
iCC 2006  CAN in Automation 

07-7 

Software service tool for electric vehicle system 

Glenn Bergqvist, Danaher Motion Särö AB 

The paper describes the work developing a service tool to be used together with 
CANopen-based system. It presents the thoughts and requirements before and during 
the development process. The service tool has the purpose to handle design, 
production and service/maintenance functions in an electrical vehicle. This includes 
functions like diagnostics, parameter setup, reports and software download. 

A presentation how it has been implemented to enable all the function for both 
advanced users and as a user-friendly tool for non-experienced CANopen-users is 
also included. 

 

 
Figure 1: Man and machine 

1 Introduction 

A problem with putting new CANopen 
systems out on the market can be the fact 
that it is a traditional application where old 
mechanical, electric or hydraulic 
equipment has been exchanged to a more 
or less complex distributed system. Both 
design engineers and especially service 
and maintenance people have no or 
limited knowledge of CAN and distributed 
systems. 
Requests like “Take a CAN-log!”, 
“Increase parameter 0x2400 Sub Index 3 
to 500!”, “Update software to revision 5!”, 
“Check the error log!” can be 
incomprehensible or impossible for service 
or maintenance persons. 
Development of the service tool software 
had the target to simplify the work and 
make it better suitable for these users. 
Even with an adapted tool it can also be a 
struggle to have companies/organizations 
to take the step to use a PC as a tool for 
service and maintenance. 
 

2 What features do the users want to have? 

Putting the requirements together shows 
that the users isn't primarily interested in 
the fact that it is a CANopen system but 
instead requires to efficiently service his 
application/system. 
This together with other requirements like 
language support, easy distribution, 
upgradeable with more service 
applications and access levels builds the 
requirement base. 
 
3 Who is the user? 

The range of users can be from people 
with good knowledge regarding CANopen 
systems to users with none or low 
knowledge. The tool needs to be scaleable 
to support as many user profiles as 
possible and also for the different stages 
in the lifecycle of the vehicle/system. From 
design, production to service and 
maintenance of the vehicle. 
 
4 Language support in software and created 
application 

To be usable in different countries there is 
also a need to support different languages 
both in the software itself and in the 
created service application. 
 
5 Connection of the tool to vehicle/system 



iCC 2006  CAN in Automation 

 07-8 

The service tool needs to verify that it is 
connected to the right vehicle/system and 
to secure that all actions are handled in a 
safe way. The solution to this is to 
describe the system and all CANopen 
nodes available in the system. 
The fact that some systems are ‘flexible’ 
and sometimes have optional nodes and 
also can have variants of products needs 
to be supported. 
Identification of the nodes is done with 
standard CANopen entries and additions: 
• Device Type (0x1000:0) 
• Software identification 
It is also needed to have some possibilities 
to mask this information to accept minor 
updates of the connected device. 
As the tool supports multiple service 
applications there are functions to 
administrate these in a tree view. 
 

 
Figure 2: Tree view of configurations 
 

6 Communication interface 

Requirements for different interfaces, 
connectors also add variation in the usage 
of the tool. Basic connection with a 
standard CAN-interface, most common 
USB to CAN, is needed as a first level. 
For cost sensitive applications this 
interface can be an issue and solutions 
like direct RS232 or USB to the target 
system is wanted to minimize cost. With 
such a solution you normally do not get all 
the other benefits possible when you are 
connected to the CAN bus accessing all 
nodes, taking CAN-traffic logs etc. 
Wireless or remote connection is also 
wanted for some applications. Short 
distance connection with Bluetooth/WiFi 
and long distance, remote, with GSM or 
over Internet is possible. This adds other 
requirements regarding safety and 
limitations caused by bandwidth. 
 
7 XML file system to support the system 

To meet the requirements for this 
functionality a XML-based file system has 
been developed to handle all information 
needed to be available for the service tool. 
It is open and easy to upgrade with new 
information. Any CANopen-device can be 
added and supported. A system for 
signing the files to prevent manipulation of 
contents has been added. 

 
Figure 3: XML-file system implemented 
 
Most important files are the Product file 
(epf) and the System description file (ett). 
 
8 Product file 

For each product (device) a file is created 
which includes following information. The 



iCC 2006  CAN in Automation 

07-9 

Product file is created by the designer of 
the device/product.  
Product: 
• Name of the product 
• Software article number 
• Checksum information 
• Timestamp information 
Connection: 
• Communication speeds supported by 

the product (including default) 
• Node number information 
A big part of the product file is normally the 
object dictionary which includes: 
• Symbolic name 
• Object type (variable or array) 
• Index and SubIndex 
• DataType and AccessType 
• Minimum, maximum, default value 
• Scaling information (factor and offset) 
• Unit information 
• Bitfield information (to describe 

symbols with less then 8 bits) 
• PublicName (user friendly name of  the 

symbol) 
• Visibility 

(operator/service/OEM/Internal) 
• MaxArraySize 
• Bitfield information (to describe 

symbols with less then 8 bits) 
In the product file information regarding 
compatibility can also be described and is 
used by the tool to secure downloading of 
compatible software. 
The last part of the product file includes 
the software in hex-format to enable 
downloading software to the product. 
For some special products as displays 
(HMI) a separate file can be used to store 
all string information etc needed for the 
display to support multiple languages. 
 
9 System description file 

To describe the vehicle/system an xml-file 
called TruckType is used. Information 
inside describes which products (nodes) is 
included. This file is created by the 
designer of the service application. 
 

TruckType: 
• Name of the vehicle 
• Article number 
• Baud rate 
Devices: 
• Node ID 
• DeviceName 
• Article number 
• Article number match (to make it 

possible to have a mask as a rule to 
access the vehicle with the tool) 

• Type code (DeviceType) 
• Type code mask (to make it possible to 

have a mask as a rule to access the 
vehicle with the tool) 

• SDO RX and TX information about 
COB-ID to use 

• Information if device is optional or 
mandatory 

• Public name. A user friendly name 
showed in the software. Included for all 
strings showed in the software there is 
the possibility to add a language code 
attribute to support different languages 

 
Figure 4: System description file (ett) 
 

10 Views 

The configurable user interface which is 
normally unique for each vehicle type is 
described as views. They can be of 
different sorts for diagnostics (read only) 
or setup for writing information to the 
vehicle. Other types of views are logs for 
reading array-information and reports 
useable to make printouts. 
 



iCC 2006  CAN in Automation 

 07-10 

 
Figure 5: User interface 
Also here language code attribute can be 
used to fully support different countries. 
• View name 
• Visibility (access level) 
• Save in configuration enable (for setup 

views where value wants to be stored 
on the PC) 

• Update interval (how often SDO-
question is sent in ms) 

• Public name (with language code 
support) 

Each view has contents of a number of 
parameters. Description of each of them 
includes: 
• Symbolic address (describing which 

node and object) 
• Access type (rw, wo, const) 
• Representation. Describes in which 

format information shall be shown 
(Decimal, ScaledDecimal, Hexa-
decimal, String, FixedString, ....) 

 
Figure 6: View example 

 
Depending if the view is for setup 
(read/write) or diagnostics (read) the 
number of columns differ. To indicate 
difference between stored value in the PC 
and the read value from the vehicle the 
background color is changed to easy see 
that a parameter doesn’t have original 
value. 
 
11 Reports 

A number of views can be gathered 
together to form a report. This is used to 
make printable reports or stored for later 
retrieval. 
Typical use is service reports or the 
possibility to document settings in a 
vehicle from production. 

 
Figure 7: Report example 
 
12 Logs 

Another form of view is a log which is used 
to read array information. This is normally 
used to read typical error logs etc. 



iCC 2006  CAN in Automation 

07-11 

 
Figure 8: Log example (array 
information) 
 
The translation of a value to a 
understandable string can be very useful 
to read error log information to both 
present cause of error and also provide 
the user with possible actions. 
 
13 Service wizard 

To simplify some functions even more a 
way of using electronic change orders is 
implemented. It makes it possible to 
remove some manual actions from the 
user checking software versions for 
updates etc. This is done by writing a 
script. 
 

 
Figure 9: Electronic change order 
example 
 
Some functions in the service tool is 
available through the script engine to 
make maintenance work automated. 
 
14 Flexibility for different users 

To support functions for simple to more 
advanced users the software is handled 
with options to mainly avoid the software 
to be to complex for simple usage. 
There is also a safety issue where for 
example a service engineer shall not have 
the possibility to upgrade software and not 
freely browse and edit the full object 

dictionary. This can be needed for design 
use. 
 

 
Figure 10: Possible user functions 
For the more experienced CANopen user 
an EPF Explorer-function is available. With 
this function the full object dictionary can 
be browsed. Reading and writing of 
parameters can be done without 
limitations used in other parts of the tool. 
 
15 File integrity 

To protect against any manipulation of the 
xml-files used by the tool a 
checksum/identification feature has been 
integrated. A file that has been 
manipulated will not be valid and the 
service tool will ignore the file and give an 
error message. 
 
16 Distribution 

An important feature is the way the 
software and the service application itself 
can be distributed. 
Tools in the software for import of new 
service applications is included to make 
updates fast and efficient. 
CD-distribution is simple as the installation 
process includes functions to include 
installation of software, drivers for different 
CAN-interfaces, service application (XML-
files) and also possibility to add additional 
documentation as service manuals, 
technical support screens etc for the 
vehicle/system. 
Customization with logos for end-user 
organization etc is also available. 
 



iCC 2006  CAN in Automation 

 07-12 

17 Service application development 

In parallel with the service tool a design 
tool has been developed to simplify the 
work creating the service application. 
Using the product files as input the tool 
generates all needed files to have an 
service application up and running. 
 
18 Summary/conclusion 

The development and first time of usage of 
the service tool shows that we have 
created a flexible and scaleable platform 
but also that new requirements are added. 
It includes better graphical interface to 
simplify the user interface even more and 
also more flexibility regarding 
communication interfaces and standards. 
As CANopen is the standard in the bottom 
the possibility to use the tool for any type 
of CANopen system is possible. 


