
iCC 2006 CAN in Automation

07-13

CANopen.NET – Programmingless interconnection
between GUI and control application

Peter Sjödin, Mikael Nolin and Mats Kjellberg, CC Systems.

We present the novel concept CANopen.NET – In this concept we integrate Windows
GUI-programming in .NET and control-applications ba sed on CANopen. The
integration is automated, thus no programming is ne eded.

An increasing number of CANopen-based systems are e quipped with Windows-based
graphical user-interfaces (GUIs). Today, the .NET f ramework provides the most
attractive solutions for design of GUIs both for Wi ndows and WindowsCE based
nodes. However, transferring information between th e CANopen-domain (which is
typically unmanaged code) and the .NET-domain (mana ged code) is non trivial.
Traditional methods require handwritten pieces of c ode both in the managed and
unmanaged domain for each signal (object-dictionary entry). Also, binding data values
to graphical controls require hand written code. Th is means that adding or modifying
signals to the system becomes tedious, error-prone and expensive.

1 Introduction

An increasing number of CANopen-based
systems are equipped with one or more
nodes with Windows-based Graphical
User-Interfaces (GUIs). Today, the .NET
framework and the .NET development
environments provide the most attractive
solutions for design of GUIs both for
Windows and WindowsCE. However,
transferring information between the
CANopen-domain (which is typically
unmanaged code) and the .NET-domain
(managed code) is non-trivial. Traditional
methods require handwritten pieces of
code both in the managed and
unmanaged domain for each signal (one
signal is typically one object-dictionary
entry). Also, binding data values to
graphical controls require hand written
code. This means that adding or modifying
signals to the system becomes tedious,
error-prone, and expensive and requires
highly skilled software engineers.
In .NET high-level abstractions like XML-
documents, web-servers and databases
are easily accessible, and can be
automatically bound to graphical controls.
Hence, in CANopen.NET we provide a
.NET-database interface via the .NET type
dataset to the data in the object dictionary.
This dataset is automatically generated
from a CANopen profile-specification (a so
called EDS-file). Also, the CANopen-stack

is automatically configured from the EDS-
file. Hence, CANopen.NET provides a
programming-less interconnection
between CANopen-based control-
applications and Windows.NET-based
GUI-applications. This significantly eases
the development of CANopen-systems
with GUIs.
CANopen.NET and the development
environment presented in this paper are
currently developed by CC Systems. And
the experience reported here are from
using a prototype of our development
environment in a couple of customer
projects.

2 Microsoft .NET

Microsoft’s .NET framework [4,5] provides
the state of the art whiting component
based development of Windows based
Graphical User Interfaces (GUIs). The
.NET framework is a language and
platform independent set of technologies.
For resource constrained systems a
trimmed down edition, .NET Compact
Framework, suitable for WindowsCE,
exists. Thus, the .NET technologies can
be used both on full scale display PCs and
smaller PDA-style devices within a vehicle.
The .NET framework has been specifically
designed to support development of robust
applications. It also supports a highly

iCC 2006 CAN in Automation

 07-14

flexible development environment, where
components easy can be deployed,
customized and assembled.
The language independence means that
components developed by different
vendors still will interoperate. It also
enables easy porting of legacy
components to the .NET framework.
.NET components are not compiled to
machine dependent instructions. Instead a
machine independent Intermediate
Language (IL) is generated by the .NET-
compilers. This means that components
can be deployed on any hardware platform
that has the .NET framework. Hence,
.NET components and application are
easily moved between different platforms.
The platform portability is especially
attractive in development of embedded
systems. Where much of the development
is performed at a working station (e.g. an
Intel CPU running Windows XP) but the
target platform is a much more resource
constrained environment, possibly with a
completely different hardware and
operating system (e.g. an Xscale CPU
running WindowsCE). Using the .NET
framework the application can be
developed, debugged and tested on the
working station. The transition to the target
platform is then done seamlessly.
Central to the .NET-concept is the
Integrated Development Environment
(IDE) provided, e.g., by the latest versions
of Microsoft’s Visual Studio [9]. The IDE
provides an environment where
components can be constructed, deployed
and assembled to applications.

3 Data binding in .NET

One of the key concepts in .NET is called
data binding. Data binding means that a
graphical component can be bound to a
data element. The graphical component
will then display a representation of that
data element. Traditionally, components
are bound to elements in a database, thus
visualizing the content of the database in
the GUI [6].
The simplest components just give a text-
based representation of the data element.
However, a rich set of components exists
to represent data in more graphical forms.

Figure 1 shows examples of four
components: the two leftmost components
are bound to numerical data items and can
visualize the state of the controlled system
in a natural and intuitive way. In the top
right of the figure, a text field that can be
used for both input and output of data
values is shows. In bottom right, a
graphical “warning light” is shown. This
component is bound to Boolean data
items, and different colors can be selected
for both possible value of the data item.

Figure 1: Example graphical
components
Graphical components can be bound to
various types of data sources. In
CANopen.NET we use the .NET type data
set to hold data item that should be bound
to components. A data set is a Microsoft
specific technology which enables storing
data from a data source in RAM. The data
is stored in any number of tables and it is
possible to have relations between the
tables. One may view a dataset as an
instance of a database in a lighter version
(for instance, database features like
persistent storage is not available). A
dataset may be typed or non-typed. In a
typed dataset it is possible to address data
using ”names” that the compiler may
verify.

4 Managed vs. unmanaged code

.NET has high emphasis on development
of robust applications. Hence, it has built
in run-time support for key techniques
such as strong typing, array and variable
bounds checking, garbage collection, and
exception handling. These functions are
provided by the Common Language
Runtime (CLR).
Components compiled to IL that executes
using the CLR are executing in the

iCC 2006 CAN in Automation

07-15

managed domain (also called managed
code). Managed code is protected from
many common sources of run-time errors
such as erroneous type casts, memory
leakage, pointer errors, etc.
Any new development in .NET should
preferably be done using managed code.
However, often it is necessary to integrate
existing, legacy, code in new projects. In
CANopen.NET, for instance, we use a
legacy implementation of CANopen.
Hence, we need to call this code which is
not executing in the managed domain.
Such legacy code is in .NET called
unmanaged code, and is typically written
in C or C++.
Luckily, .NET provides mechanisms to
integrate unmanaged code and managed
code. When calling unmanaged code from
managed code, the managed domain is
left. The unmanaged code is, like all
traditional code, susceptible to all the
errors the CLR is supposed to protect your
application from. And unfortunately, CLR
cannot help you if you unmanaged code
screws things up. This means that
crossing the managed boundary
introduces a risk for your application.

5 Architecture of CANopen.NET

In CANopen.NET we use the data-binding
facility of .NET to bind graphical
components to signals in a CANopen
network. Specifically, CANopen defines an
object dictionary, which (among other
things) hold the data values sent and
received over the CANopen network.
CANopen.NET. We provides a run-time
coupling between the object dictionary and
a .NET data set, thus exposing the data
values in the object dictionary to the .NET
environment.
Figure 2 illustrates the building blocks of
CANopen.NET. At the lowest level the
CAN hardware and device drivers provide
access the CAN bus [1]. The CANopen
protocol provides the protocol logic
needed to integrate the node on the
CANopen network and to encode and
decode data values to and from CAN
frames [2].

CANopen
J1939 ISOBUS

CAN

Signal Access Layer (SAL)

DataSet

Graphical Components

Obj. Dict.

Figure 2: CANopen.NET architecture

The CANopen protocol retrieves data
values to be sent from, and stores data
values received to, the object dictionary.
Hence, in essence the object dictionary is
a database containing the current values
for all data items.
In Figure 2 we also illustrate the generality
of our approach, in that other CAN-
protocols such as J1939 [3] and ISOBUS
[7] could easily be added to our
architecture. Thus the approach is not
CANopen specific. Today however, we
have only implemented the binding to
CANopen.
Above the specific higher-level CAN-
protocols, we have implemented a Signal
Access Layer (SAL). SAL provides a
uniform interface towards the data
representation for each protocol. This
enable us to implement support for new
protocols with minimum interference to
existing components in CANopen.NET.
SAL also provides the boundary between
managed and unmanaged code in
CANopen.NET. By having this single and
simple layer as the interface towards the
unmanaged code we reduce the risk that
the legacy protocol implementations will
interfere adversely with the graphical
application.

6 Using CANopen.NET

Before using CANopen.NET to build a GUI
for a CANopen-system, the CANopen
network needs to be designed. This is
typically done by constructing an

iCC 2006 CAN in Automation

 07-16

Electronic Data Sheet (EDS) for each
node. The EDS for the node with
CANopen.NET must specify all messages
and data values (so called Process Data
Objects, PDOs) that should be received
and transmitted from the node. Since EDS
is a standardized format, many tools that
can aid in the construction of an EDS-file
exist. For instance, the PLC tool-system
from 3S [8] automatically generates EDS-
files for nodes in systems designed with
this tool.

Figure 3: Configuration of
CANopen.NET
In Figure 3 the process of automatically
configuring CANopen.NET from an EDS-
file is shown.

The next step is for a designer to build the
application specific GUI interface. Figure 4
shows the Integrated Development
Environment (IDE), Microsoft’s Visual
Studio, that we have used when
developing CANopen.NET applications.
This IDE has design-time capabilities, thus
components may execute both in run time
and in design time. Design time execution
is done while a developer constructs an
application in the IDE. These functions
may include customization of component
behavior and user interfaces. In an IDE
this could be done in a graphical way
using a GUI, thus with no actual coding
needed to deploy the components.
Design-time code and run-time code might
or might not be identical. For example,
design-time code could be a graphic
layout of a control or an execution of a
connection to a database.

Figure 4 : IDE for development of GUI

In Visual Studio, controls that have design-
time behavior are collected in a toolbox
which enables them to be dragged into the
project you are working with. Figure 5
shows the toolbox of Visual Studio with all
the available controls.

Figure 5: Toolbox with e.g.
CANopen.NET control
When the control is dragged into the
project from the toolbox, the control
executes its design-time code. In our case
when we drag our CTCanOpen control
into our form, it reads the EDS-file and
builds a dataset representation of signals
in the file. Having a dataset allows the
user to make databindings from a graphic
control to an element in the dataset. It is
possible to make databindings in design
time using Visual Studio’s databinding
wizard. This wizard is show in Figure 6.

.NET Dataset

CANopen
Object Dictionary

0x2000

0x1A00

0x1800

0x1601

0x1600

0x1401

0x1400

CANopen
Object Dictionary

0x2000

0x1A00

0x1800

0x1601

0x1600

0x1401

0x1400

Create

Configure
EDS-fileEDS-file

iCC 2006 CAN in Automation

07-17

Figure 6: Databinding wizard
After constructing the GUI and binding all
graphical components to the dataset we
can build an executable application which
may act as a CAN-slave, and it is fully
capable of receiving and transmitting
signals on the CAN network (using
CANopen PDOs). Figure 7 shows an
example GUI from a real application. The
application is designed to execute on CC
Systems’ vehicular PC “CCP XS” which is
a thin, portable PC, using PDA technology
providing touch screen and possibility to
use battery operation [10].

Figure 7: GUI for CCP XS application
Using CANopen.NET such an application
can be designed and constructed by
engineers specializing in graphical design
and usability. No specialized knowledge in
either CANopen or .NET-programming is
required.

7 Discussion

Using CANopen.NET allows developers to
use a highly domain-driven design
approach for creating CANopen GUI

nodes. This is due to the fact that
CANopen.NET yields a clear separation of
logic and GUI. One part is to program all
logic, e.g., in a PLC program, and the
other is to design (but not program) a GUI.

This means development costs are cut
since the time to debug and maintain the
application is very much decreased.
Having CANopen.NET we work with a
high level abstraction of signals that are
transferred from CAN into the managed
domain, and we need not to test the
framework of the signal handling since this
handling is done automatically.

The GUI designer needs only to work at
the managed side which simplifies the
developing process. One need not to care
about CAN protocol or interoperability
issues concerned having unmanaged and
managed components. Further, there is no
need for the GUI designer to write code, if
he/she has access to graphic components.

All this means we generally get better
quality in our applications since designing
and maintaining CAN-networks often is
tedious and error prone due to changing of
signals to use only effects one well defined
part of the project, and not various parts
as is used to do.

8 Conclusion

We have presented CANopen.NET, a
technology for separate design and
implementation of CANopen-based control
systems and their Graphical User
Interfaces (GUIs). Using CANopen.NET a
GUI-designer can construct a GUI for the
CANopen-based control system (possibly)
without writing a single line of code.
Specifically, no coding is needed to get
access to the CANopen data values in the
graphical .NET environment. Data values
appear in .NET datasets, which can be
directly bound to .NET graphical
components without any programming.
The dataset and the configuration of the
CANopen protocol is done automatically
by CANopen.NET tools from an Electronic
Data Sheet (EDS) specification of all the
data values that should be sent and
received by the GUI-node.

iCC 2006 CAN in Automation

 07-18

The result of using CANopen.NET is
significant reduction in cost and complexity
of constructing CANopen systems with
GUIs. By separation of concerns,
engineers can focus on their main task
(e.g. designing a control system or
designing a user interface), significantly
simplifying project management. Further,
engineers need not be specialized in both
CANopen and .NET development;
simplifying the process of staffing the
project.
Also, the quality of resulting application is
enhanced since error prone, manually
written; code for handling signals at
different levels of abstraction is eliminated
by automatically generated configurations
from the CANopen.NET tools.

References

[1] Road Vehicles - Interchange of Digital
Information - Controller Area Network (CAN)
for High-Speed Communication, International
Standards Organisation (ISO), vol. ISO
Standard-11898, Nov 1993.

[2] CANopen - Application Layer and
Communication Profile, CAN in Automation
DS301, EN 50325-4, http://www.canopen.org,
2003.

[3] SAE J1939, Joint SAE/TMC Electronic Data
Interchange Between Microcomputer Systems
In Heavy-Duty Vehicle Applications,
http://www.sae.org. CAN

[4] Microsoft .Net Compact Framework, Andy
Wigley and Stephen Wheelwright, 2003

[5] .NET Common Language Runtime Unleashed,
Kevin Burton, Sams Publishing, April 04, 2002

[6] ADO.NET Cookbook, Bill Hamilton, O'Reilly,
September 2003

[7] Stone Marvin L,, ISO 11783: An electronic
communications protocol for agricultural
equipment, ASAE, Feb 1999

[8] CoDeSys home page, 3S – Smart Software
Solutions. http://www.3s-
software.com/index.shtml?oem1

[9] Visual Studio 2005. Microsoft.
http://msdn.microsoft.com/vstudio/

[10] CC Pilot XS - a versatile and robust on-board
computer for Win CE and Linux. CC Systems.
http://www.cc-
systems.com/en/index.php?option=content&tas
k=view&id=43

