
iCC 2006 CAN in Automation

 04-20

CANopen gateway functionality in distributed I/O systems

Heinz Schaffner, Jochen Weiland, Schneider Electric

In Automation Control Equipment, CANopen is more and more emerging because of
its flexibility and openness. For larger systems one single CANopen network seems to
be too restrictive. Multiple networks are the standard way of implementing such large
networks, where CANopen takes the field oriented or machine oriented part. For
communication over network borders, gateway functionality has already been defined
in CiA309, in CiA400 and CiA446. This paper gives an overview on such functionality
used in an I/O system and shows possible further evolution of gateway technology.

1 Introduction

Distributed I/O systems nowadays have to
fulfill a lot of requirements such as:
• Covering the whole range of input and

output functionality, digital, analog,
counters, ...

• adaptable in a flexible way to the
peripheral needs

• supporting different field busses by
dedicated Network Interface Modules

• extendable for special functions like
motor starters, drives, ...

• rugged for harsh environments
• covering some tens of meters for wide-

stretched machines

Especially the requirement for extendibility
could not be covered with a certain range
of I/O modules available in the system.
Instead an open system is preferable,
which could be complemented by special
I/O devices from other systems or third-
party suppliers. With this approach nearly
every I/O function could be provided.
A precondition for such open systems is
an open, internal “backplane” bus such as
CANopen.

For some reasons CANopen seems to be
oversized for an I/O system, but it has
major advantages compared to other
system approaches.
The robust and cheap CANopen bus
drivers allow a distribution over a
reasonable area. This permits to distribute
the inputs and outputs in a flexible way
close to the machine. As machines are
often designed in a modular way, the I/O

system could be configured in segmented
clusters to reflect those modules.

upstream

network

to PLC

internal

CANopen

network

Configuration Tool

3rd party device

I/O

 Module

I/O

Module

Network

Interface

Module

I/O

 Module

I/O

 Module
I/O

 Module

Figure 1: I/O system overview
Since the I/O modules are CANopen
devices, they have a microcontroller on
board. This provides the opportunity to put
some intelligence into the I/O modules,
thus releasing the PLC and also saving
bus bandwidth on the upstream network.
Simple predefined logical functions, so
called reflex actions, can be activated by
configuring the system. Another
advantage of these reflex actions is, that
they may still run even if the PLC is not
acting.
Even though the system provides self-
configuration for simple applications, most
of the applications will need to be
configured. In typical applications, user
has to set some parameters to dedicated
values, for optimizing the I/O behavior or
optimizing the internal communication. For
this reason a system dedicated
configuration tool is provided. Besides the
download of the system configuration,
including the reflex actions, online

iCC 2006 CAN in Automation

04-21

diagnostic and test functions are
performed.
 Users are not forced to use a
configuration tool, as the system supports
self-configuring. First level of this self-
configuring is Auto addressing, where
each I/O module gets it unique node ID
according to the physical slot position.
Next level of self-configuring is the Auto
configuration, where the inherent
CANopen master/manager scans the
whole network for connected devices. The
TPDO of the detected devices are linked
to the own RPDO of the master/manager
and vice versa.

2 CiA309

Configuring the I/O system in fact means
configuring the inherent CANopen
master/manager. Configured objects have
to be downloaded to the Network Interface
Module.
There are two ways to download the
configuration to the Network Interface
Module, over a local serial port or Ethernet
in case of Ethernet Network Interface
Module.
The Modbus protocol was chosen for this
interface, which is a widely used standard
protocol for such type of communication.
In case of Ethernet network, the Modbus
TCP protocol was chosen.
Now the problem arose how to bring the
CANopen configuration down to the
Network interface Module via Modbus
protocol. This was the starting point for the
CiA 309 gateway specification.
CiA309 part1, general principles and
services: Three classes of gateways are
specified.

• Class 1: gateway is a CANopen slave
• Class 2: class1 device plus SDO

requesting device functionality
• Class 3: gateway is a CANopen

manager
Several services are specified for
controlling the state of the network,
configuring the network and accessing the
CANopen objects.
• SDO access services (i.e. download

SDO)

• PDO access services (i.e. configure
PDO, write PDO data)

• CANopen NMT services (i.e. start
node, reset communication)

• Device failure management services
(i.e. read device error)

• CANopen interface config. services
(i.e. init gateway, store configuration)

• Gateway management services
• Controller management services
• Manufacturer specific services

With the specified services, the CiA309
allows to control all nodes in the network
as well as the gateway itself. The intention
of the CiA309 was not to exchange data
with the network in a real time fashion, but
more to open it for remote control,
maintenance and diagnostics.
CiA309 part2, Modbus/TCP mapping:
The part 2 specifies the mapping of
services to Modbus commands by using
the function code FC43/13, known as
“CANopen general reference command”.
CiA309 part2, ASCII mapping: The part 3
specifies the mapping of services to
ASCII-based communication syntax.
In the described I/O system we face a
Class 3 gateway with CANopen manager
functionality. The Modbus/TCP mapping of
services is used, where only a subset of all
defined services is provided. The main
services are used for downloading the
network configuration to the CANopen
manager and for diagnostic purposes.
During the download of the configuration,
the services for controlling the gateway
and the CANopen manager are used.
Relevant used commands are:

• Gateway initialization
• Store – and Restore configuration
• SDO upload and – download
• Enter preop all nodes
• Start all nodes

iCC 2006 CAN in Automation

 04-22

Modbus

Modbus TCP

I/O

Module

I/O

Module

CANopen

manager

CiA309

gateway

CANopen

FC43/13

Idx = FFFF

ObjectDictionary

1017

1400

.....

1F22

...

FC43/13

Figure 2: Application of CiA309 in I/O
system
For downloading the configuration, the
destination address of all FC43/13
commands is the node ID 127, which is
the CANopen manager. If the destination
index is FFFFh, then the state of the
CANopen manager and thus the state of
the network is controlled. If the index is
unequal to FFFFh, then the object
dictionary is accessed.
The CANopen slave nodes are indirectly
controlled as they are configured through
the configuration manager during boot up.

3 Proposal for CiA309 evolution

The CiA309 today specifies the conversion
of Modbus messages to CANopen. A
routing of Modbus messages through
CANopen is not provided. This is
necessary i.e. if a serial Modbus I/O
module should be placed in the I/O
system. Since this module is connected to
CANopen, a CANopen to Modbus
conversion has to be provided somehow.
For this reason two dedicated objects
could be used:
• Modbus-Request-Object
• Modbus-Response-Object
Both objects are supposed to be of type
domain with a length of 256 bytes, which
is sufficient for all Modbus frames.
Index
/sub

Type Meaning

5000 ?
/0

Domain Modbus-Request-
Object

5001 ?
/0

Domain Modbus-Response-
Object

Table 1: Modbus object proposal
As a first approach the index here above is
in the manufacturer specific area. A future
standardization would choose an index in
the profile specific area.
A Modbus request, which should be
forwarded through CANopen has to be
converted to a SDO download to the
Modbus-Request-Object on the addressed
device. It is obvious that this requesting
device has to have SDO client
functionality. If there are other SDO
requesting devices in the network, a SDO
manager is required or a separate SDO
channel has to be used then.
When the SDO reception is indicated on
the device, the content of the object will be
reconverted to the Modbus request.
Sooner or later the Modbus response is
put to the Modbus-Response-Object.
During this time the client has to cyclically
scan the Modbus-Response-Object for the
expected response.

MB request

Modbus

requesting

device

initiate

download

segment

CANopen
Modbus

responding

device

MB request

MB response

SDO write to MB

Request object

SDO read from MB

Response object

initiate

upload

segment

MB response

Figure 3: Modbus request over
CANopen
This approach would allow forwarding all
Modbus commands, particularly FC43/13,
which is generally used in CiA309.
The function code 00 indicates the
absence of a Modbus message in the
Modbus-Request-Object or Modbus-
Response-Object. As this, the function

iCC 2006 CAN in Automation

04-23

code has to be cleared to 00 after
confirmation of the according message.

4 CiA400

For connecting the I/O system to
CANopen as the upstream field bus, the
Network Interface Module has two
CANopen interfaces and hence plays the
role of a CANopen to CANopen gateway.
For this functionality CiA400 was created.
It specifies a multi-level network solution
for CANopen. Following a short overview
of the CiA400 functionality.
A CANopen to CANopen gateway has up
to 32 CANopen network interfaces, so
called ports. Each has its own object
dictionary, with the mandatory CiA301
entries and some optional entries. Each
has its own NMT state machine and SDO
server and hence each interface is a
CiA301 compliant CANopen device first.
The interface may also have NMT master
functionality as well as CANopen manager
functionality. In this case it shall comply
with CiA302. The additional gateway
functionality is composed of the functional
elements: SDO-, PDO- and emergency
forwarding.

CANopen to CANopen Gateway

local network

Object

Dictionary

Functional

Elements :

NMT

SDO

PDO

EMCY

Error control

.......

remote network

remote network

remote network

Figure 4: CiA 400 Gateway

There is one local and several remote
network interfaces. This is a relative
denomination, depending on the
standpoint of the viewer and not related to
a physical port.
With this kind of gateway a quite complex
network could be created. Hierarchical
networks, which are controlled top-down,
but also non-hierarchical networks are
covered by this specification. Non-
hierarchical networks may offer multiple
message routes from source to destination

device over different network paths.
Assigning a so-called “cost factor” to each
port could configure preferred routes and
alternative routes. The preferred route is
consequently the route with the least cost
factor.
Today most control applications will use a
hierarchical network, consisting of few
CANopen networks connected with such
gateways. Those multiple level networks
allow to control the overall network from
the top. Even the configuration for the
whole network could be downloaded from
the top. Of course some parameters on
the gateway have to be set to reasonable
default values, e.g. the network IDs, node
IDs and port numbers.

network 1

Gateway

I/O

PLC

I/O I/O I/O I/O

network 2

Gateway

I/O I/O

Gateway

I/O I/O

network 4network 3

Figure 5: Hierarchical multilevel
network

The above figure gives a simple example
of a multi level network, even though the
CiA400 allows to set up much more
complex non-hierarchical networks e.g.
with multiple PLCs.
Each CANopen networks gets its unique
network ID. The gateway has the
knowledge of all connected network IDs as
this is configured for each interface, which
is the base for the forwarding of
messages.
SDO forwarding: SDO forwarding is
initiated by a network indication request
message sent by the SDO client. A special
command specifier is used for this SDO
message, which was not yet used. This
message carries the target network ID and
the target node ID and is forwarded from
one gateway to the next until a gateway
can identify the targeted device.

iCC 2006 CAN in Automation

 04-24

network indication

request

SDO client Gateway 1 Gateway 2 SDO server

network indication

request

network indication

confirmation

any SDO up- or

download request

SDO response

network indication

confirmation

Figure 6: Forwarding SDO
This gateway confirms the network
indication. The gateways are now
prepared to forward the following standard
SDO sent by the client and will forward the
message accordingly. All standard SDO,
expedited, segmented or block upload –or
download SDO are allowed. The network
indication is valid only for one following
SDO access. Subsequent SDO accesses
need to be initiated again with a network
indication cycle.
NMT forwarding: Controlling the NMT
state of a device is only allowed for the
NMT master. If a non-NMT master device
wants to control the NMT state of another
device is has the opportunity to use the
Request-NMT (1F82) object of the NMT
master according to CiA302. This is also
true for controlling of a device in a remote
network by achieving a remote SDO read
or write request to the NMT master in the
target network.
Emergency message forwarding: It is
probably impractical to forward every
emergency message from the local
network to all remote networks because of
overcrowding the network especially in
exceptional situations. For this reason
configurable emergency reception filters
and a configurable emergency routing list
is specified. By this means the relevant
emergency messages could be filtered
first and then sent to the network gathering
the information.
The forwarded emergency message
contains information about the originating
node ID and the network ID. Since the
message is limited to 8 byte, only the

original emergency error code is included
in the forwarded emergency message.
PDO forwarding: PDOs are not directly
forwarded, because not all objects of a
PDO may be relevant for all remote
networks. Instead objects are mapped to
system variables, which can be mapped to
PDO as usual. Those system variables are
data type specific, similar to network
variables known from CiA405. Since
gateway functionality can coexist with
IEC61131-3 programmable device
functionality, the index range B000h to
BFFFh was chosen for the system
variables.
An object from an RPDO is mapped to a
certain index in the system variable area
(see the following object dictionary)
according to its data type and port
number, where it has been received. This
variable, indicated by its index, can now
be mapped to TPDOs on the other ports,
by means of well known PDO mapping
parameter. See the following simple
example for a 2-port gateway.

port 1

unsigned 8

shared memory

B010 to B01FB000 to B00F

B200 to B20F B210 to B21F
unsigned 16

RPDO

port 2

integer16

TPDO

.......

B810 to B81F

BE00 to BE0F BE10 to BE1F

........

integer16

RPDO

.......

B800 to B80F

unsigned8

TPDO

Figure 7: Forwarding system variables

Each of the maximum of 32 ports may
provide 16 indexes per data type. Each of
these indexes may provide 254 sub-
indexes. The access attribute of the
variables is rww (meaning read, write and
mappable to RPDO) for the local port and
rwr (meaning read, write and mappable to
TPDO) for the remote ports.
Heartbeat forwarding: Heartbeats are not
forwarded. The state of a device can be
acquired by NMT services. If the state of
the devices in a network is of major
interest, the state could be observed and
kept in manufacturer specific objects,
which could also be mapped to PDO.
Specific Object dictionary entries:
1000h Device type: profile 400, additional
information specifies the gateway
functionality

iCC 2006 CAN in Automation

04-25

6000h Lock gateway configuration:
protection of the gateway parameters
6001h Local network ID
6002h Remote network routing list:
indicates the remote networks with its
network ID, gateway node ID and port
number
6003h Cost factor: additional information to
routing list
6010h Emergency routing list: indicates to
which remote network the emergency shall
be forwarded
6011h to 6031h Remote emergency
reception filter for port 1 to 32: indicates
from which device and network emergency
messages should be accepted
B000h to B1FFh Unsigned8 system
variables: 16 variables (arrays) per port
B200h to B3FFh Unsigned16 system
variables: 16 variables (arrays) per port
B400h to B5FFh Unsigned32 system
variables: 16 variables (arrays) per port
B600h to B7FFh Integer 8 system
variables: 16 variables (arrays) per port
B800h to B9FFh Integer16 system
variables: 16 variables (arrays) per port
BA00h to BBFFh Integer32 system
variables: 16 variables (arrays) per port
BC00h to BCFFh Boolean system
variables: 8 variables (arrays) per port
BD00h to BDFFh Real 32 system
variables: 8 variables (arrays) per port
BE00h to BEFFh Unsigned64 system
variables: 8 variables (arrays) per port
BF00h to BFFFh reserved system
variables
Even though few refinements could be
done, such as broadcasting of NMT
messages and heartbeat messages, the
CiA400 specification is ready for
implementation. Besides the gateway
functionality to be developed, the
communication stack of the SDO client
needs to be evolved, as this interface is
today not prepared for accesses to
devices in remote networks.
Additionally a network configuration tool
supporting the overall network seems to
be valuable especially for complex
networks, as the configuration of the single
networks one after the other is error prone
and might be a challenge for the user.

5 CiA 446

AS-Interface is a very well suited field bus
for the sensor/actuator level. It has a lot of
advantages on this level, like extremely
easy IP67 installation, easy configuration,
or auto-addressing for faulty device
replacement. AS-Interface is the perfect
field bus below a CANopen installation.
There are a lot of installations using both
networks in one application to get the most
advantages out of both networks. This
standard architecture with a CANopen
network and underlying AS-Interface
networks is addressed by the CiA 446 [5].
This proposal defines an interface profile
for CANopen to AS-Interface gateways.

CANopen

AS-

Interface

Digital 4I/4O

Digital 2I/2O Analog 2I

Analog 4O

Figure 8: CANopen/AS-Interface
gateway

The CANopen/AS-Interface gateway can
be seen as a CANopen NMT slave device
and an AS-Interface master combined in
one device. The AS-Interface master
handles the AS-Interface like any other
AS-Interface master and scans all slaves
as defined by the AS-Interface Complete
Specification [6]. The CANopen part of the
gateway provides access to the
information on the AS-Interface line.
The cyclical refreshed input/output data is
available as digital input and output
images and analog input and output
images. A digital input or output image of a
complete AS-Interface bus needs 248 bits.
This image fits into 16 octets. A complete
analog image can contain as much as 31
slaves with four channels of 16 bit values.
The proposal considers the fact that AS-
Interface slaves are typically digital
input/output devices and provides a
default mapping for the digital input/output
image, which is enabled by default (see
Figure9 for the default mapping of the
digital input image). The digital output

iCC 2006 CAN in Automation

 04-26

image is mapped in a similar way onto the
RPDOs.

16B18B 17B19B20B21B22B23B24B26B 25B27B28B29B30B31B

res.2B 1B3B4B5B6B7B8B10B 9B11B12B13B14B15B

16(A)18(A) 17(A)19(A)20(A)21(A)22(A)23(A)24(A)26(A) 25(A)27(A)28(A)29(A)30(A)31(A)

Flags2(A) 1(A)3(A)4(A)5(A)6(A)7(A)8(A)10(A) 9(A)11(A)12(A)13(A)14(A)15(A)

6010
h

[1]

[2]

[3]

[4]

TPDO1 TPDO2 TPDO3 TPDO4

Digital input image

enabled enabled enabled enabled

Figure 9: Default mapping of digital
input image
The analog input/output image is also
mapped, but the PDOs are not enabled by
default (see Figure 10 for the default
mapping of the analog input image). The
analog output image is mapped in a
similar way onto the RPDOs.

Slave 1 channel 2

Slave 1 channel 3

Slave 31 channel 4

Slave 1 channel 1

6020
h

[1]

[2]

[3]

[4]

TPDO5 TPDO6 TPDO7 TPDO66

Analog input image

enabled enabled enabled enabled

[1]
[2]

[4]
[3]

[1]
[2]

[4]
[3]

603E
h

...

...

...

Figure 10: Default mapping of analog
input image
This fixed default mapping guaranties the
ease of use the user is used to from AS-
Interface. Replacing a faulty gateway with
any other implementing this interface
profile is easy, as the maintenance
personal has only to remove the faulty and
insert a new one.
A gateway can support up to two AS-
Interface networks in one device. The
proposal calls these lines “circuit” in
conformance to the AS-Interface Complete
Specification V3.0 [6]. The second master
is handled in the default mapping of the
CANopen/AS-Interface gateway like the
first or single master.

The main usage of the CANopen/AS-
Interface gateway is providing access to
the digital and analog image of the
sensors on the AS-Interface network for
CANopen devices. This is handled by the
default mapping of the PDOs. Never the
less, CANopen devices may also need to
get or set additional information from the
AS-Interface network like getting the
status of the slaves, reading or writing the
parameter bits of individual slaves. The
proposal also addresses these needs and
provides objects to access these functions
of the AS-Interface master (Table 2). The
function of circuit 2 is always available at
the <object number at circuit 1> + 1.
These objects are available with SDOs.
For example, a CANopen device will read
the object 61AAh subindex 35h of the
gateway to get the slave configuration (the
AS-Interface profile) of slave 15B on the
AS-Interface circuit 1. The object contains
in an Unsigned16 the ID1 code, ID2 code,
I/O code, and ID code from the most to the
least significant bit.
Object Name
6010h Digital inputs circuit 1
6011h Digital inputs circuit 2
6020h to
603Eh

Analog inputs circuit 1 – slave
1 to 31

603Fh to
605Dh

Analog inputs circuit 2 – slave
1 to 31

605Eh Digital outputs circuit 1
605Fh Digital outputs circuit 2
6060h to
607Eh

Analog outputs circuit 1 –
slave 1 to 31

607Fh to
609Dh

Analog outputs circuit 2 –
slave 1 to 31

619Eh AS-Interface master flags
circuit 1

61A0h List of active slaves (LAS)
circuit 1

61A2h List of detected slaves (LDS)
circuit 1

61A4h List of periphery faults (LPF)
circuit 1

61A6h AS-Interface master control
word circuit 1

61A8h AS-Interface master status
word circuit 1

61AAh Read actual AS-Interface

iCC 2006 CAN in Automation

04-27

slave configurations circuit 1
61ACh Write permanent configuration

AS-Interface slaves circuit 1
61AEh Read permanent configuration

AS-Interface slaves circuit 1
61B0h Write list of configured AS-

Interface slaves circuit 1
61B2h List of configured AS-Interface

slaves circuit 1
61B4h Read acyclic request circuit 1
61B6h Read acyclic response circuit

1
61B8h Write acyclic request circuit 1
61BAh Write acyclic response circuit

1

Table 2: Additional CANopen/AS-
Interface gateway objects
AS-Interface slaves may implement an
AS-Interface device profile, which is called
“combi slave profile” starting with the AS-
Interface Complete Specification Version
3.0 [6]. The combi slaves have one part,
which is mapped into the digital
input/output image. The other part allows
the transfer of data strings. The proposed
interface profile also handles these data
strings with the objects 61B4h to 61BBh.
The proposal provides a method to
integrate CANopen and AS-Interface in
the sense of the AS-Interface philosophy:
“simple and easy to use”.

6 Conclusion

With CANopen a versatile network for
distributed intelligent I/O systems is
available. The gateway specifications
CiA309 and CiA400 establish a base for
integration of CANopen into
heterogeneous or homogenous networks.

References
[1] CiA DS 301, CANopen application layer and

communication profile
[2] CiA DSP 302, Framework for CANopen

managers and programmable CANopen
devices

[3] CiA DSP 309, Interfacing CANopen with
TCP/IP, Part 1 General principles, Part 2
TCP/Modbus mapping

[4] CiA DSP 400, CANopen Interface profile -
Multi-level networking

[5] CiA WDP 446, CANopen Interface profile for
AS-i gateways

[6] AS-International, AS-Interface Complete
Specification, Version 3.0

