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Implementation of automotive CAN module requirements 

Alan Devine, freescale semiconductors  

At first glance all CAN modules are very similar, the only difference being the number 
of message buffers which are included in the implementation.  Depending on the 
number of buffers the module is often referred to as FullCAN or BasicCAN.  A FullCAN 
implementation normally has an array of message buffers that can be configured as 
Transmit (Tx) or Receive (Rx) whereas BasicCAN has a limited amount of Tx buffers 
and an Rx FIFO(s).  However, there are several other key requirements for a CAN 
module that are important in the selection of the most suitable module for an 
application, as they can have a big impact on the efficiency of the software. 

This paper discusses the main functional requirements of a CAN module for the 
automotive market and explores different implementations of the key requirements.  
Specifically, it compares implementing the requirements within a standalone module 
with the alternative approach of using a simpler CAN macro in conjunction with other 
standard MCU resources, such as system RAM, co-processor and DMA, which are not 
dedicated to CAN. 

 
1 Introduction 

This paper discusses the important 
functional requirements of message 
buffering, message filtering, and 
communications gateway (the transfer of 
data between different nodes on the same 
Electronic Control Unit (ECU)) of a CAN 
module that will be integrated within a 
microcontroller (MCU).  Each of the 
requirements are discussed in detail and 
possible implementations suggested. 
 

2 Message buffer requirements 

A CAN module is known as a BasicCAN 
module or a FullCAN module depending 
on its buffer configuration. However, the 
message buffer (MB) configuration and 
total number of MB’s are not the only 
important requirements placed on the 
buffers.   During transmission it is 
important to ensure that the CAN node 
can transmit a stream of high priority 
frames without a lower priority frame, from 
another node, interrupting the stream.  
This problem is known as outer priority 
inversion and requires the internal 
processing time of the CAN module to be 
smaller than the minimum Inter Fame 

Space (IFS) to guarantee that consecutive 
frames from a node can be sent.  Figure1 
shows the outer priority problem. In this 
example the lower priority frame1 (Node2) 
is inserted between the higher priority 
frames 1 and 2 (Node1) on the CAN bus, 
as the internal processing time of node1 is 
greater than the IFS. 
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Figure 1 - Outer priority inversion 
 
In order to avoid this problem the MB’s 
needs to be loaded immediately after 
transmission and typically requires more 
than a single transmit MB to decouple the 
reloading procedure from the current 
transmission.  The decoupling is also 
required to increase the amount of time 
that the CPU has to reload the MB’s.  
Without this decoupling it would be very 
difficult to guarantee that the software can 
reload the MB’s fast enough.  Normally a 
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minimum of 3 transmit MB’s are required 
to cover all circumstances, as problems 
can arise if only 2 MB’s are used.  e.g. If 
the sending of a message is finished and 
the second buffer is still being reloaded.  
 
The module must also ensure that the 
highest priority scheduled frame is 
transmitted first onto the bus. Each Tx MB 
needs to have an internal priority 
mechanism to allow the highest priority 
frame the opportunity to fight for bus 
arbitration.  This is particularly important 
for the transmission of Transport Protocol 
(TP) messages which can have the same 
ID, but need to be transmitted in 
chronological order. The module also must 
not block high priority messages from 
transmission by lower priority scheduled 
messages already loaded in the Tx MB’s.  
This problem is known as inner priority 
inversion and is shown in figure 2.  This 
can occur when the other nodes on the 
network are transmitting higher priority 
frames (lower ID) than the locally 
scheduled frames.  Subsequently, if all Tx 
MB’s of the local node are full and blocked 
from transmitting due to the bus traffic, the 
transmission of a new higher priority frame 
(local node) is then delayed until a 
scheduled frame is successfully 
transmitted. In order to avoid this from 
happening hardware cancellation needs to 
be supported on the Tx MB’s to allow the 
new higher priority frame to be loaded into 
a buffer and allowed to fight for bus 
arbitration.  
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Figure 2: Inner priority inversion 
 

The receive path is just as critical as the 
transmit path. In the ideal world the 
number of receive MB’s should be equal to 
the number of unique messages to be 
received and each Rx MB’s should have 
an associated queue to allow the CPU 
more time to service the MB before data is 
lost. However, as all applications are not 
identical it is impossible to fix the number 
of MB’s that would match all 
circumstances. Typically, FullCAN 
implementations with 16, 32 and 64MB’s 
variants are available, as the cost of 
modules with more dedicated MB’s 
becomes prohibitive.  If more frames than 
MB’s exist, then multiple frames need to 
be received in some of the MB’s, which is 
possible using hardware filtering (see 
following section).  Several possible 
solutions exist to extend the number of 
MB’s per node.   
 
One possible solution is to use the MCU’s 
system RAM for the MB’s, which allows 
the number of MB’s to be configured at the 
expense of the RAM.    This is a very 
attractive approach due to the flexibility, 
but as the number of CAN modules on a 
single MCU increases, 6 at the last count, 
this becomes more difficult to handle and 
can lead to system performance issues.  
The MCU architecture also has to be able 
to allow the CAN module(s) to be a bus 
master so that they can directly access the 
system RAM.  This will inevitably require a 
new CAN module design. 
 
An alternative solution is to develop a CAN 
module that can share a common pool of 
local RAM (MB’s).  Thus, the number of 
MB’s per module can be optimized to the 
application requirements.    For example a 
node on the bus may require 48MB’s and 
another only 16MB’s.  This could be 
satisfied with a total pool of 64 MB’s. If a 
shared pool of memory is not used, It 
would require a 16MB’s FullCAN and 
64MB’s FullCAN module, which results in 
80MB’s.  This example assumes only 16, 
32 and 64MB’s FullCAN's are available. It 
is also typical that multiple CAN modules 
on a MCU have the same amount of MB’s.  
In the worst case two 64MB’s CAN 
modules would be used, resulting in a total 
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of 128MB’s when only 64 are required.  
Thus, with a pool of memory approach it 
would be possible to support the 
requirements of both nodes with fewer 
buffers which would result in a smaller 
CAN module.   
 
A further solution is to offer a BasicCAN 
implementation and use an on chip DMA 
or co-processor to build the MB’s in 
system RAM. This is a very flexible option, 
however to be truly effective the DMA 
should be coupled with a CAN module 
with a perfect receive filter (see next 
section) and the CAN module needs to be 
able to operate with the DMA. If a co-
processor is used the hardware filter can 
be simplified, as the co-processor can 
efficiently handle software filtering and it 
should be possible to reuse an existing 
CAN module.   
 
A further requirement on the receive 
buffers is the ability to ‘queue’ the received 
frames to increase the amount of time the 
CPU has to handle the reception without 
the loss of data. If messages are queued it 
is important that the chronological order is 
kept, thus a hardware FIFO is normally the 
best solution. However, other approaches 
which are more flexible than a hardware 
FIFO could also be implemented. For 
example several MB’s could be joined 
together to make a queue. This solution 
offer’s the ability to customize the number 
of Rx queues and depth of queues at the 
expense of individual MB’s. The second 
approach could be a hardware linked list 
where the queue is dynamically allocated 
from a pool of Rx buffers. Both of these 
approaches are attractive as they offer 
more flexibility than the FIFO solution. The 
main drawback would be additional 
software overhead compared to a fixed 
FIFO and the module complexity. 
 
3 Message filtering requirements 

One of the most important requirements 
for any CAN module targeted for 
automotive applications is its ability to 
reject frames that are not intended for the 
particular node. This is known as message 
filtering and is important as it can vastly 

reduce the number of interrupts that a 
CPU has to handle. Essentially, the 
message filter block compares an 
incoming frame’s arbitration field against a 
preprogrammed filter value that is normally 
configured at initialization. If the incoming 
message’s arbitration field matches the 
filter value, the entire frame is stored in the 
CAN modules hardware Rx MB and an 
interrupt request is sent to the CPU (if 
enabled). If a match does not occur the 
frame is not copied into a MB and an 
interrupt request is not generated. The 
Bosch CAN specification (CAN2.B) 
optionally includes mask bits that allow 
any ID bit to be set as don’t care in order 
to accept groups of identifies to be 
received. Most controllers have this basic 
level of message filtering, however, due to 
the large number of ID’s used within 
modern CAN networks, this basic filtering 
is not always capable of accepting only the 
frames intended for the specific node.  
This leads to the leakage of unwanted 
frames through the filter which increases 
the interrupt and CPU loading, as the CPU 
needs to perform secondary software 
filtering on all messages. Figure 3 
demonstrates this filtering concept. 
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Figure 3: Bitwise masking example 

 
It can be seen for the example that frames 
with ID’s in the range 0x01FC000F to 
0x01FC000C are accepted as ID bits 0 
and 1 are set to don’t care (00). With this 
approach it is relatively simple to receive 
groups of frames. However, this filter 
concept is not 100% effective (reject all 
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unwanted frames). For example it is not 
possible to only accept the contiguous 
range ID3 to ID13. (See figure 4 for a 
further example) 
In automotive networks several types of 
messages are present and the different 
message types are often grouped into 
separate ranges. For example it is 
common to find application messages, 
diagnostic messages, network 
management messages and transport 
protocol messages.  The latter 2 types can 
usually be filtered with the bitwise masks 
discussed above. The application 
messages are more difficult to filter, as 
they can be grouped into a mixture of 
bitwise ranges, contiguous ranges and a 
collection of individual ID’s. Figure 4 
shows a sample of frame ID’s used within 
a real application.   
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Figure 4: Filtering example 
 
It can be seen from the example that the 
bitwise mask approach specified within the 
CAN specification is not flexible enough to 
accept only the frames for the specific 
node. A mixture of bit masks, contiguous 
range and a LUT are necessary to create 
a 100% effective filter. Note: If the LUT 
was big enough there would be no need 
for the other filter types, however this 
would lead to excessively large LUT.  
Another solution is to use a FullCAN 
implementation where the number of Rx 

MB’s is greater than the number of frames 
to be received. In this case each MB 
accepts a frame with a unique ID and 
since there are more MB’s than frames to 
be received, only the intended frames are 
accepted. However, there is normally a 
limitation to the number of MB’s that are 
implemented due to the additional cost. In 
the case that there are more frames than 
MB’s it is still possible that unwanted 
frames are received. Although, this 
possibility can be reduced by including bit 
filter masks on each MB, which enable a 
particular range to be received. The main 
problem is that there is not a standard 
definition of CAN frame ID’s in the 
automotive industry and that it would be 
excessively expensive to build a hardware 
filter block to cover every situation. 
There exist several different approaches to 
solve the filtering problem. The first is to 
keep adding extra hardware filters, which 
can be configured for bit masks, 
contiguous ranges and the inclusion of a 
LUT for the individual identifiers.  This has 
the main advantage of simplicity to the 
user and should be more cost effective 
than a single large LUT.   The main 
disadvantages are inflexibility and cost.  
The silicon manufacturer still has to make 
assumptions about the maximum number 
of filters to include and invariably there will 
be applications that require more flexibility 
than offered.  
The second option is a subtle variation on 
the first.  Essentially, the same filter blocks 
are used, but they are shared across 
multiple CAN channels which in theory 
should lead to a smaller amount of blocks 
and reduced size. The idea is that different 
channels require different amounts of 
filtering for different applications, thus it is 
possible to have very flexible filtering on 
one channel at the expense of another 
channel. This is attractive as the total 
number of filter blocks required, to achieve 
the same level of filtering, should be less 
than the previous solution. However, to be 
effective the CAN module needs to 
support multiple channels, which adds to 
the design complexity that has implications 
on test and assumptions still need to be 
made for the amount of filter blocks to 
include. 
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The third option is a software approach 
that uses a co-processor that has been 
specifically developed to quickly handle 
interrupts. This is the only approach that 
offers a 100% effective filter for all 
applications. The co-processor executes 
the software filter algorithm and only 
interrupts the main core when a successful 
match has been detected.  In addition the 
co-processor can perform more than the 
filtering algorithm, for example servicing of 
the hardware which is wasted effort for all 
unwanted frames. The main disadvantage 
with this approach is the added complexity 
to the hardware, the software which needs 
to be taken into account and the small 
percentage of bus bandwidth that will be 
used when the co-processor is executing.  
 

4 Communication gateway requirements 

Another function that is becoming more 
important, particularly in the automotive 
area, is the CAN gateway.  In a typical car 
there are between 3-6 CAN networks 
connected by a gateway node. The 
sharing of data between networks is 
referred to as a gateway. Gateways are 
normally a mixture of frame gateways (the 
entire frame is copied to another network 
without changing content of the frame) and 
signal gateways where selected signals 
(data within the frame) are copied into one 
or more frames. Figure 5 shows an 
example of a frame and signal based CAN 
gateway. 
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• All signals for a gateway frame do not 
always arrive at the same time 

• The same signals can be copied to several 
gateway frames. 

Figure 5 – Frame and signal based 
gateway 
 
If several signals need to be copied from a 
source message to a destination frame or 
frames this can consume a high 
percentage of the CPU bandwidth, as 
many masking and shifting operations are 
required. Adding specific gateway 
functionality to a CAN module can help to 
off load the CPU when performing these 
gateway tasks. In addition there have 
been cases where OEM’s have mandated 
that parts of the gateway function needs to 
be performed without the main CPU’s 
intervention. An example of this is a simple 
mirror function that autonomously copies 
frames from any bus to the diagnostic bus.  
Different methods of adding gateway 
functionality to a CAN module are 
possible.  The first is to add a hardware 
wrapper that can be considered to logically 
sit above the CAN modules. In this method 
the wrapper accepts frames from each 
CAN module and performs the frame and 
signal gateway autonomously. This 
method has the advantage that it can be 
made to work without having to fully 
redesign the CAN module and  as the 
gateway functions are performed in 
hardware it does not consume any CPU 
bandwidth.  The main drawback is that the 
wrapper would be fairly complex to handle 
all possible combinations of signal 
gateways. 
The second method is to introduce 
gateway functionality into the module 
itself, which only makes sense if the CAN 
module can support multiple CAN 
channels.  The benefit of this approach is 
similar to the first in that a hardware 
approach does not consume CPU 
bandwidth.  The main disadvantages are 
that a new CAN module needs to be 
developed, that CAN module would be 
complex and the gateway functionality is 
restricted only to CAN. 
The third method is to add a small co-
processor to the MCU that can be 
programmed to perform the gateway 
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functionality. As this solution is fully user 
programmable it is the only method that 
can ensure all gateways can be handled 
independent from the main core. It has the 
advantage that an existing CAN module 
can be used without redesign and the co-
processor could be used to gateway more 
than CAN frames. Several other 
networking protocols are becoming 
prevalent within the automotive industry 
and signals from each network need to be 
combined. It will become typical for 
automotive gateways to combine CAN, 
LIN and FlexRay signals. For example the 
current AutoSAR1 standard includes a 
CAN/LIN/FlexRay gateway specification.  
The main disadvantage of the co-
processor is that it shall consume a finite 
percentage of the memory bandwidth and 
there is additional software overhead. 
 
5 Conclusions 

Automotive customers place specific 
requirements on the CAN module and 
even within the same customer the 
requirements can be different, depending 
on the application. (e.g. Body, Gateway, 
Powertrain, etc). This makes it very 
difficult for a single CAN module to be the 
best fit for every application. From a silicon 
design point of view it is very important to 
build as much flexibility into the module as 
possible and at the same time keep the 
die size small. Driver software also needs 
to be considered, particularly with the 
introduction of AutoSAR, as there no point 
building in many hardware features that 
will never used.  
Considering the requirements discussed in 
this paper the Tx buffers need to be such 
that inner and outer priority inversion is 
avoided. This requires hardware support 
for local priority, hardware cancellation 
and buffer decoupling.  On the receive 
side a hardware FIFO should be included 
to increase the time the CPU has to 
receive frames and to guarantee 

                                                
1 AUTOSAR (AUTomotive Open System 
Architecture) is a development partnership.  
The objective of the partnership is the 
establishment of an open standard for 
automotive E/E architecture    

chronological order is maintained.  It is 
also desirable to have a module that can 
be configured in a BasicCAN and/or 
FullCAN mode. In terms of filtering it is 
very difficult to build a hardware filter that 
can reject all unwanted message frames 
for every application. Adding a co-
processor solves this problem as a perfect 
filter can be constructed in software which 
will only interrupt the main core when a 
valid frame is received. The co-processor 
can also be used to add flexibility to the 
buffer management as extra Rx and Tx 
buffers can easily be emulated in system 
RAM. Furthermore, it is very attractive 
solution for the gateway as all routing 
combinations can be built in software and 
other protocols can be combined. The 
solution of using a co-processor and a 
small CAN module, with required 
hardware support to avoid priority 
inversion and reception handling, offers a 
very flexible solution that is suitable for 
many different applications.  
 
 
 
 
 
 
 


