
CAN in Automation Session

 01-6

CANopen implementation in the Zagreb tramcar

Sinisa Marijan, Mario Bilic, Kresimir Ivanus

KONCAR – Electrical Engineering Institute, Zagreb, Croatia

The paper deals with the several topics related to the development and production of
the ultra low-floor tramcar, type TMK2200, for the city of Zagreb. During the
development many electronic control units have been specified, designed and
integrated into the vehicle. The communication between these control units is mostly
based on CANopen. The reasons for selecting CANbus and CANopen application layer
are discussed. Furthermore, several proprietary hardware and software solutions have
been developed for this project. These solutions, among other, include redundant
main vehicle control unit. The concept of this unit is presented, along with some
details that increase vehicle reliability and availability. Finally, some experience facts
and possible future improvements are also pointed out.

1 Introduction

The project objective of this work is related
to the development of ultra-low floor
tramcar, type TMK 2200, for the city of
Zagreb, Fig. 1. KONČAR – Electrical
Engineering Institute was responsible for
the development of main vehicle control
unit, traction units, static converters for
auxiliary power supplies and driver-
machine interface. Further, our
responsibility was the choice of
appropriate communication busses and
accordingly, the system integration of all
electronic control units. This is generally a
rather demanding task. However, this
paper deals only with the communication
networks in the vehicle and the Vehicle
Control Unit (VCU). Other parts are
mentioned only where needed. Details on
control units are given in [1] and [2].
Trends in light rail vehicles development
concerning electronic control units have
been significantly influenced by modern
solutions already implemented in industry
applications and especially in road
vehicles, [10]. Solutions implemented in
road vehicles are in many cases used in
other high-tech segments such are:
avionics, military and railway. Modern
control and communication solutions
demand a high level of availability,
reliability and maintainability. Long life,
with possible future improvements, simple
integration and commissioning should also

be supported. To achieve these goals, and
taking into account the fact that
sophisticated systems are usually
integrated through equipment of different
sub-suppliers, system integrators are
facing challenges when interfacing the
equipment.

Figure 1: TMK2200 ultra low-floor-tram

One demanding task during development
of 100% low floor tramcar is a limited
space under the floor. Therefore, all
equipment are integrated into roof
containers or into, also limited, space
between the roof and passenger
compartment. Here, the demand for fully
air-conditioned tramcar puts additional
requirements on the roof equipment.
Section 2 of this paper briefly describes
main vehicle control unit. Sections 3 and 4
deal with the communication infrastructure
and CANopen implementation. Section 5

iCC 2006 CAN in Automation

01-7

points out some issues related to the
CANbus utilization calculation, while
section 6 is related to the commissioning
and diagnostic tools. Section 7 presents
some experience facts along with the
possible future improvements.

2 Proprietary solutions

Taking into account electronic control units
(ECUs) integrated into this tramcar, Fig. 2,
proprietary developed units are: main
vehicle control unit (VCU), 3 traction
control units (TCU), 2 auxiliary power
supplies (static converters) control units
(ASU), 1 visualization unit/man-machine
interface (MMI). Other suppliers delivered
3 brake control units (BCU), 2
heating/ventilation and air conditioning
control units (HVAC), 6 door control units
(DCU) and 7 bogie control units (BGCU).
Physical position of the above described
units is given in Figure 2.

2.1 Vehicle control unit

The photo of the VCU is given in Figure 3.
VCU frame consists of two 19” racks. The
first 19” rack is used during normal
operation as an active system, while the
second one is used as redundant one. The
core of the VCU are VMEbus based
central processing module (CPM) and
double channel CAN communication
module, [1], [2].
Apart from redundant channel that can be
used in a case of failure, the high error
detection coverage has been required

from operational channel to put the system
in the fail-safe operation in case of
malfunctioning. Fail-safe means that no
undefined system state is allowed and
therefore if such a case occurs,

Figure 3: Vehicle control unit (VCU)
appropriate actions will activate the
process of stopping the vehicle,
disconnecting the power line and sending
appropriate message to the driver. To
support this, a lot of additional hardware
and software mechanisms have been
implemented to detect different types of
errors. Some of them that start fail-safe
routines need to be mentioned here:
• CPM communicates with peripherals

asynchronously by means of

1222

345667

8 8 8 8 8

5 5 109

11118 11

99

1 VEHICLE CONTROL UNIT (VCU)

2 MOTOR BOGIE

3 DRIVER'S CAB AIR-CONDITIONING UNIT

4 AUXILIARY POWER SUPPLY (ASU)

5 TRACTION CONVERTER (TCU)

6

7

8 DOOR CONTROL UNIT (DCU)

9 BOGIE CONTROL UNIT (BGCU)

10 MAN-MACHINE INTERFACE / VISUALIZATION UNIT (MMI)

11

12 BOGIE CONTROL UNIT - CAN GATEWAY (BGCU_gateway)

12999

PASSENGER AIR-CONDITIONING UNIT

(HVAC)

BRAKE CONTROL UNIT (BCU)

AUXILIARY POWER SUPPLY & BATTERY CHARGER (ASU)

Figure 2: The position of electronic control units (ECUs) in the tramcar

iCC 2006 CAN in Automation

 01-8

acknowledge signal. If it misses, CPM
will try to perform recovery action and
if it also fails an appropriate hardware
error will be set

• software or hardware exception errors
• each power sub-system failure

detection
• software watchdog that monitors

system and application programs
• external watchdog that monitors

processor and other vital components;
• controlled timing between power-off/on

sequences to avoid risks related to
vehicle battery malfunctioning

• malfunctioning of memory components
• failure of both CANbus channels

2.2 In-House software development

Software environment consists of 2 main
parts: the system software and the
integrated development environment
(IDE), i.e. application program
development tools that enable application
program development. The basic
principles, IDE and system software
concept are the same, regardless of the
hardware, i.e. of the processor type [1],
[2]. Thus, all processors, controllers and
even digital signal processors used in
VCU, TCU and ASU have the same IDE
for the application program development.
It is obvious that the same or similar
environments (component based
development) can help in reducing
development costs. Real–time scheduling
policies used are mostly based on fixed
priority rate monotonic scheduling
algorithms, [7].
One of the unusual features, at least for
modern development processes, is the
fact that all the software for proprietary
solutions is in-house developed, and this
has been done in assembler. It means that
both the system software and the block-
diagram based IDE are assembler-based,
in-house developed and thus completely
under control of our own software
developers.

2.3 Other sub-suppliers

The ECUs of other sub-suppliers are
integrated by following the basic rule:

critical functions are hard-wired and in the
same time supported through
communication networks. The only
exceptions are bogie control units (BGCU)
that communicate only through private
CAN_3 communication network.

3 Communication infrastructure

During the project planning and initial
project phase there was a lot of discussion
about appropriate physical layer and
communication protocol. The following
solutions have been considered: RS485
physical layer with in-house protocol;
RS485 physical layer with ModBus
protocol; MVB (multifunction vehicle bus);
FlexRay; CAN physical layer with custom
protocol; CAN physical layer with
CANopen protocol; CAN physical layer
with TTCAN (time-triggered CAN).
RS485 with either in-house or ModBus
protocol is a simple and cheap solution for
system integrators. However, due to its
limitations and opinions of other suppliers,
it was considered only as the solution for
connecting proprietary equipment. MVB as
a part of Train Communication Network
(TCN) international standard, [5], would be
the most appropriate solution. TCN
defines two hierarchical interfaces as
connections to a data communication
network. The first one called Wired Train
Bus (WTB) is used for interconnecting
vehicles in “Open Trains” such are
international UIC trains. The second one,
called Multifunction Vehicle Bus (MVB), is

iCC 2006 CAN in Automation

01-9

Figure 4: TMK2200 communication
busses
used for connecting standard on-board
equipment. MVB type of interface requires
implementation of a proprietary ASIC
(application specific integrated circuit) or
FPGA (field programmable gate array).
However, the lack of support on the
component basis and development tools
would demand high development costs.
Furthermore, other suppliers preferred
different solutions. TTCAN (or some of its
derivatives), [12], and particularly FlexRay,
[8], [9], are in many ways better and more
technologically advanced then CAN itself.
However, they are still under development
(FlexRay) or have not reached the
availability and support status of CAN, [3],
[4], [10]. Therefore, CAN appeared to be
a good base for such an application.
Furthermore, as expected, all equipment
sub-suppliers have encouraged the CAN
use.
Finally, it was decided to build the system
around three independent CAN busses
with CANopen protocol and two RS-485
proprietary busses, Fig. 4. RS485
networks are used to connect proprietary
equipment, while CAN_1 network
connects all tramcar control units (except
auxiliary power supplies). CAN_2
connects only VCU with TCUs, thus
enabling redundancy on the system level.
It is obvious that VCU is responsible for
almost all data transactions. Therefore,
high demands related to reliability and
availability were put on VCU during
development.

4 CANopen implementation

CANopen functions applied are reduced
when compared to all given possibilities,
i.e. specific application profiles are not
used. Instead, the CiA ds301, [6],
document that specifies what minimal
functionality a CANopen device must
provide, was a base for building a CAN
communication network.
Because the majority of safety-relevant
functions are also hard-wired, the vehicle
is functional even in the case of CAN_1 or
CAN_2 failure. Due to the large number of
demanding nodes in the CAN_1 network,
the amount of data that are to be

transferred is relatively high for this type of
application. CANopen uses object-oriented
approach and defines communication
objects. Process data objects are used for
real-time data transfer. Process Data
Object (PDO) distribution for CAN_1 is
given in Table 1. Second column gives
priorities of the messages, where the
lowest number indicates the highest
priority. PDO transmission type was
chosen, according to CANopen, to be 254
(manufacturer specific). After some tests it
was decided to trigger the message each
time when appropriate transmit PDO
(TxPDO) event

PDO TYPE PDO PDO PDO NUMBER

&
PRIORITY
 / COB-ID

EVENT TIMER &

DESTINATION SETTINGS SOURCE

TX

TCU_1-3 1 / 184 50 ms PDO#1_VCU
TCU_1-3 5 / 188 50 ms PDO#2_VCU

BCU_1 12 / 1B0 10 ms PDO#3_VCU
BCU_2 13 / 1B1 10 ms PDO#4_VCU
BCU_3 14 / 1B2 10 ms PDO#5_VCU
BGCU 17 / 1C3 150 ms PDO#6_VCU

DCU_1 18 / 201 100ms PDO#7_VCU
DCU_2 19 / 202 100 ms PDO#8_VCU
DCU_3 20 / 203 100 ms PDO#9_VCU
DCU_4 21 / 204 100 ms PDO#10_VCU

DCU_5 22 / 205 100 ms PDO#11_VCU
DCU_6 23 / 206 100 ms PDO#12_VCU
TCU_1-3 30 / 384 300 ms PDO#13_VCU
TCU_1-3 34 / 388 300 ms PDO#14_VCU

BCU_1 41 / 3B0 200 ms PDO#15_VCU
BCU_2 42 / 3B1 200 ms PDO#16_VCU
BCU_3 43 / 3B2 200 ms PDO#17_VCU
HVAC12 45 / 3E0 250 ms PDO#18_VCU

TIMESTAMP 0 / 100 10000 ms PDO#54_VCU

RX

 2 / 185 50 ms PDO#19_TCU1
 6 / 189 50 ms PDO#20_TCU1
 3 / 186 50 ms PDO#21_TCU2
 7 / 18A 50 ms PDO#22_TCU2
 4 / 187 50 ms PDO#23_TCU3
 8 / 18B 50 ms PDO#24_TCU3
 9 / 1A0 10 ms PDO#25_BCU1
 10/ 1A1 10 ms PDO#26_BCU2
 11/ 1A2 10 ms PDO#27_BCU3
 15 / 1C0 150 ms PDO#28_BGCU
 16 / 1C1 150 ms PDO#29_BGCU
 24 / 211 100ms PDO#30_DCU1
 25 / 212 100 ms PDO#31_DCU2
 26 / 213 100 ms PDO#32_DCU3
 27 / 214 100 ms PDO#33_DCU4
 28 / 215 100 ms PDO#34_DCU5
 29 / 216 100 ms PDO#35_DCU6
 31 / 385 300 ms PDO#36_TCU1
 35 / 389 300 ms PDO#37_TCU1
 32 / 386 300 ms PDO#38_TCU2
 36 / 38A 300 ms PDO#39_TCU2
 33 / 387 300 ms PDO#40_TCU3
 37 / 38B 300 ms PDO#41_TCU3
 38 / 3A0 200 ms PDO#42_BCU1
 39 / 3A1 200 ms PDO#43_BCU2

iCC 2006 CAN in Automation

 01-10

 40 / 3A2 200 ms PDO#44_BCU3
 44 / 3C0 1000 ms PDO#45_BGCU
 46 / 3E1 1000 ms PDO#46_HVAC

1 47 / 3E2 1000 ms PDO#47_HVAC
2 48 / 3E9 1000 ms PDO#48_HVAC
1 49 / 3EA 1000 ms PDO#49_HVAC
2 50 / 3F1 1000 ms PDO#50_HVAC
1 51 / 3F2 1000 ms PDO#51_HVAC
2 52 / 3F9 250 ms PDO#52_HVAC
1 53 / 3FA 250 ms PDO#53_HVAC
2

Table 1: Distribution of process data
objects
timer elapses. The adjustments of event
timers are given in column 3. Table 1
gives only the distribution of main PDOs.
Apart from them, there are also other
objects on the network (heartbeat,
emergency objects, service data objects).
The principle of CANopen implementation
into main VCU is explained in Figure 5.

Figure 5: CANopen objects in VCU
(CAN_1 bus)
Although it describes only CAN_1 channel,
the same principle applies for the CAN_2.
Each CAN channel has it's own C505-CA
processor and dual-ported RAM (DPRAM)
for exchanging data with the main
processor (CPM). Assigned address
space on main processor side of DPRAM
is divided into message buffers. Each
message buffer can be assigned to one
PDO described with its COB-ID, length
and direction. C505-CA controller has got
an integrated CAN controller on chip with
15 message buffers. The distribution of
these buffers is also given in Fig. 5. They
are the same, except message object 15
that is based on double buffer principle.
PDO messages are, Fig. 5, divided into
three groups: fast parallel PDOs,
multiplexed transmitting PDOs, and
multiplexed receiving PDOs. Fast parallel
PDO messages are in fact copied from or
to DPRAM according to the chosen

direction. These messages are processed
with 3-milliseconds period by pooling
assigned flags. In case of reception, flag in
message buffer on integrated CAN
controller is checked, and in case of
transmission, flag in DPRAM buffer is
checked. Multiplexed transmitting PDOs
are checked for their transmission flag in a
circular manner with 3-milliseconds period.
Only one of these messages is sent in this
period. These messages are processed
with the same priority as eight fast parallel
messages. Multiplexed receiving PDOs
use a special double-buffered receiving
message object 15. It enables the
processing of one message while another
one is being received. This message is
processed in interrupt procedure with the
highest priority where it is saved in the
temporary buffer to avoid DPRAM hand-
shaking delays. Messages from the
temporary buffer are copied to DPRAM in
lower priority task. This concept introduces
significant jitter in message transaction
time and can even lead to message loss
but is, according to the experience,
acceptable and reliable.

5 CANbus utilization (load)

CAN is priority based protocol and when
dealing with scheduling algorithms, the
support of non-preemptive fixed priority
scheduling can be considered. Due to the
fact that the appropriate timer initiates
PDOs transmission (Tx_PDO) and VCU
transmits or receives all messages on the
bus, the CANbus load can easily be
calculated, [13], by means of the Table 1
and the following equation:

CANbus_load = !
"" ni i

i

T

ML

1

, (1)

where i=PDO number, n=number of
TxPDOs on the bus, MLi=length of i-th
message, Ti=time base written in
appropriate event timer. Each PDO,
except DCU objects, is 8 bytes long. DCU
objects are 2 bytes long. CAN_1 speed is
250 kBits/sec. Calculated load for CAN_1
that supports 54 PDOs is 45.2%. During
the commissioning 48% was measured.
The difference is caused by the fact that
stuffing bits were ignored in the

iCC 2006 CAN in Automation

01-11

calculation, i.e. the message length of 111
bits (for 8 byte user data) was assumed.

6 Commissioning and diagnostic tools

In the early project phases dilemma was
whether to use a commercial tool or to
develop a proprietary solution for CANbus
commissioning and monitoring. The final
decision was to develop proprietary
software solution based on commercially
available CAN/USB hardware. As the
development team had no experience with
the CAN/CANopen applications it was a
good chance to get familiar with this type

of applications. Also, the flexibility is higher
with proprietary software because of
frequent customer demands for updates
and changes. This gives the possibility to
adjust the software according to new
demands in a short time; usually not
possible with commercial solutions.
Main features of the above mentioned
tools are: easily upgradable but completely
application related; ability to make record
of complete CAN traffic regardless of baud
rate and bus load; two CAN channels can
be processed simultaneously; opportunity
for detailed offline analysis of CAN traffic;
no special technical skills required during

commissioning; user interfaces according
to the specific customer needs.
Three different tools for CAN network
commissioning, development, monitoring
and diagnostic were developed. First tool,
called CBC (CanBusCommissioning) is
intended for use during tramcar and CAN
bus commissioning, Fig. 6. This tool is
designed to be used by non-experienced
personal, i.e. persons without CANopen
knowledge. It gives a brief overview of
CAN bus status and is capable of
detecting some types of hardware errors
(e.g. errors in wiring or control units
physical layer) or errors in CAN nodes

(e.g. missing PDO or incorrect PDO
timing). Expected messages COBID and
their time-out period are pre-defined in
configuration file. Main advantage is that
all errors that CAN/USB interface detects
are presented and counted. The tool
detects hardware and software overflows
(situations when received messages aren't
handled fast enough), error frames on the
bus and errors in message content
(stuffing error, form error and CRC error).
For each message there is one row in
table, denoted “2” in Fig. 6, that presents
message COBID, short description,
expected period and current status.
Statuses are: OK meaning that everything

Figure 6: CANbus comissioning tool

iCC 2006 CAN in Automation

 01-12

is as expected; LOSS meaning that one or
more messages is lost (message is
considered lost if it's missing longer than 3
and less than 10 expected time-out
periods); BREAK meaning that there is a
communication break with node sending
message with these COBID (break is
declared when message is missing for
more than 10 expected time-out periods);

and DISCON meaning that recording has
finished and CAN/USB test tool has
disconnected itself. After the test is over,
the window “3” gives clear report with all
detected problems and short instructions
for user how to handle some type of
errors.
Second tool, CANTerm (CANbus
Terminal), Fig. 7., is developed for use
during CAN hardware and application
program testing. This software tool is
capable of logging complete CAN traffic

into log files on PC hard disk. Each
message is logged with its COBID, time
stamp, time between current and previous
message with the same COBID, some
flags and message content. Time stamp
can be recorded with 10 µs resolution
what enables off-line analysis of the bus
traffic, statistical analysis of recorded data
and advanced error detection, not only

related to CAN communication but also to
the equipment connected to the CAN bus.
User can select baud rate, one of two CAN
channels, silent mode in which CAN/USB
interface doesn't send anything to the
network. There is also a window, “1”,
showing bus traffic or recorded errors. Bus
load is also shown, as well as list of all
messages occurred on the bus, together
with average load for each message
(number of messages per second). Tool
automatically splits recorded data into

Figure 7: CAN terminal user interface

iCC 2006 CAN in Automation

01-13

multiple files to reduce single file size and
to simplify processing a large amount of
data. Recorded data, for one channel, take
about 250 MB for 1 hour at 50% bus load
and speed of 250 kbps.
Data are recorded to the log file following
the format marked with “4”. At the
beginning of each file is a message time
stamp in format hh:mm:ss:ms, then, there
is time stamp represented as number of
milliseconds or part of millisecond
(depending on selected time scale) since
connection. Next, there is a message
direction, where "R" means that message
is received, and "T" means that the
message was sent by this tool. Next,
COBID is given in hexadecimal data
format. After COBID there is a four digit
flag containing additional information
about message, like message type and
possible errors. Next, there is time since
last message with the same COBID, in
milliseconds. Last part of the displayed
message is a message content. Each
transferred byte is represented as a two
digit hexadecimal number
The third tool, CANLogAn (CANLogger
Analyzer), analyses data recorded by
means of CANTerm. This tool calculates
the distribution of time-outs between
messages and detects problems in
communication, lost messages etc. Such
an information can also be a good criterion
for grading overall communication quality.

7 Conclusion and future development

After system integration, commissioning
and drive tests the vehicle was put into
regular operation and series production is
under way. The reliability and functionality
of the control units and CAN busses
appears to be as expected. For the time
being, the CANbus load and processing
power of proprietary solutions are
sufficient, but the demand of higher
calculation and communication
possibilities is expected in the future
projects. When VCU is an issue,
processing power can be added by
introducing additional module in multi-
processing configuration, [1], [2]. Possible
future problems with the limitations of 8-bit
CAN controller can be solved with 16-bit
controller, but in the same time there are

faster 8-bit (8051-compatible) solutions
available. Further tasks will also be the
consideration of MVB and particularly
FlexRay. Appropriate FlexRay hardware
components are expected to be widely
available in the very near future.

References

[1] S. Marijan: Vehicle Control Unit for the Light
Rail Applications. 13th

International
Conference on Electrical Drives and Power
Electronics, EDPE 2005, Dubrovnik, Croatia,
2005.

[2] S. Marijan: Control Electronics of TMK2200
Type Tramcar for the City of Zagreb.
International Symposium on Industrial
Electronics, ISIE 2005, Dubrovnik, 2005,
volume IV, pp. 1617-1622.

[3] ISO 11898-1: Road vehicles - Controller area
network (CAN), Part 1: Data link layer and
physical signaling. International Organization
for Standardization, 2003.

[4] ISO 11898-2: Road vehicles - Controller area
network (CAN), Part 2: High-speed medium
access unit. International Organization for
Standardization, 2003.

[5] IEC 61375-1: Electric railway equipment –
Train bus, Part 1: Train Communication
Network. International Electrotechnical
Commission, 1999.

[6] CiA ds301: CANopen: Application Layer and
Communication Profile. CAN in Automation
Draft Standard 301, version 4.02, 2002.

[7] L. Sha et al.: Real Time Scheduling Theory: A
Historical Perspective. Real-Time Systems,
Volume 28, Issue 2 - 3, Nov 2004, pp 101–155.

[8] FlexRay Consortium: FlexRay
Communications System, Electrical Physical
Layer Specification, version 2.0, 2004.

[9] FlexRay Consortium: FlexRay
Communications System, Protocol
Specification, version 2.0, 2004.

[10] M. Farsi and M. Barbosa: CANopen
implementation: applications to industrial
networks. Research Studies Press Ltd., 2000.

[11] H. Kopetz: Real-Time Systems, Design
Principles for Distributed Embedded
Applications. 3rd ed. Kluwer Academic
Publishers, 1999.

[12] A. Albert, R. Strasser and A. Trächtler:
Migration from CAN to TTCAN for a
Distributed Control System. CAN in
Automation, pp.05-9-05-16., 9th international
CAN Conference, iCC, Munich, 2003.

[13] C.L.Liu, J.W.Layland: Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment. Journal ACM 20, 1 (Jan. 1973),
pp.46-61.

