
iCC 2006 CAN in Automation

04-13

Fibex gateway configuration tool chain

Tobias Lorenz1,2, Jan Taube1,3, Markus Ihle1, Otto Manck2, Helmut Beikirch3

1Robert Bosch GmbH Reutlingen, 2Technical University of Berlin, 3University of Rostock

Usually gateway configurations have been based on n on-standardized description
formats. Unfortunately data exchange between differ ent formats is inherently error
prone and time consuming.

A common description format was necessary and is fo und in the Field Bus Exchange
Format. FIBEX is an XML-based file format, the upco ming standard for network
configurations, which combines information about ev ery aspect of a complete in-car
network including controllers, channels, frames and signals. FIBEX is also the first
standard to describe gateway configurations.

Gateway implementations have proprietary internal f ormats in which they store their
configuration data. Some routing information are st ored as linked lists, while others
are stored as executable code.

An optimal gateway tool chain should be based on th e FIBEX configuration data of all
connected networks and translate the routing inform ation directly into the internal
format of the target implementation. The developmen t of the tool chain at Bosch
followed the development of a hardware-accelerated multi-protocol gateway. Currently
the gateway connects FlexRay with CAN networks. Sup port for other protocols, like
LIN and MOST, are planned.

This paper describes the gateway hardware, gateway related enhancements to the
FIBEX standard and the implementation of the tool c hain to generate configuration
images for the developed gateway.

1 Introduction

The need for data transparency and
information exchange within the overall in-
car network has increased with the
continuous improvement of electronic
systems. Just one of the numerous
examples is the electronic stability
program (ESP), which monitors the drive
dynamics of the vehicle and takes control
over engine management and brake
systems, if the vehicle is in danger of
tipping over or skidding. A low latency
gateway system is needed to connect the
networks of both systems.
Nowadays most gateways are software
gateways, based on standard
communication controllers and an high
performance CPU running appropriate
software. This is a flexible concept, but on
the other hand the performance is
affected, since the hardware structure of a
usual micro-controller is not optimized for
gateway operations and the ECU often
has to do other tasks as well. As the

number of interfaces and the total
bandwidth of a gateway increase
continuously, software gateways will soon
become bottlenecks, too slow to handle all
incoming traffic in the required time.
Currently these gateways are using CPUs
with a clock frequency of about 150 MHz
or even more [5] [6] [7], causing other
problems, like high power consumption
and high electro-magnetic emission.
The major part of the configuration of such
a gateway system is defining the routing
information for frames and signals
between the channels. Before the
emergence of standardized gateway
description formats, the configuration data
was necessarily specific for a gateway
product and prevented easy data
exchange with other applications.
Checking configurations was time
consuming and inherently error prone.
FIBEX is the new upcoming XML-based
data exchange standard with the capability
to describe complete networks, composed
of different communication protocols.

iCC 2006 CAN in Automation

 04-14

Currently full support for CAN, LIN and
FlexRay networks is provided. The support
of further protocols is presently under
development.
A tool chain was developed to generate
code for a special gateway. It is based on
a set of protocol communication
controllers and an event handler with a
processing unit in hardware.
The tool chain reads FIBEX files and
produces configuration images for the
gateway and communication controllers.
The generated code sizes and gateway
execution times are presented.

2 FIBEX

FIBEX describes an XML format for data
exchange between tools [2], which deal
with message-oriented bus communication
systems. It is based on an initiative of
BMW and was developed in cooperation
with automobile manufacturers, suppliers
and tool producers. FIBEX is now being
maintained at the Association for
Standardisation of Automation- and
Measuring Systems (ASAM e.V.).
The exchange format covers the functional
network, the system topology and the
communication level. FIBEX tries to be
widely independent from all
communication controller implementations
and protocols. Currently it is usable for
CAN, LIN and FlexRay networks. A draft
for a MOST extension is already available
upon request and will be published after a
short evaluation period. A standardization
for TTCAN is still pending.

Gateway Data Instantiation Data Format

GATEWAY

CONNECTOR-
MAPPING

FRAME-
MAPPING

SIGNAL-
MAPPING

SIGNAL

FRAME

CHANNEL

CLUSTER

CONTROLLER

CONNECTOR

FRAME-
TRIGGERING

SIGNAL-
INSTANCE

ECU

Gateway Data Instantiation Data Format

GATEWAY

CONNECTOR-
MAPPING

FRAME-
MAPPING

SIGNAL-
MAPPING

SIGNAL

FRAME

CHANNEL

CLUSTER

CONTROLLER

CONNECTOR

FRAME-
TRIGGERING

SIGNAL-
INSTANCE

ECU

Figure 1: FIBEX object model
(simplified)

In FIBEX the descriptions of all elements
are split into different objects. The most
important objects are shown in figure 1.

The cluster, channel, frame and signal
objects describe the format and
configuration of data, whereas the
connector, frame-triggering and signal-
instance objects instantiate these data
descriptions by providing time and position
information. In FIBEX, the definition of
gateway configurations is done by defining
one-way mappings between these data
instance objects. Timing attributes can be
defined for each mapping, e.g. message
timeout, debounce time, or cyclic sending.
Trigger-conditions define the immediate
reaction on frame receives, like send
immediate or on-change of the received
data.
Unfortunately, the description in FIBEX is
very complex. The results are files, which
evade easy comprehension. Therefore
many tool manufacturers developed
FIBEX editors with assistance functions
and support for specific configuration
aspects, e.g. FlexRay parameters and
frame schedules.
Although FIBEX already allows
comprehensive descriptions, manufacturer
extensions may expand the capability
even further. Manufacturer extensions
have been defined to clarify certain
protocol-specific aspects, like the CAN
frame format (distinction between 11 bit or
29 bit identifiers) and to allow the definition
of gateway-specific features.
Aside from FIBEX, there is another, similar
standard, which can describe the
communication layer. This standard,
belonging to the Automotive Open System
Architecture (AUTOSAR), is also XML-
based. The AUTOSAR definition of
System Constraint Templates [3] is in fact
based on FIBEX. In the future, the tool
chain may easily be expanded to support
AUTOSAR by an appropriate input filter or
converter.

3 Gateway

As described above, FIBEX contains all
information to configure a gateway. The
target gateway for the tool chain is a
dedicated hardware structure optimized for
gateway operations. It can be described in
four layers as shown in figure 2:

• Processing Layer

iCC 2006 CAN in Automation

04-15

• Bus Layer

• Wrapper Layer

• Communication Controller Layer

CAN Wrapper
XYZ

WrapperFlexRay Wrapper

Gateway
Control

Unit

C
A

N
 1

C
A

N
 2

C
A

N
 n

F
le

xR
ay

 1

F
le

xR
ay

 n

xy
z

1

xy
z

n

F
le

xR
ay

 2

xy
z

2

Central
Processing

Unit

Processing
Layer

Bus
Layer

CC
Layer

Wrapper
Layer

… … …

Gateway Bus

CPU Peripheral Bus

CAN Wrapper
XYZ

WrapperFlexRay Wrapper

Gateway
Control

Unit

C
A

N
 1

C
A

N
 2

C
A

N
 n

F
le

xR
ay

 1

F
le

xR
ay

 n

xy
z

1

xy
z

n

F
le

xR
ay

 2

xy
z

2

Central
Processing

Unit

Processing
Layer

Bus
Layer

CC
Layer

Wrapper
Layer

… … …

Gateway Bus

CPU Peripheral Bus

Figure 2: Gateway Layer Architecture

The Gateway Unit in the processing layer
contains two configuration RAMs as
shown in figure 3. The Vector RAM
(VRAM) and Instruction RAM (IRAM)
contents are processed by a Finite State
Machine (FSM).
The configuration is minimalist and very
efficient. The CPU is only needed for the
configuration of the GU and to handle
exceptional transfers that are too complex
to be processed in the Gateway Unit, e.g.
advanced transport protocols or extensive
arithmetic functions. It has been estimated
that with an average gateway
configuration less than 20% of the traffic
must be handled in software running on
the CPU.
The bus layer contains the usual CPU
system and peripheral bus with all CPU-
accessible peripherals used in the micro
controller. An additional gateway bus is
connected to the GU and to every wrapper
for a set of equal communication
controllers. Both buses are used
simultaneously and without interfering with
each other.
The wrapper layer checks for incoming
messages and combines information for
groups of 32 message buffers. A selection
can be made by masking message buffers
meaningless for the gateway. The wrapper
is necessary to provide an abstraction of
the different types of communication
controllers and their signaling of receive
events to the GU. Additional features
could be implemented here, for example
direct data paths between communication

controllers of the same type, already done
in a CAN-CAN-gateway [1].
The communication controller layer
contains slightly modified variants of
already widespread CC IP modules.
All communication controllers can be
accessed by the CPU and the gateway
buses in parallel. Depending on the
implementation of the CC different
adoptions can be made to optimize the
gateway capabilities.
A communication controller with multiple
interface buffers for reading/writing
message objects is essential to avoid
access conflicts between CPU and
Gateway Unit. If the CC does neither
support multiple buffers or a modification
is not possible, both CPU and GU have to
arbitrate their buffer accesses using
mutexes.
For even better performance it is valuable
to have two different and logically
independent interface ports for both CPU
peripheral bus and gateway bus, called a
dual bus interface. If not possible,
arbitration has to be used on a per-access
base.
Whereas Message RAM based
communication controllers have message
buffers to differ incoming messages, FIFO
based communication controllers have to
evaluate the incoming messages by
instructions in the IRAM. Specialized
commands have been implemented to do
the filtering between messages intended
for the Gateway Unit and the CPU in an
efficient way.

4 FIBEX gateway configuration

Whereas the tool chain is provided with
FIBEX files as input, it outputs information
for the hard- and software parts of the
gateway as shown in figure 3.

iCC 2006 CAN in Automation

 04-16

Tools

Software

Hardware

Assembler

Gateway
Software

Residual Routing
Information

Configurator

Gateway
Hardware

Assembler Code

FIBEX File

RAM Configuration
Image

FIBEX Translator

Tools

Software

Hardware

Assembler

Gateway
Software

Residual Routing
Information

Configurator

Gateway
Hardware

Assembler Code

FIBEX File

RAM Configuration
Image

FIBEX Translator

Figure 3: Gateway Tool Chain - Overview
The hardware information is provided by
RAM configuration images for the
Gateway Unit. Therefore the development
was based on the specific RAM layout of
the GU. Residual routing information is
generated for the software part.

4.1 RAM description

The VRAM configuration selects the
communication controller buffers to be
used by the Gateway Unit. It also contains
additional processing information, like a
vector to the event handling functions in
the IRAM. The Gateway Unit checks for
received messages in the communication
controllers and for time events like
timeouts, bouncing messages and
transmit cycles. Three partitions constitute
the VRAM:
The VRAM Communication Controller
partition (VRAM-CC) contains a specific

entry for each group of 32 message
buffers. When a receive event or a time
event occurred in a group, the FSM is
triggered to process a table in the VRAM
partition addressed by the MO-Vector.
The VRAM Message Object partition
(VRAM-MO) has a variable length and
contains in tabular form detailed
information for each message buffer/object
in the corresponding group of the VRAM-
CC partition, like rx/tx configuration, timing
conditions and the instruction vector to the
event handling function in the IRAM. The
partitioning between the VRAM-CC and
the VRAM-MO reduces the memory
usage, as only the message buffers used
by the gateway need to have an entry for
the message object. It also reduces the
time needed to look up a message object.
The remaining VRAM can be used as data
storage and is therefore called VRAM-
Data.
The state machine processes the events
by executing the procedures in the
Instruction RAM. The instruction set of this
processing unit contains specific functions
to

• access the communication controllers

• transfer data

• handle transport protocols

• interact with the host CPU

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCV NTEV

CT TO DT TX LAST MOV NTEV

CCV = CC Configuration Valid TX = Transmit Buffer
NTEV = Next Time Event Valid BO = Dead Time
MOV = Message Object Valid TO = Timeout Buffer
LAST = Last configured MO CT = Cyclic Timeout Message

IRAM (16 Bit)

VRAM-Data (32 Bit)

MO-Nr (4..0) Next Time Event
Instr-Vector Cycle Time

VRAM-CC (32 Bit)
MO-Vector Next Time Event

VRAM-MO (32 Bit)

Figure 4: Gateway vector and instruction RAM

iCC 2006 CAN in Automation

04-17

4.2 Tool chain

A tool chain has been developed to
generate configuration images for the new
gateway architecture. Being able to use
FIBEX files as an input, it provides a
standardized interface to most multi-
network configuration tools, e.g. the
DeComSys Designer Pro [4].
Small enhancements to the FIBEX
standard have been added. They allow the
description of gateway-specific features,
like routing signals depending on certain
conditions. Other extensions are defined
to enable the interaction with a software
gateway on top of the hardware gateway,
providing coordination between hardware
and software by predefining buffer
configurations and partitioning of the
gateway tasks.
The processing stages are comparable to
that of a typical compiler, apart from the
different input data and optimization
options as shown in figure 5. Figure 6
shows the Assembler stage in more detail.
The first processing step is to generate
configuration register sets and Message
RAM contents for all involved
communication controllers. This can be
done for any communication controller and
runs independently from the rest of the
gateway tool chain. The output of this
module is presented as C-style header file.
The gateway object in FIBEX contains all
connector, frame-triggering and signal-
instance mappings. All required
information is read, sorted and stored in
an internal gateway table data structure.
At this state the gateway table only
contains symbolic references to the
message buffers of the communication
controllers. By searching the generated
Message RAM contents, the symbolic
references can be resolved and the
correct locations added to the gateway
table. Aside from using the gateway table
as a debug point, it also provides an
abstraction of different input formats in the
future, e.g. AUTOSAR.

FIBEX File FIBEX Engine

CC Configs

Message RAMGW Table

VRAM CC

VRAM MO

VRAM Data

IRAM

AssemblerMacro Templates

Filtered FIBEX File

Legend

Input data

Intermediate data

Output data

instruction label
addresses

data labels

HW/SW
selection

FIBEX dataFIBEX data

start/end addresses

start/end addresses

abstracted MRAMs

MRAMs of every CC

gateway
mapping data

buffer
configuration

CC indexes
buffer indexes

gateway
table

macro assembler
instructions

macros

FIBEX File FIBEX Engine

CC Configs

Message RAMGW Table

VRAM CC

VRAM MO

VRAM Data

IRAM

AssemblerMacro Templates

Filtered FIBEX File

Legend

Input data

Intermediate data

Output data

instruction label
addresses

data labels

HW/SW
selection

FIBEX dataFIBEX data

start/end addresses

start/end addresses

abstracted MRAMs

MRAMs of every CC

gateway
mapping data

buffer
configuration

CC indexes
buffer indexes

gateway
table

macro assembler
instructions

macros

Figure 5: Gateway processing and data
flow

The gateway table also contains the
timing- and trigger-conditions of every
mapping. The frequency of the global FSM
timer can be computed from this data.
The gateway table and timer configuration
allows generating the Vector RAM
contents. However, the address vectors to
the actual event handling functions in the
Instruction RAM are still symbolic and
need to be resolved after the generation of
the Instruction RAM contents.
The Instruction RAM contains the
functions to handle the receive and time
events processed by the FSM. If a
message cannot be processed completely
in hardware, a special function is
generated that can be triggered by the
CPU. This information is stored in the
filtered FIBEX output by a manufacturer
extension of the FIBEX controller object. A
software layer has to use this information
to interact with the Gateway Unit.
Depending on the timing- and trigger-
conditions a high-level assembler code is
generated. It contains a lot of macro
functions and is therefore almost
independent of the target gateway.
By evaluating the macros in the assembler
code, it becomes more specific toward the
communication controllers and their base
addresses in the gateway as shown in
figure 6.

Macro Templates

VRAM Data

Assembler / Macro
Code

Macro evaluation

Code normalization

Pseudo instruction
evaluation

Label evaluation

Binary Generator

VRAM MO

assembler code

macros

Instruction
labelsdata labels

machine code

Legend

Input data

Intermediate data

Output data

Macro Templates

VRAM Data

Assembler / Macro
Code

Macro evaluation

Code normalization

Pseudo instruction
evaluation

Label evaluation

Binary Generator

VRAM MO

assembler code

macros

Instruction
labelsdata labels

machine code

Legend

Input data

Intermediate data

Output data

iCC 2006 CAN in Automation

 04-18

Figure 6: Assembler processing flow

During the normalization, the code is
cleaned of any comments, all labels put to
extra lines and a unified indentation is
made.
Some pseudo instructions are symbols
representing other instructions and need
to be translated in the pseudo instruction
evaluation stage.
The data and instruction labels are
evaluated in the label evaluation stage.
They reference entries in the VRAM-Data
partition and some locations in the
generated assembler code.
The actual address of every function in the
IRAM is reported back to the VRAM-MO
entries to resolve the symbolic references.
Different output filters can generate C-
style header files or binary images
containing the contents of the VRAM and
IRAM.
The input and output data of every module
in the tool chain can be loaded from and
saved to external text files. This allows
intermediate testing of every module and
manual editing and viewing. There exist
different test environments around the tool
chain and single modules.

0%

20%

40%

60%

80%

100%

120%

Speed Optimized 112,24% 80,49% 76,47%

Balanced 100,00% 100,00% 100,00%

Memory optimized 93,88% 80,49% 111,76%

Memory usage Runtime (best case) Runtime (worst case)

Figure 7: Runtime and Memory Optimization

By choosing different optimization settings
of the instruction generator a more
runtime- or memory-optimized codes can
be generated. The results are shown in
figure 7.

4.3 Frontends

There are multiple frontends build on top
of the tool chain modules.

One frontend is a graphical wizard for the
generation of the gateway configuration,
based on a selected FIBEX file. After the
generation the data is presented in
multiple views to the user and can be
directly saved as static configuration
images to the software gateway.
An assembler frontend can directly read
assembler code from a text file and
generate different output formats, like C-
style header files or binary images. This
allows assembling manually edited files.
Another frontend provides a graphical
FIBEX viewer with a unique browsing and
limited editing capabilities.

5 Results

The combination of tool chain, hardware
and software gateway provides one of the
first solutions, that is fully configurable by
a FIBEX file.
The hardware gateway is able to process
about 80% of all transfers of an average
gateway configuration. Complex transport
protocols and arithmetic operations are
processed in cooperation with the software
layer of the gateway.

0

5

10

15

20

25

30

Immediate On-
Change

Timeout Debounce Cyclic-
Sending

In
st

ru
ct

io
n

s

0

10

20

30

40

50

60

70

80

90

100

C
od

e
si

ze
 [b

yt
e]

Number of instructions Code size

0

5

10

15

20

25

30

Immediate On-
Change

Timeout Debounce Cyclic-
Sending

In
st

ru
ct

io
n

s

0

10

20

30

40

50

60

70

80

90

100

C
od

e
si

ze
 [b

yt
e]

Number of instructions Code sizeNumber of instructions Code size
Figure 8: Instruction and code size

A configuration was implemented to
demonstrate the available trigger- and
timing-conditions. The Gateway Unit was
synthesized at 50 MHz on an Altera
StratixII EP2S60 FPGA. One FlexRay and

iCC 2006 CAN in Automation

04-19

three CAN controllers are part of the
gateway.
Figure 8 shows the number of instructions
and the corresponding code sizes for
every mapping. The results show an
average number of 15 instructions and an
average code size of 50 bytes.

0

20

40

60

80

100

120

Immediate On-
Change

Timeout Debounce Cyclic-
Sending

C
lo

ck
 c

yc
le

s

0

0,4

0,8

1,2

1,6

2

2,4

E
xe

cu
tio

n
T

im
e

[µ
s]

Execution time (worst case) Execution time (best case)

0

20

40

60

80

100

120

Immediate On-
Change

Timeout Debounce Cyclic-
Sending

C
lo

ck
 c

yc
le

s

0

0,4

0,8

1,2

1,6

2

2,4

E
xe

cu
tio

n
T

im
e

[µ
s]

Execution time (worst case) Execution time (best case)Execution time (worst case) Execution time (best case)
Figure 9: Execution time

The best and worst case execution times
of the Gateway Unit are shown in figure 9.
Additionally the FSM generates an
overhead of 0.4 us for the preparation and
post processing of the instruction
execution.

6 Conclusion and outlook

A complete tool chain has been developed
for generating gateway configurations
based on FIBEX files. The configurations
include data for the specialized gateway
and several communication controllers.
The results have shown that most
transfers can be completely processed in
hardware.
The hardware gateway as coprocessor
can reduce the load on the CPU
significantly and provides faster data
transfers.
The assumptions of very less code size
and high execution speed have been
verified by a demonstration environment.
More extensive test cases will evaluate the
performance in different simulated
environments. Support of additional
protocols, like MOST/MLB, is planned for
the future.

References

[1] Taube, J.; Hartwich, F.; Beikirch, H.: C_CAN
 Gateway Module - a new approach for
CAN gateways; Proceedings Embedded
World 2005; Nuremberg (Germany);
2005; pp. 80-87

[2] ASAM e.V.: FIBEX - Field Bus Exchange
 Format; Date 26.09.2005;
 http://www.asam.net/03_standards_06.php

[3] AUTOSAR: Specification of System Template,
 Version 1.0.0; Last Access 31.05.2006;
 https://svn.autosar.org/repos/10Releases/
 AUTOSAR_SpecificationOfSystemTempl
ates.pdf

[4] DeComSys: DECOMSYS::DESIGNER PRO;
 Date 31.05.2006;
http://www.decomsys.com/flyer/
DESIGNER_PRO.pdf

[5] Freescale Semiconductor: MPC5567;
 http://www.freescale.com/webapp/sps/site/
 prod_summary.jsp?code=MPC5567;
Last Access 17.07.2006;

[6] NEC Electronics GmbH: NEC Electronics’
 FlexRay Solutions;
http://www.eu.necel.com/applications/
automotive/040_flexray/index.html;
Last Access 17.07.2006

[7] Infineon Technologies: TC1130 Product Brief;
http://www.infineon.com/upload/Document/
cmc_upload/documents/098/690/
tc1130-pb.pdf;
Last Access 17.07.2006

Definitions, Acronyms, Abbreviations

ASAM Association for Standardisation of
 Automation- and Measuring Systems
AUTOSAR Automotive Open System Architecture
CAN Controller Area Network
CC Communication Controller
CPU Central Processing Unit
ECU Electronic Control Unit
FIBEX Field Bus Exchange Format
FPGA Field Programmable Gate Array
FSM Finite State Machine
GU Gateway Unit
IP Intellectual Property
IRAM Instruction RAM
LIN Local Interconnection Network
MAC Media Access Controller
MLB Media Local Bus
MO Message Object/Buffer
MOST Media Oriented System Transport
TTCAN Time-Triggered CAN
VRAM Vector RAM

