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The paper deals with the several topics related to the development and production of 
the ultra low-floor tramcar, type TMK2200, for the city of Zagreb. During the 
development many electronic control units have been specified, designed and 
integrated into the vehicle. The communication between these control units is mostly 
based on CANopen. The reasons for selecting CANbus and CANopen application layer 
are discussed. Furthermore, several proprietary hardware and software solutions have 
been developed for this project. These solutions, among other, include redundant 
main vehicle control unit.  The concept of this unit is presented, along with some 
details that increase vehicle reliability and availability. Finally, some experience facts 
and possible future improvements are also pointed out. 

1 Introduction 

The project objective of this work is related 
to the development of ultra-low floor 
tramcar, type TMK 2200, for the city of 
Zagreb, Fig. 1. KONČAR – Electrical 
Engineering Institute was responsible for 
the development of main vehicle control 
unit, traction units, static converters for 
auxiliary power supplies and driver-
machine interface. Further, our 
responsibility was the choice of 
appropriate communication busses and 
accordingly, the system integration of all 
electronic control units. This is generally a 
rather demanding task. However, this 
paper deals only with the communication 
networks in the vehicle and the Vehicle 
Control Unit (VCU). Other parts are 
mentioned only where needed. Details on 
control units are given in [1] and [2]. 
Trends in light rail vehicles development 
concerning electronic control units have 
been significantly influenced by modern 
solutions already implemented in industry 
applications and especially in road 
vehicles, [10]. Solutions implemented in 
road vehicles are in many cases used in 
other high-tech segments such are: 
avionics, military and railway. Modern 
control and communication solutions 
demand a high level of availability, 
reliability and maintainability. Long life, 
with possible future improvements, simple 
integration and commissioning should also 

be supported. To achieve these goals, and 
taking into account the fact that 
sophisticated systems are usually 
integrated through equipment of different 
sub-suppliers, system integrators are 
facing challenges when interfacing the 
equipment.  

 

Figure 1: TMK2200 ultra low-floor-tram 

One demanding task during development 
of 100% low floor tramcar is a limited 
space under the floor. Therefore, all 
equipment are integrated into roof 
containers or into, also limited, space 
between the roof and passenger 
compartment. Here, the demand for fully 
air-conditioned tramcar puts additional 
requirements on the roof equipment. 
Section 2 of this paper  briefly describes 
main vehicle control unit. Sections 3 and 4 
deal with the communication infrastructure 
and CANopen implementation. Section 5 
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points out some issues related to the 
CANbus utilization calculation, while 
section 6 is related to the commissioning 
and diagnostic tools. Section 7 presents 
some experience facts along with the 
possible future improvements. 
 
2 Proprietary solutions 

Taking into account electronic control units 
(ECUs) integrated into this tramcar, Fig. 2, 
proprietary developed units are: main 
vehicle control unit (VCU), 3 traction 
control units (TCU), 2 auxiliary power 
supplies (static converters) control units 
(ASU), 1 visualization unit/man-machine 
interface (MMI). Other suppliers delivered 
3 brake control units (BCU), 2 
heating/ventilation and air conditioning 
control units (HVAC), 6 door control units 
(DCU) and 7 bogie control units (BGCU). 
Physical position of the above described 
units is given in Figure 2. 
 
2.1 Vehicle control unit 

The photo of the VCU is given in Figure 3. 
VCU frame consists of two 19” racks. The 
first 19” rack is used during normal 
operation as an active system, while the 
second one is used as redundant one. The 
core of the VCU are VMEbus based 
central processing module (CPM) and 
double channel CAN communication 
module, [1], [2]. 
Apart from redundant channel that can be 
used in a case of failure, the high error 
detection coverage has been required 

from operational channel to put the system 
in the fail-safe operation in case of 
malfunctioning. Fail-safe means that no 
undefined system state is allowed and 
therefore if such a case occurs, 

 

Figure 3: Vehicle control unit (VCU) 
appropriate actions will activate the 
process of stopping  the vehicle, 
disconnecting the power line and sending 
appropriate message to the driver. To 
support this, a lot of additional hardware 
and software mechanisms have been 
implemented to detect different types of 
errors. Some of them that start fail-safe 
routines need to be mentioned here: 
• CPM communicates with peripherals 

asynchronously by means of 
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Figure 2: The position of electronic control units (ECUs) in the tramcar 
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acknowledge signal. If it misses, CPM 
will try to perform recovery action and 
if it also fails an appropriate hardware 
error will be set 

• software or hardware exception errors 
• each power sub-system failure 

detection 
• software watchdog that monitors 

system and application programs 
• external  watchdog  that  monitors 

processor and other vital components; 
• controlled timing between power-off/on 

sequences to avoid risks related to 
vehicle battery malfunctioning 

• malfunctioning of memory components 
• failure of both CANbus channels 
 
2.2 In-House software development  

Software environment consists of 2 main 
parts: the system software and the 
integrated development environment 
(IDE), i.e. application program 
development tools that enable application 
program development. The basic 
principles, IDE and system software 
concept are the same, regardless of the 
hardware, i.e. of the processor type [1], 
[2]. Thus, all processors, controllers and 
even digital signal processors used in 
VCU, TCU and ASU have the same IDE 
for the application program development. 
It is obvious that the same or similar 
environments (component based 
development) can help in reducing 
development costs. Real–time scheduling 
policies used are mostly based on fixed 
priority rate monotonic scheduling 
algorithms, [7]. 
One of the unusual features, at least for 
modern development processes, is the 
fact that all the software for proprietary 
solutions is in-house developed, and this 
has been done in assembler. It means that 
both the system software and the block-
diagram based IDE are assembler-based, 
in-house developed and thus completely 
under control of our own software 
developers. 
 
2.3 Other sub-suppliers 

The ECUs of other sub-suppliers are 
integrated by following the basic rule: 

critical functions are hard-wired  and in the 
same time supported through 
communication networks. The only 
exceptions are bogie control units (BGCU) 
that communicate only through private 
CAN_3 communication network. 
 
3 Communication infrastructure 

During the project planning and initial 
project phase there was a lot of discussion 
about appropriate physical layer and 
communication protocol. The following 
solutions have been considered: RS485 
physical layer with in-house protocol; 
RS485 physical layer with ModBus 
protocol; MVB (multifunction vehicle bus); 
FlexRay; CAN physical layer with custom 
protocol; CAN physical layer with 
CANopen protocol; CAN physical layer 
with TTCAN (time-triggered CAN).  
RS485 with either in-house or ModBus 
protocol is a simple and cheap solution for 
system integrators. However, due to its 
limitations and opinions of other suppliers, 
it  was considered only as the solution for 
connecting proprietary equipment. MVB as 
a part of Train Communication Network 
(TCN) international standard, [5], would be 
the most appropriate solution. TCN 
defines two hierarchical interfaces as 
connections to a data communication 
network. The first one called Wired Train 
Bus (WTB) is used for interconnecting 
vehicles in “Open Trains” such are 
international UIC trains. The second one, 
called Multifunction Vehicle Bus (MVB), is 

 



iCC 2006  CAN in Automation 

01-9 

Figure 4: TMK2200 communication 
busses 
used for connecting standard on-board 
equipment. MVB type of interface requires 
implementation of a proprietary ASIC 
(application specific integrated circuit) or 
FPGA (field programmable gate array). 
However, the lack of support on the 
component basis and development tools 
would demand high development costs. 
Furthermore, other suppliers preferred 
different solutions.  TTCAN (or some of its 
derivatives), [12], and particularly FlexRay, 
[8], [9], are in many ways better and more 
technologically advanced then CAN itself. 
However, they are still under development 
(FlexRay) or have not reached the 
availability and support status of CAN,  [3], 
[4], [10].  Therefore, CAN appeared to be 
a good base for such an application. 
Furthermore, as expected, all equipment 
sub-suppliers have encouraged the CAN 
use.  
Finally, it was decided to build the system 
around three independent CAN busses 
with CANopen protocol and two RS-485 
proprietary busses, Fig. 4. RS485 
networks are used to connect proprietary 
equipment, while CAN_1 network 
connects all tramcar control units (except 
auxiliary power supplies). CAN_2 
connects only VCU with TCUs, thus 
enabling redundancy on the system level. 
It is obvious that VCU is responsible for 
almost all data transactions. Therefore, 
high demands related to reliability and 
availability were put on VCU during 
development.  
 
4 CANopen implementation 

CANopen functions applied are reduced 
when compared to all given possibilities, 
i.e. specific application profiles are not 
used. Instead, the CiA ds301, [6],  
document that specifies what minimal 
functionality a CANopen device must 
provide, was a base for building a CAN 
communication network. 
Because the majority of safety-relevant 
functions are also hard-wired, the vehicle 
is functional even in the case of CAN_1 or 
CAN_2 failure. Due to the large number of 
demanding nodes in the CAN_1 network, 
the amount of data that are to be 

transferred is relatively high for this type of 
application. CANopen uses object-oriented 
approach and defines communication 
objects. Process data objects are used for 
real-time data transfer. Process Data 
Object (PDO) distribution for CAN_1 is 
given in Table 1. Second column gives 
priorities of the messages, where the 
lowest number indicates the highest 
priority. PDO transmission type was 
chosen, according to CANopen, to be 254 
(manufacturer specific). After some tests it 
was decided to trigger the message each 
time when appropriate transmit PDO 
(TxPDO) event 

PDO   TYPE PDO PDO PDO  NUMBER 

& 
PRIORITY 
 / COB-ID 

EVENT TIMER & 

DESTINATION  SETTINGS SOURCE 

TX    

TCU_1-3 1 / 184 50 ms PDO#1_VCU 
TCU_1-3 5 / 188 50 ms PDO#2_VCU 

BCU_1 12 / 1B0 10 ms PDO#3_VCU 
BCU_2 13 / 1B1 10 ms PDO#4_VCU 
BCU_3 14 / 1B2 10 ms PDO#5_VCU 
BGCU 17 / 1C3 150 ms PDO#6_VCU 

DCU_1 18 / 201 100ms PDO#7_VCU 
DCU_2 19 / 202 100 ms PDO#8_VCU 
DCU_3 20 / 203 100 ms PDO#9_VCU 
DCU_4 21 / 204 100 ms PDO#10_VCU 

DCU_5 22 / 205 100 ms PDO#11_VCU 
DCU_6 23 / 206 100 ms PDO#12_VCU 
TCU_1-3 30 / 384 300 ms PDO#13_VCU 
TCU_1-3 34 / 388 300 ms PDO#14_VCU 

BCU_1 41 / 3B0 200 ms PDO#15_VCU 
BCU_2 42 / 3B1 200 ms PDO#16_VCU 
BCU_3 43 / 3B2 200 ms PDO#17_VCU 
HVAC12 45 / 3E0 250 ms PDO#18_VCU 

TIMESTAMP 0 / 100 10000 ms PDO#54_VCU 

RX    

 2 / 185 50 ms PDO#19_TCU1 
 6 / 189 50 ms PDO#20_TCU1 
 3 / 186 50 ms PDO#21_TCU2 
 7 / 18A 50 ms PDO#22_TCU2 
 4 / 187 50 ms PDO#23_TCU3 
 8 / 18B 50 ms PDO#24_TCU3 
 9 / 1A0 10 ms PDO#25_BCU1 
 10/ 1A1 10 ms PDO#26_BCU2 
 11/ 1A2 10 ms PDO#27_BCU3 
 15 / 1C0 150 ms PDO#28_BGCU 
 16 / 1C1 150 ms PDO#29_BGCU 
 24 / 211 100ms PDO#30_DCU1 
 25 / 212 100 ms PDO#31_DCU2 
 26 / 213 100 ms PDO#32_DCU3 
 27 / 214 100 ms PDO#33_DCU4 
 28 / 215 100 ms PDO#34_DCU5 
 29 / 216 100 ms PDO#35_DCU6 
 31 / 385 300 ms PDO#36_TCU1 
 35 / 389 300 ms PDO#37_TCU1 
 32 / 386 300 ms PDO#38_TCU2 
 36 / 38A 300 ms PDO#39_TCU2 
 33 / 387 300 ms PDO#40_TCU3 
 37 / 38B 300 ms PDO#41_TCU3 
 38 / 3A0 200 ms PDO#42_BCU1 
 39 / 3A1 200 ms PDO#43_BCU2 
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 40 / 3A2 200 ms PDO#44_BCU3 
 44 / 3C0 1000 ms PDO#45_BGCU 
 46 / 3E1 1000 ms PDO#46_HVAC

1  47 / 3E2 1000 ms PDO#47_HVAC
2  48 / 3E9 1000 ms PDO#48_HVAC
1  49 / 3EA 1000 ms PDO#49_HVAC
2  50 / 3F1 1000 ms PDO#50_HVAC
1  51 / 3F2 1000 ms PDO#51_HVAC
2  52 / 3F9 250 ms PDO#52_HVAC
1  53 / 3FA 250 ms PDO#53_HVAC
2     

Table 1: Distribution of process data 
objects 
timer elapses.  The adjustments of  event 
timers are given in column 3. Table 1 
gives only the distribution of main PDOs. 
Apart from them, there are also other 
objects on the network (heartbeat, 
emergency objects, service data objects). 
The principle of CANopen implementation 
into main VCU is explained in Figure 5. 

 

Figure 5: CANopen objects in VCU 
(CAN_1 bus) 
Although it describes only CAN_1 channel, 
the same principle applies for the CAN_2.  
Each CAN channel has it's own C505-CA 
processor and dual-ported RAM (DPRAM) 
for exchanging data with the main 
processor (CPM). Assigned address 
space on main processor side of DPRAM 
is divided into message buffers. Each 
message buffer can be assigned to one 
PDO described with its COB-ID, length 
and direction. C505-CA controller has got 
an integrated CAN controller on chip with 
15 message buffers. The distribution of 
these buffers is also given in Fig. 5.  They 
are the same, except message object 15 
that is based on double buffer principle. 
PDO messages are, Fig. 5, divided into 
three groups: fast parallel PDOs, 
multiplexed transmitting PDOs, and 
multiplexed receiving PDOs. Fast parallel 
PDO messages are in fact copied from or 
to DPRAM according to the chosen 

direction. These messages are processed 
with 3-milliseconds period by pooling 
assigned flags. In case of reception, flag in 
message buffer on integrated CAN 
controller is checked, and in case of 
transmission, flag in DPRAM buffer is 
checked. Multiplexed transmitting PDOs 
are checked for their transmission flag in a 
circular manner with 3-milliseconds period. 
Only one of these messages is sent in this 
period. These messages are processed 
with the same priority as eight fast parallel 
messages. Multiplexed receiving PDOs 
use a special double-buffered receiving 
message object 15. It enables the 
processing of one message while another 
one is being received. This message is 
processed in interrupt procedure with the 
highest priority where it is saved in the 
temporary buffer to avoid DPRAM hand-
shaking delays. Messages from the 
temporary buffer are copied to DPRAM in 
lower priority task. This concept introduces 
significant jitter in message transaction 
time and can even lead to message loss 
but is, according to the experience, 
acceptable and reliable.  
 
5 CANbus utilization (load) 

CAN is priority based protocol and when 
dealing with scheduling algorithms, the 
support of non-preemptive fixed priority 
scheduling can be considered. Due to the 
fact that the appropriate timer initiates 
PDOs transmission (Tx_PDO) and VCU 
transmits or receives all messages on the 
bus, the CANbus load can easily be 
calculated, [13], by means of the Table 1 
and the following equation: 

CANbus_load = !
"" ni i

i

T

ML

1

,  (1) 

where i=PDO number, n=number of 
TxPDOs on the bus, MLi=length of i-th 
message, Ti=time base written in 
appropriate event timer. Each PDO, 
except DCU objects, is 8 bytes long. DCU 
objects are 2 bytes long. CAN_1 speed is 
250 kBits/sec. Calculated load for CAN_1 
that supports 54 PDOs is 45.2%. During 
the commissioning 48% was measured. 
The difference is caused by the fact that 
stuffing bits were ignored in the 
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calculation, i.e. the message length of 111 
bits (for 8 byte user data) was assumed. 
 
6 Commissioning and diagnostic tools 

In the early project phases dilemma was 
whether to use a commercial tool or to 
develop a proprietary solution for CANbus 
commissioning and monitoring. The final 
decision was to develop proprietary 
software solution based on commercially 
available CAN/USB hardware. As the 
development team had no experience with 
the CAN/CANopen applications it was a 
good chance  to get familiar with this type 

of applications. Also, the flexibility is higher 
with proprietary software because of 
frequent customer demands for updates 
and changes. This gives the possibility to 
adjust the  software according to new 
demands in a short time;  usually not 
possible with commercial solutions. 
Main features of the above mentioned 
tools are: easily upgradable but completely 
application related; ability to make record 
of complete CAN traffic regardless of baud 
rate and bus load; two CAN channels can 
be processed simultaneously; opportunity 
for detailed offline analysis of CAN traffic; 
no special technical skills required during 

commissioning; user interfaces according 
to the specific customer needs.  
Three different tools for CAN network 
commissioning, development, monitoring 
and diagnostic were developed. First tool, 
called CBC (CanBusCommissioning) is 
intended for use during tramcar and CAN 
bus commissioning, Fig. 6. This tool is 
designed to be used by non-experienced 
personal, i.e. persons without CANopen 
knowledge. It gives a brief overview of 
CAN bus status and is capable of 
detecting some types of hardware errors 
(e.g. errors in wiring or control units 
physical layer) or errors in CAN nodes 

(e.g. missing PDO or incorrect PDO 
timing). Expected messages COBID and 
their time-out period are pre-defined in 
configuration file. Main advantage is that 
all errors that CAN/USB interface detects 
are presented and counted. The tool 
detects hardware and software overflows 
(situations when received messages aren't 
handled fast enough), error frames on the 
bus and errors in message content 
(stuffing error, form error and CRC error).  
For each message there is one row in 
table, denoted “2” in Fig. 6, that presents 
message COBID, short description, 
expected period and current status.  
Statuses are: OK meaning that everything 

 

Figure 6: CANbus comissioning tool 
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is as expected; LOSS meaning that one or 
more messages is lost (message is 
considered lost if it's missing longer than 3 
and less than 10 expected time-out 
periods); BREAK meaning that there is a 
communication break with node sending 
message with these COBID (break is 
declared when message is missing for 
more than 10 expected time-out periods); 

and DISCON meaning that recording has 
finished and CAN/USB test tool has 
disconnected itself. After the test is over, 
the window “3” gives clear report with all 
detected problems and short instructions 
for user how to handle some type of 
errors.  
Second tool, CANTerm (CANbus 
Terminal), Fig. 7., is developed for use 
during CAN hardware and application 
program testing. This software tool is 
capable of logging complete CAN traffic 

into log files on PC hard disk. Each 
message is logged with its COBID, time 
stamp, time between current and previous 
message with the same COBID, some 
flags and message content. Time stamp 
can be recorded with 10 µs resolution 
what enables off-line analysis of the bus 
traffic, statistical analysis of recorded data 
and advanced error detection, not only 

related to CAN communication but also to 
the equipment connected to the CAN bus. 
User can select baud rate, one of two CAN 
channels, silent mode in which CAN/USB 
interface doesn't send anything to the 
network. There is also a window, “1”, 
showing bus traffic or recorded errors. Bus 
load is also shown, as well as list of all 
messages occurred on the bus, together 
with average load for each message 
(number of messages per second). Tool 
automatically splits recorded data into 

 
Figure 7: CAN terminal user interface 

 



iCC 2006  CAN in Automation 

01-13 

multiple files to reduce single file size and 
to simplify processing a large amount of 
data. Recorded data, for one channel, take 
about 250 MB for 1 hour at 50% bus load 
and speed of 250 kbps. 
Data are recorded to the log file following 
the format marked with “4”. At the 
beginning of each file is a message time 
stamp in format hh:mm:ss:ms, then, there 
is time stamp represented as number of 
milliseconds or part of millisecond 
(depending on selected time scale) since 
connection. Next, there is a message 
direction, where "R" means that message 
is received, and "T" means that the 
message was sent by this tool. Next, 
COBID is given in hexadecimal data 
format. After COBID there is a four digit 
flag containing additional information 
about message, like message type and 
possible errors. Next, there is time since 
last message with the same COBID, in 
milliseconds. Last part of the displayed 
message is a message content. Each 
transferred byte is represented as a two 
digit hexadecimal number 
The third tool, CANLogAn (CANLogger 
Analyzer), analyses data recorded by 
means of CANTerm. This tool calculates 
the distribution of time-outs between 
messages and detects problems in 
communication, lost messages etc. Such 
an information can also be a good criterion 
for grading overall communication quality. 
 
7 Conclusion and future development  

After system integration, commissioning 
and drive tests the vehicle was put into 
regular operation and series production is 
under way. The reliability and functionality 
of the control units and CAN busses 
appears to be as expected.   For the time 
being, the CANbus load and processing 
power of proprietary solutions are 
sufficient, but the demand of higher 
calculation and communication 
possibilities is expected in the future 
projects. When VCU is an issue, 
processing power can be added by 
introducing additional module in multi-
processing configuration, [1], [2]. Possible 
future problems with the limitations of 8-bit 
CAN controller can be solved with 16-bit 
controller, but in the same time there are 

faster 8-bit (8051-compatible) solutions 
available. Further tasks will also be the 
consideration of MVB and particularly 
FlexRay. Appropriate FlexRay hardware 
components are expected to be widely 
available in the very near future. 
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