
iCC 2006 CAN in Automation

07-1

“Faust” – a fully configurable automatic software test
system

Dr. Anne Kramer, sepp.med gbmh

Gerhard Baier, AFRA GmbH

Testing CAN applications requires complex test systems. Several interfaces are tested
simultaneously in real-time conditions. Some components might not yet be available
leertaste anzeigen and must be simulated. The simulation must be as
straightforward as possible – otherwise, precious time is lost in testing the simulation
rather than the real system. While specialized hardware test tools exist that cover
some of these requirements, they usually do not support persistent archiving and test
management.

.faust is a fully configurable automatic software test system that combines aspects of
quality assurance (version management, audit trails, user management,…) with
requirements for real-time tests of multiple interfaces and/or components. Its kernel
contains basic functions to test standard hardware protocols (CAN Bus, CANopen,
LIN, Ethernet etc.), which are completed by a set of parameters describing the
particularities of the component under test. A powerful scripting language offers the
possibility to send, receive and process complex data or events to test diverse
software interfaces and/or CAN-Bus protocols. Error situations and missing
components can be simulated. Test data and results are stored in an Oracle database.

In this paper we will present this tool that has been specifically designed for tests of
embedded software in highly complex, safety-critical environment.

1 Introduction

Companies working in complex, safety-
critical domains have to fulfill highest
quality standards. For example, medical
products must comply with standards such
as the Medical Products Act (MPG) or the
regulations of the American Food and
Drug Administration (FDA). Similar
standards exist in the automotive industry.
They require exhaustive tests and
complete traceability of results and
changes. Appropriate tools exist on the
market for requirement management,
change control, configuration management
and possibly test management.
However, products are becoming more
and more complex. The amount of
embedded software is continuously
increasing. Testing hardware interfaces
imposes additional requirements on the
test system. First, tests are subject to real-

time conditions similar to the productive
environment. Second, it might be
necessary to test several interfaces
simultaneously. Third, some components
might not be available yet and must be
simulated. It is crucial that the
development of these simulations is as
simple and straightforward as possible.
Otherwise, precious time is lost in testing
the simulation rather than the real system.
We wanted to use a test frame generator
to develop appropriate test scripts at an
early moment, since this helps reducing
costs. If the execution of these test scripts
can be automated, they can be repeated
at any moment, e.g. after integration of a
modification or during acceptance tests.
We, therefore, searched for a combined
test frame generator / test management
tool that supports real-time tests of
hardware interfaces.

iCC 2006 CAN in Automation

 07-2

2 Existing approaches in research and
industry

2.1 Test frame generators

Different test frame generators are
available on the market. These systems
generate rough test frames that have to be
adapted manually to fit the specific
functionality. Some of these tools are
designed for specific programming
languages or application domains, e.g.
C++, Java, Web applications (e.g. see
[SLi04, p. 174]). Others rely on a particular
development environment (e.g. Rational).
The advantage of these tools consists of
the automatic generation of identical
frames for different applications. The
inconvenience is that these frames must
be filled with code each time a new
application is introduced.
There are no test systems that
automatically generate test frames without
any further manual adaptations,
essentially because no formalism is
defined to describe the system under test.
Some approaches for test data generation
have been developed (see for example
[Bred04]) according to specific coverage
criteria [Bal98, p. 391]. Likewise,
approaches exist for test case generation
both in research and in industrial domains,
but there is no tool to generate complete
test frames, i.e. all programs that are
required to execute tests [SLi04, p. 215].
However, this is of particular importance
when testing embedded systems, as tests
of various hardware and software
configurations are required – a time and
cost consuming task.

2.2 Test management tools

For test management tools, the variety of
commercially available solutions is even
more diverse, varying from open source
software up to relatively expensive
products (for an overview, see [Fau04]).
The choice is quite exhaustive and you will
probably find whatever you need off-the-
shelf.

2.3 Hardware test tools

Finally, specialized hardware test tools
exist such as CANoe (Vector Informatik
GmbH, Stuttgart) [Vec04], canAnalyzer
(IXXAT Automation GmbH, Weingarten)
[Ixx04] or X-Analyser (Softing AG,
Haar/München) [Sof04]. These tools are
designed to test hardware layers, but do
not focus on software interfaces.
Moreover, they generally do not support
persistent archiving and configuration
management of test data.

3 Our software test system

In order to combine the aspects of quality
assurance (version management, audit
trails, user management) with the
requirements for real-time tests of multiple
interfaces and/or components, we
developed our own software test system
(called .faust). With .faust we can test
diverse interfaces, software, e.g. Dynamic
Link Libraries (DLLs) and hardware
protocols (e.g. CAN-Bus, CANopen, LIN,
Ethernet, V24...) simultaneously and in
nearly real-time conditions.
Our test system is based on a modular
design. Functions to test standard
hardware protocols are part of the system
kernel. This kernel can be extended
dynamically just by adding further software
components (DLL, COM).
A powerful scripting language offers the
possibility to send, receive and process
complex data or events using common
script language elements such as data
type definitions, loops etc. This makes it
possible to respond to incoming messages
and their content in a specific way and
even to simulate scenarios for emitter and
receiver.
The integrated recording mechanism
offers the possibility to highlight or filter
messages and to log interpreted
messages based on the project
description.
Test data and test results are stored in an
Oracle database. Different versions are
kept so that it is possible to track changes
and to restore older versions. This is of
particular importance for tests of safety
relevant components such as medical
devices which is one of our domains.

iCC 2006 CAN in Automation

07-3

3.1 Testing embedded software

Figure 1 visualizes the integration of an
embedded system into the software test
system. In this specific example, two
interfaces are tested simultaneously. For
example, these interfaces may be a
software interface (API) and a CAN bus
component.

Figure 1: Integrating the test object

The integration of the test object is done
automatically without any manual rework.
Also, no recompilation of the test system is
required. The basic functions to address
hardware interfaces (e.g. bit patterns to
address a CAN bus) are integral part of
the test system. They are completed by a
set of parameters that describe the
particularities of the component under test
which are specified in XML description
files. For CAN bus systems, these
description files contain the telegram
structure and the valid variables together
with their symbolic names. The test
system will then display telegrams in a
readable (interpreted) form. The
parameter description is also required for
simulation test scripts.
Software interfaces are integrated by
adding libraries (DLLs), a fact that
considerably enhances the reusability in
other projects. The integration of DLLs
under test depends on its class model. For
example, .NET DLLs can be integrated via
reflection.

Especially for software interfaces it is
possible to generate the description files
automatically by analyzing an appropriate
specification of the component, e.g. using
UML 2.0. The methods are extracted from
the UML model of the test object and
stored in the description files.
3.2 Operating system

We chose Microsoft Windows as operating
system, and this even for tests under real-
time conditions since Windows is
commonly used as development and test
platform. In addition, various connections
to hardware interfaces are already
available using Microsoft Windows. Also,
the software should be able to handle
hardware independently from the
manufacturer.
These premises possibly conflict with
other requirements resulting from
machine-oriented software development.
When testing hardware interfaces it is
essential to react within short delay (real-
time systems). Using Windows we usually
cannot guarantee a fixed response time.
However, this is not always essential. In
the majority of tests, it is possible to split
the task into parts and, thus, to obtain a
practicable solution, provided that no other
software than .faust is running on the test
computer.
We have to distinguish two domains:
1. Reporting
Obviously, no message exchanged via the
interface may be lost. The required
frequency depends mostly on the physical
interface. Using special hardware .faust
reaches a time resolution of approximately
1 micro second.
2. Simulation
A simulated component has to respond to
bus signals within a given delay. The
response time of a simulation in .faust is
below 1 ms.

3.3 Simulation

Using the integrated scripting language it
is possible to simulate data exchange,
events, or error situations. This scripting
language is quite similar to C, based on
procedures and completed by special
functions to simulate communication via

iCC 2006 CAN in Automation

 07-4

interfaces. To reach the time resolution of
1ms or below, elements of the test scripts
are precompiled in multi-thread capable
runtime structures that will then be
executed as fast as possible.

Bool bExitLoop = false;
Int32 nController = 0x12;

respond until (bExitLoop)
{
 case CAN.SwitchLightNo42On :
 {
 CAN.Send (nController,
 nIsLighingNo42On);
 }
 case CAN.SwitchLightNo42Off :
 {
 CAN.Send (nController,
 nIsLighingNo42Off);
 }
 case CAN.any:
 {
 CAN.Send (nController, nUnknown);
 }
}

Figure 3: Script example

Messages are interpreted depending on
the interface as defined in the description
files mentioned above. For example, if the
bit pattern “11101010b” is defined as
“SwitchLightNo42On” in the description
file, the test protocol will contain the
symbolic value rather than the bit pattern.
This considerably enhances the readability
of the test protocols and allows a more
abstract view of the interface. In the same
way, the mapping between composite data
structures (e.g. tables) and the
corresponding interface-specific messages
can be defined in the description files.
Another important element of the .faust
scripting language is the “respond/until”
command. Analogous to the switch
command in C, “respond/until” reacts on
input data (see fig. 3). It is particularly
important for simulations of micro
controllers. The simulated micro controller
has to react to incoming messages. Its

response behaviour is defined in small test
scripts using “respond/until”. Its response
time is governed by the actions defined in
the case branches which must be
designed accordingly.

3.4 Integrated test management

Test cases are designed directly in the test
system. It is possible to combine test
cases into modules, i.e.:
• test sequences (test cases forming a

building block),
• test scenarios (set of interdepen-dent

test cases and sequences) and
• test suites (set of independent test

cases, sequences or scenarios that
belong to a specific test phase, e.g.
integration test or system test).

These modules are held under
configuration management. It is possible
to restore older versions simply by
selecting the version number from a
dropdown list. All elements are versioned
independently. Test cases and modules
are released on a separate tab.
Starting from a complete state transition
diagram of the system under test, it is
possible to generate test suites
automatically using a proprietary test case
generator. These generated test suites are
then imported into .faust. They contain a
set of test cases that test different
combinations of state transitions up to a
configurable limiting path depth. Each
transition corresponds to a basic script or
function. These scripts are implemented
once and for all test cases contained in the
suite. Thus, a great variety of transitions
can be tested seamlessly.
Single test cases or entire modules can be
executed either manually or automatically
within the test system. We distinguish
between “ad hoc tests” and “documented
tests”. Results of ad hoc tests are not
stored anywhere and will be used for quick
verifications. The results of documented
tests are automatically saved and
versioned. It is also possible to save the
test run planning, i.e. the selection (and
order) of test cases and/or modules that
are part of a specific test run. Saved test
runs can then be executed again either
manually or in batch mode.

iCC 2006 CAN in Automation

07-5

The test execution results are then
analyzed by the user. These
interpretations can then be stored in the
relational database for further evaluations.
.faust keeps audit trails for all relevant
elements, i.e. it is possible for all versions
to reconstruct when and by whom an
object was released.
Import and export interfaces exist to
requirement management tools of the
customer (e.g. IBM Rational Requisite Pro,
TeleLogic DOORS).
To assure access right restrictions, the
users of the test system are assigned to
roles with specific rights. For example,
users with the role “Tester” will normally
not be able to modify test cases. Every
user has to login into the system with ID
and password.

4 Advantages

Using our fully configurable, automatic
software test system, we can conduct
early and thorough tests. Missing
components can be simulated. The
integration of interfaces can be done
rather seamlessly, which helps us to react
efficiently to find existing errors and errors
of modifications which have to be
integrated. Tests can be repeated easily,
the test execution is reproducible, and
error situations can be simulated for
developing robust systems. All test results
are contained in the database and are
automatically documented through the
reporting functionality.
The test system can be integrated into
existing development processes, but we
also use it as stand-alone test system for
service and support. For the latter, a
version of the test project is released at a
given state. This release version contains
a fixed status of test scripts and suites.
The service personnel run these tests on
site. The test results can be re-imported
into the database for further analysis.
Last but not least it is possible to run tests
over a longer period. Afterwards, the event
log can be analyzed offline. This is of
considerable help in case of sporadic
errors and errors that are difficult to
reproduce.

5 Summary and outlook

In this paper we presented our fully
configurable automatic test system called
.faust, which was specifically designed for
tests of embedded software in highly
complex, safety-critical environment
(medical devices, automotive industry).
This software test system combines
aspects of quality assurance (e.g. version
management, audit trails, user
management) with requirements for real-
time tests of multiple interfaces and/or
components.
.faust is “fully configurable” in the sense,
that test objects are added without further
recompilation. Software interfaces are
integrated just by adding libraries. For
hardware interfaces, the basic functions
are already part of the system kernel. The
particularities of the component under test
are described in a parameter description
file that is added to the system.
It is “automatic”, because test cases can
be executed automatically. The test
system is used as stand-alone tool for
service and maintenance, where it is
especially helpful to identify sporadically
occurring errors. Moreover, it is possible to
automatically generate test cases from
state transition diagrams, if a test case
generator is used.
Customized versions of the test system
are used by companies in medical industry
(SIEMENS Medical Solutions, Philips).
The full version is used internally.
In the future, we plan to integrate test case
libraries to further enhance interface
independent test case design. The user
will then compose modules using
elements from different libraries.
Moreover, we plan to enable electronic
signatures.

iCC 2006 CAN in Automation

 07-6

References

[Bal98] Balzert, H.: Lehrbuch der Software-
Technik. Heidelberg 1998.
[Bred04] Brederek, J.: Suchalgorithmen für die
Testdatengenerierung. AGBS-Kollo-quium,
Universität Bremen, 2003-07-18
http://www.tzi.de/~brederek/papers/suchalgorith-
test.pdf
[Fau04] Faught, D.: Test Drivers and Test Suite
Management Tools.
http://testingfaqs.org/t-driver.html
[Ixx04] IXXAT Automation GmbH (Hrsg.):
canAnalyser - Das leistungsstarke CAN-Werkzeug
für Entwicklung, Test und Service
http://www.ixxat.de/cananalyser_de,569,147.html
[SLi04] Spillner, A., Linz, T.: Basiswissen
Softwaretest. Heidelberg 2004.
[Sof04] Softing AG: X-Analyser
http://softing.com/de/communications/produkte/can
/tools/x_analyzer.htm
[Vec04] Vector Informatik GmbH: CANoe /
DENoe 5.2
http://www.vector-
informatik.de/deutsch/index.html?../produkte?canoe
_features.html

All links were called on April 11, 2006.

