of telegrams
(of their bits) on a modeled CAN
bus "uses" time. All the other
functions operate during simulation
with infinite performance.

Therefore the time is measured with a
resolution which corresponds to the bit
time on a CAN bus. In each case at the
end of such a time step the time is
stopped for so long as needed, until all
actions pending at this time step are
carried out. Only when there is nothing
more at this time step to do (or to be
simulated), the time advances one step.

1.3 CAN Bus and CAN Controller

Because of the realization of the described
time model the CAN Bus model is
reducible to provide a time base triggering
the model’s behavior and to transport CAN
telegrams between the simulated CAN
controller's models.

Taking into account the objective for which
the model should be developed the
following decisions were met:

• Bit stuffing is not taken into
consideration, however, it can be
upgraded any time without much effort.

• Error frames are not generated,
because no errors can be expected
from a undisturbed CAN bus.
However, it is possible without much
effort, to model the appearance of bit
errors and the generation of error
frames.

• The acknowledge bit is modeled
indirectly: so long as only one
controller is on the bus, its upload is
not concluded (no "transmit interrupt"
is triggered).

• The CAN controllers are very simply
real ized: Basic CAN without
acceptance filtering. Because of the
"infinite" performance style of
simulation, this is not a restriction.

• The interrupts of a CAN controller are
mapped using signals (events) which
control the state machines of the
model.

• The configuration of the CAN bus and
the CAN controllers is read in by the
simulation, at start up, from a file. This
file is easily modified with a simple text
editor.

In contrast to the reality where a CAN bus
with its 2 wires has no behavior of its own
(at least at the level of abstraction of
interest to us) a part of the behavior of the
CAN controllers is realized by the CAN
bus model. But also in reality the CAN bus
without its CAN controllers would be not
really a CAN bus! For modeling reasons it
is acceptable to give behavior to the CAN
bus - the synchronization of the modeled
CAN bus controllers is to be realized
substantially easier over an active bus at
the telegram level, because here the
correct bit timing does not need to be
modeled.

In Figure 1 the state chart of a simplified
CAN bus state machine is illustrated which
models the relevant behavior of a CAN
bus.

The method "GetNextMessage" (transition
from "ST_Empty" to "ST_InTrasmition")
checks all CAN controllers registered with
the CAN bus for the CAN telegram to be
sent with the highest priority and fetches it.
The machine remains in the state

iCC 2005 CAN in Automation

08-11

"ST_InTrasmition" for long as the duration
of transmission of this CAN telegram. The
duration of the telegram transmission
depends on the number of data bytes (the
Stuff Bits are ignored) in this telegram.
With the method "SendNextMessage" all
controllers are informed about the
completed transmission of a telegram on
the CAN bus and they receive this
telegram. The sending controller interprets
this information as a transmission
confirmation. As a result the bus is
blocked to model (c_blockTicks) the
INTERFRAME SPACE and afterwards the
next telegram, which is already waiting,
will be sent. If no telegram is to be
dispatched, it waits for one. With
"evCANSendMessage" it is signaled that a
telegram was handed over for sending.

The lower partial machine provides
information about the model regarding
whether bus traffic actually occurs or not.
This can be used for test purposes.

OVERLOAD- and ERROR-Frames are not
modeled. However, these could be
interesting for the simulation of error
scenarios and could be inserted with low
effort into the model.

The modeling of REMOTE-Frames is a
task of the CAN controller's model.

The INTERFRAME SPACE is modeled
without "Suspend Transmission" - but this
too can be inserted into the model with
minimal effort. For our previous work these
unmodeled parts of the specification were
not important.

The application interface of the CAN bus
model is provided by an abstract interface
class which is implemented by the CAN
bus model. Figure 2 shows this interface
class. The names of the methods are
generally self explanatory, with an
exception: the method "register controller"
serves to announce the (simulated) CAN
controllers to the bus model - only the
CAN controllers known to the bus model
can send and receive CAN telegrams
using this bus model. Of course it is
possible to generate any number of CAN
busses and CAN controllers in any
configuration and allocation at runtime.
The generation of CAN busses and CAN
controllers is done by (likewise modeled) a

builder at runtime which takes its
information from an editable file.

The interface of the CAN bus controller is
likewise provided by an abstract interface
class. This interface is implemented by
the CAN controller model. In Figure 4 you
can see the relevant class. Also here the
names of the methods are generally self
explanatory. Beyond that, the class has
further methods which are used by the
CAN bus model to inform it about the
sending or the receipt of CAN telegrams.
In principle it is possible on account of the
modularity of the model to also create
additional controller models and to insert
them into the model. These could then be
operating in the same simulation beside
the other controller models in parallel.

2. Additional Bus Models

Beside the described CAN bus model
models were already realized for FlexRay,
the wake up line and a real-time control
bus. The real-time control bus manages
the simulation. The wakeup line models a
digital signal for waking up (simulated)
ECUs. For these bus models there are
likewise suitable controller models. All bus
models are naturally instantiable multiple
times and are generated and linked by the
builder during runtime according to a
control file.

The models for the wake up line and the
real time control bus are built up similarly
to the model of the CAN bus. The relevant
bus model has in each case a more
complicated behavior than in reality. With
the FlexRay model the division of tasks
occurs between the controller and the bus
in another way. Here the bus model
serves merely as a clock generator, while
it generates the so-called „macro ticks “
and transmits them to all connected
FlexRay controller models as trigger
events for the state machines inside each
controller model. The state machine’s
state chart of this clock generator is shown
in illustration 3. The FlexRay controller
model realizes here completely the
winding up of the more complicated
protocol and uses the FlexRay bus model
merely for the transmission of the FlexRay
frames. By contrast the bus model with the
other modeled buses actively takes over
the transmission of the telegrams and

iCC 2005 CAN in Automation

08-12

realizes the respective transference
protocol.

All bus models created up to now are
several times instantiable and can be
executed in the same simulation.

2.1. Extended Modeling Of Time

On account of the realization and
integration of further bus models it was
necessary to extend the time model. Thus
the FlexRay works, e.g., with a time
resolution in the ns range. In a system to
be simulated the time model is driven
accordingly by the bus model which works
with the smallest "time quantities".

3. Modeling Of Bus Drivers

For the use of the bus models in a
simulated environment (ECU), the bus
drivers from which the bus model forms an
accessible application package are
required in implemented software. In our
framework for this purpose abstract
superclasses were defined which
encapsulate the communicat ion
mechanisms of the bus models and make
it accessible to a driver. In illustration 5 the
class diagram of an example CAN driver is
shown. In principle the models are so
open that any drivers can be realized.

4. Simulation Framework

Building up on the model elements
described up to now (bus models, bus
controller model, driver models) an
extensive simulation framework was
constructed. This simulation framework
enables the simulation of extensive
distributed systems in their complexity.

4.1 Structure Element Node

The structure of a system to be simulated
is based on the elements typically found in
the automobile environment: bus, ECU
and gateway. An ECU is a device
communicating using one or several
busses which executes application
programs and accesses actors and
sensors in the vehicle. A gateway provides
communication between different busses
and is a very complicated component,
because it doesn’t only transmit simple
telegrams from one to another bus.

Furthermore, gateways can also be a
component of an ECU. Beyond that, there
are the higher communication protocols
which are to be used by the ECUs. These
higher communication protocols allow the
transmission of bigger data volumes to
control (transport protocols) or the system
(network management, vehicle state
management). Also there are the more or
less standardized software layers which
realize, e.g., the mapping of the signals
generated or consumed by applications
(e.g., a temperature, a command) on
telegrams and frames.

The framework realizes these abilities of
the ECUs by means of so called nodes.
Besides, a node can contain one or
several (different or of the same kind) bus
bonds, a gateway and different
applications. In the automobile sphere
such a node always contains components
of the vehicle state management and the
network management, the latter also
depending on the stamping of the
respective bus.

4.2 Integration Of User Applications

An interface is provided for the simulation
of applications. These applications can be
executed within the systems provided with
the framework. This interface is realized in
form of an abstract superclass which
contains all methods usable by an
application. With these methods an
application can send signals and receive.
With these methods it is also controlled by
the simulated vehicle state management.
Among the rest, an element of this
abstract superclass is an attribute which
carries the name of an application. With
this name an application is identifiable and
can be associated, above all, in the
system definition of one or several nodes.

4.3 Definition Of Systems To Be Simulated

To simplify the operation of the
frameworks the framework reads in the
structure information from a control file by
the start of a simulation. This is possible,
because behavioral model, behavioral
implementing and the mapping of the
system structure were decoupled from
each other. By the realized decoupling of
the system structure the simulation

iCC 2005 CAN in Automation

08-13

framework gets practically usable and
user-controllable. A builder integrated in
the framework generates all of the
required objects (instances of the bus
models, Nodes etc.) at run time and links
up them according to the control file.
Besides, it is possible to generate this
control file from other data sources, e.g.,
of a board net database. Beside the
structure information the communication
profiles (which telegrams or frames from a
node will also get generated or consumed
which signals are mapped like on
telegrams and frames are taken ...) from
the control files. Same applies to the
parameterization of the gateway model.
Also the gateway model needs information
about which reception telegrams or frames
are to be mapped in which way in transmit
telegrams or frames. Figure 6 shows a
sample of a simulation screen dump.

4.4 Sample Of Usage

With the help of the following example the
use of this simulation-framework can be
made clear by the hedging of functional
specifications .

CAN based networks of ECUs in a car are
coupled via gateways. Besides, the
network management is realized on each
of the nets according to OSEK-NM. The
OSEK-NM provides for the fact that all
ECUs are woken up if an ECU becomes
awake and all ECUs in sync fall asleep
when all ECUs are ready. With the
coordination of the network management
on the single buses by a real gateway
false functions were observed in the
practice over and over again. These led to
the fact that the asleep-processes were
delayed and states even appeared where
only one part of the ECUs fell asleep and
this was on account of the activity of the
other ECUs which then woke again etc.
The cause was discovered by analysis in

the synchronization mechanism of the
gateway. A new procedure was developed
for this synchronization mechanism. By
means of the simulation (about bus
coupled simulated ECUs and gateways
with OSEK-NM) it could be proved that
this new procedure also operates under
"adverse" edge conditions correctly. For
this "just" the different test scenarios which
create exactly these edge conditions were
modeled and executed in the simulation
execute. Besides, it was substantially
easier to create complex test conditions
with the model than in a real bus.

The evaluation of the NM specific behavior
of the gateway and the nodes was
developed by an additional node element
which NM-Checker realizes. This NM-
Checker observes the CAN telegrams
communicated on the simulated busses
and evaluates them. As soon as it
ascertained a violation of the OSEK-NM
specification, these were captured.

On account of the strict encapsulation of
all model elements it was possible to
extract afterwards the NM-Checker from
the framework and to embed in a test
environment. This test environment allows
the access to real busses, the real
systems in the car. Therefore it became
possible, to certify the NM-Checker in the
simulation, and also to evaluate the
behavior to be of more real use in
hardware with realized functionality.

Frank Steinert
proTime GmbH
J.-v.-Fraunhofer-Str. 9 • D-83209 Prien
+49(8051)6916-0
+49(8051)6916-11
Frank.Steinert@protime.de
http://www.protime.de

iCC 2005 CAN in Automation

08-14

+Config(TCANConfig descr,void* p1,void* p2,void* p3,void* p4):i
+GetAssignedId():int
+GetRegController(int controllerId):CCANCCIface*
+PGetTimestamp():int
+RegisterController(CCANCCIface& controller):int
+SendMessage(CCANMessage& message):int
+SetConfig(CCANBusIface* busIface):void
+SetRegistry(CCANBusIface* busIface):void
+SetTiming(CCANTimingDefinition* timingPtr):int

CCANBusIface

<<Interface>>

Figure 2: public interface of the CAN bus model

ST_BusST_Bus

ST_Active

ST_Empty

ST_active

ST_InTransmition

ST_Empty

ST_Blocked

ST_Inactive

C

evCANSendMessage/
SignalCANActive()

tm(c_emptyTicks)/
SignalCANInactive() evCANSendMessage

evCANSendMessage/
GEN(evCANError("Busy"))

[else]

evCANSendMessage/
GEN(evCANError("Busy"))

tm(c_transTicks)/
SendNextMessage()

[GetNextMessage() != -1]

evCANSendMessage/
GetNextMessage()

tm(c_blockTicks)

evCANGoInactive
evCANGoActive

Figure 1: Statemachine of the CAN bus model

state_17

ST_start

tm(c_MTticks)/
SignalMT()tm(c_MTticks)

Figure 3: Statechart of the FlexRay model

#c_assignedId : int
#c_busIfacePtr : CCANBusIface*

+SendMessage(CCANCCIface* cPtr,CCANControllerMessage& message):int
+GetReceivedMessage(CCANControllerMessage& message):int
+Config(CCANCC* busPtr,TCANControllerConfig descr,void * p1,void * p2,void * p3,void * p4):int
+GetAssignedId():int

CCANCCIface

<<Interface>>

Figure 4: Public interface of the CAN controller

iCC 2005 CAN in Automation

08-15

+InitInterfaces(CCANIfaceContainer& ifaces):void
+ReadReceivedMessage(CCANMessage& message):int
+~CCANSuperDriver()
+evCANActive()
+evCANControllerError()
+evCANControllerMessageReceived()
+evCANControllerMessageTransmitted()
+evCANInactive()

CCANSuperDriver

+CCANDrv()
+InitInterfaces(CCANIfaceContainer& ifaces):void
+ControllerMessageReceived(int ccId):void
+ControllerMessageTransmitted(int ccId):void
+ReceivedTelegram(int ccId):void
+SendTelegram(CMessage* telegram):int

CCANDrv

Figure 5: A sample for a CAN driver

Figure 6: Screen dump of a simulation

